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IN THIS SHORT PAPER, WE EXTEND THE SEMINAL STUDY by BERKER [4] of pseudo-
planar flows that occur in an orthogonal rheometer, essentially two parallel disks
rotating about non-coincident axes at the top and bottom, to the case of an elec-
troactive elastic solid. We obtain the expression for the stress, which is a function
of the deformation as well as the electric field, in an electroactive elastic solid using
standard representation theorems. We show that in the case of elastic solids, pseudo-
planar displacements can take place, with each layer z = constant rotating about
a distinct center of rotation. We determine the nature of the locus of the centers of
rotation, which can take on profiles that are distinctly different, based on the nature
of the electric field, the applied pressure gradient and the rotation of the top and
bottom plates.
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1. Introduction

THE ORTHOGONAL RHEOMETER IS AN INSTRUMENT that can be used to de-
termine the properties of both fluid-like and solid-like materials. It essentially
consists of two parallel plates rotating with the same angular speed, but about
distinct axes. The material undergoes a motion that is the superposition of shear
and rotation, which in nonlinear fluids and solids invariably produces normal
stresses, which are not necessarily the same, leading to normal stress differences.
The flow in an orthogonal rheometer, and the more general problem of flow
engendered due to the rotation of plates, with different angular speeds, have
been subject to considerable scrutiny. The flow of a fluid above a disk due to
its rotation and the flow of a fluid between two parallel disks due to their rota-
tion about a common axis or about distinct axes have been studied assiduously
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since the seminal study of VON KARMAN |[1] in the case of the Navier—Stokes
fluid for the flow above a single rotating disk of infinite radius using a similar-
ity transformation that reduced the partial differential equations to a system of
ordinary differential equation. This study of von Karman was followed by those
of BATCHELOR [2| and STEWARTSON |3|, who studied the flow that occurs due
to the flow of a Navier—Stokes fluid between two infinite parallel disks rotating
about a common axis, but with differing angular velocities. Their studies showed
the richness of solutions that are possible for the problem under consideration, in
that different types of solutions can manifest themselves, even in the case of the
Navier—Stokes fluid, even if one were restricted to looking for axially symmetric
solutions.

In marked contrast, in a remarkable study of the problem of flow between
two infinite parallel plates rotating about a common axis, with the same angu-
lar velocity, BERKER [4] showed that if one were to give up the requirement of
axial symmetry, then an infinity of solutions is possible to the problem, these
solutions corresponding to different conditions in the lateral surface of the body
of fluid at infinity. The form of the velocity field that Berker chose belongs to
the class of “pseudo planar” motions that he had introduced (see BERKER |[5]),
fluid particles that lie in a plane parallel to the plates continuing to move on
that plane, with no particle having a motion in the direction perpendicular to
the plates. Such is the flow that occurs in the orthogonal rheometer, an instru-
ment used to measure the properties of nonlinear (non-Newtonian) fluids and
nonlinear solids.

The psuedo-planar motion that the body undergoes, discussed by Berker
within the context of fluids, can be visualized in the following manner: a stack of
infinitely thin long playing records, with a wire threaded through the holes at the
center in a shape that admits each record to rotate rigidly, the top and bottom
records being offset. The shape of the threaded wire represents the “locus of the
centers of rotation”. While in the case of fluids, Berker is referring to the velocities
of the infinitely thin discs, in our case we are considering the displacements.

In the case of non-Newtonian fluids, there have been numerous studies con-
cerning the flow in an orthogonal rheometer wherein both the disks rotate
with the same angular velocity, but about distinct axes (see MAXWELL and
CHARTOFF [6], BIRD and HARRIS |7], BLYLER and KURTZ [8|, KEARSLEY [9],
GORDON and SCHOWALTER [10], GOLDSTEIN and SCHOWALTER [11], AHRENS
and GOLDSTEIN [12], RAJAGOPAL [13]|, RAJAGOPAL and WINEMAN |[14], RA-
JAGOPAL et al. |[15], BOWER et al. |16], F'usl et al. [17], YANAMUNDRA et al. |18],
and others). The flow and stability of a second grade fluid between two rotating
plates, extending the analysis of BERKER |4] was carried out by RAJAGOPAL
and GUPTA [19]. A discussion of many of the studies can be found in the review
article by RAJAGOPAL |20].
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RAJAGOPAL |21] showed that the flow that occurs in an orthogonal rheome-
ter is a motion with a constant principal relative stretch history (see NOLL [22]
for the definition of a motion with constant principal relative stretch history)
which implies that the flow can be captured by knowing just the first three
Rivlin-Ericksen tensors (see RIVLIN and ERICKSEN |23] for a definition of Rivlin—
Ericksen tensors). It can be further shown that one needs only knowledge of the
first two Rivlin-Ericksen tensors to determine the constitutive relation even
for the most complicated Simple fluid (see NOLL [24, 25| for the definition of
a simple fluid).

While most of the studies pertain to the flow of fluids in an orthogonal
rheometer, the instrument can also be used to determine the properties of solids.
RAJAGOPAL and WINEMAN [26] studied the deformation of the neo-Hookean and
Mooney-Rivlin bodies subject to the deformation pertinent to that of a mate-
rial deforming in an orthogonal rheometer while CARROLL and RAJAGOPAL |27]
studied unsteady motions of neo-Hookean and Mooney—Rivlin bodies subject
to the same deformation. These studies were followed later by investigations
into the deformation of an elastic body with a non-convex stored energy po-
tential by RAJAGOPAL and WINEMAN 28|, and RAJAGOPAL, MASSOUDI and
WINEMAN [29] addressed themselves to the deformation of granular materials,
and GUPTA et al. |30] carried out experiments on the flow of granular materials
within the confines of an orthogonal rheometer.

Our interest here is to study the deformation of an electroelastic solid within
the confines of an orthogonal rheometer using the very simplified constitutive
relation developed for such materials by RAJAGOPAL and WINEMAN [31] which
treats the electric field as a given variable rather than having to determine it by
solving the usual balance equations of mechanics in conjunction with Maxwell’s
equation. The constitutive theory that stems from a more general viewpoint
that considers the various fields such as the electric field, magnetic field, etc.,
can be found in RAJAGOPAL and RuzIiCKA [32, 33|, and BUSTAMANTE and RA-
JAGOPAL |34, 35| developed constitutive relations for electroelastic solids wherein
the underlying elastic body is more general than classical Cauchy elastic bodies,
given by implicit constitutive relations between the stress and deformation gra-
dient (see RAJAGOPAL |36, 37]). Recently, RAJAGOPAL and WINEMAN [38] have
developed universal relations for shear and the triaxial extension of an electroe-
lastic solid, generalizing their earlier work of such universal relations for elastic
bodies [39].

The organization of the paper is as follows. In the next section we introduce
the constitutive relation for the electroelastic body. In Section 3 we consider the
electroelastic body subject to an electric field along a variety of directions and
in the final section we determine the shape of the locus of the centers of rotation
corresponding to the different applied electric fields.
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2. Constitutive equation

There are two possible choices for the material symmetry group of the consti-
tutive equation for an isotropic nonlinear elastic electroactive solid, namely the
full orthogonal group or the proper orthogonal group. Representations for both
are presented in [31]. This work restricts attention to isotropy described by the
full orthogonal group for which the constitutive equation is:

(2.1) T=-pIl+E®E+ B+ a3B™' + (BEQE + E ® BE)
+a5(B'EQE+E®B'E),

where T is the Cauchy stress, p is a scalar that arises from the assumption of
incompressibility, B is the left Cauchy—Green tensor, E is the electric field vector
and «; are scalar coefficients, i.e. material properties, that are functions of the

invariants,
2.2) I =tr(E® E), I =tr(B), I3=tr(B™),
' IL,=tr(BEQE), Is=tr(B'EQE).

3. Kinematics for an electroactive solid in an orthogonal rheometer

An orthogonal rheometer is a device consisting of two parallel plates a dis-
tance 2h apart within which, a solid or a fluid whose material properties we wish
to determine, is placed (see Fig. . The plates are bonded to the surfaces of

<v

Fi1a. 1. Schematic drawing of an orthogonal rheometer.
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the layer. They rotate about different axes that are normal to the plates, are
parallel and are separated by a distance a. The rotation of the plates imposes
a deformation of the layer in which each material particle undergoes a differ-
ent shearing deformation. The forces and moments applied to the plates can be
related to the shearing deformation and thereby provide information about the
shearing properties of the medium. Moreover, if the material that is being tested
is nonlinear, then the shearing motion causes normal forces to develop, and the
measurement of these normal forces will aid in the determination of the material
moduli that appear in the expression for such forces.

The orthogonal rheometer has been used to study the properties of various
materials such as viscoelastic fluids [14, |16, 21] and granular materials [29].
In the present context, the layer is an ER solid, the plates act as electrodes
and the orthogonal rheometer is used to study the interaction of the shearing
deformation and an electric field.

Let the X-Y plane of a Cartesian coordinate system lie in the mid-surface
between the parallel plates, and let the lower and upper plates coincide with
planes Z = —h and Z = h, respectively. The reference configuration for the
electroactive solid is the layer between the plates before the plates are rotated
and the electric field is applied. In this configuration the coordinates of a typical
particle are (X,Y,Z). The lower plate rotates through angle  about an axis
through the point (—a/2,0,—h) and the upper plate rotates through angle Q
about an axis through the point (a/2,0, ). It is assumed that the plane at Z ro-
tates about a point (f(Z),g(Z),Z) and that these centers of rotation lie on
a continuous curve connecting the points (—a/2,0,—h) and (a/2,0,h). Letting
(z,y,z) denote the coordinates of a particle in the current configuration, the
deformation of the layer is described by:

(X = f(2))cosQ — (Y —g(Z))sinQ + f(Z),
(X = f(2)sinQ+ (Y —g(Z)) cosQ + g(Z2),
=Z.

(3.1) Y

The motion is a pseudo-planar motion, that is a motion in which par-
ticles in the z = constant plane, move on the same plane, the motion however
being different from one plane to another. Flows corresponding to such motions,
namely pseudo-planar flows, were considered systematically by BERKER [4] who
was able to establish explicit exact solutions in the case of the Navier—Stokes
fluid. A generalization of the problem considered herein is that when the top
and bottom plates are rotated by different angular displacements, this means
that the problem is one of torsion superposed by shear. Such a deformation was
first investigated by RAJAGOPAL and WINEMAN 28] within the context of neo-
Hookean and Mooney—Rivlin materials. who determined a two parameter family
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of exact solutions to the problem. When the angular displacement of both the
top and bottom layers are the same, we recover the solution for the problem
considered here, in the case of the neo-Hookean and Mooney—Rivlin materials.
The motion was further generalized and studied, within the context of dynamics
by CARROLL and RAJAGOPAL [27] for a variety of fluid models.

The deformation gradient associated with the motion is given by

cosQ —sinQ /(1 —cosQ) + ¢'sin
(3.2) F=|sinQ cosQ ¢'(1—cosQ)— f'sinQ |,
0 0 1

where, recalling (3.1) (=) = d(-)/dZ = d(-)/d=.
The above deformation gradient (3.2)) can be expressed as (see [28])

(3.3) F = QF; = F2Q,

where Q is a proper orthogonal tensor corresponding to rotation and F; and F»
are deformation tensors corresponding to shear, i.e.:

cos{) —sin{2 0
(3.4) (Q)xyz = | sinQ cosQ 0 |,
0 0 1
10 ¢'sinQ+ f'(cosQ—1)
(3.5) (Fi)xyz= 01 —f"sinQ+ ¢'(cosQ — 1)
00 1

The tensor F; can be shown to have the matrix representation:

10K
(36) (Fl)rotated = 010 5
001
(3.7) K =2(f2+ ¢?)(1 — cos Q)

in a rotated co-ordinate system. One can similarly show that Fs is a linear
transformation that corresponds to shear.

Thus, each layer undergoes a simple shear deformation but the amount of
shear and its direction vary with Z and ). The inverse of the deformation gra-
dient is

cos sinQ f/(1—cos) — ¢’'sin Q.

(3.8) F!l=|-sinQcosQ f'sinQ+g(1—cosQ) |,
0 0 1
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where F, F~! and the terms defined through

’(1—cosQ)+g’sinQ, B=—f"sinQ+ ¢ (1—cosQ),
—f(1—cosQ)—¢'sinQ, D= fsinQ—g(1--cosQ),
D=1+ (f'(1—-cosQ)—g'sinQ)? + (¢'(1 — cos Q) + f'sinQ)?
— 14 (12 + )20 — cos D)),

(3.9)

the stress components are found to be:

(3.10) Ty = —p+aiEP 4 as(l+ A% + a3

+ 204 [EZ (1 + A?) + E1F2AB + EyFE3A] + 2a5[E? + By ExCY,
(3.11) Toy = —p+ai1E2 4+ as(1+ B?) 4 a3

+ 204[E1E2 AB + FE3(1 + B?) + EyF3B] + 2a5[E3 + EyF3D],
(312) Ti3 = —p+a1E3 +as+azD +204[E1 B3 + E2E3B + E2]

+ 205[E1 F3C + EoE3D + E2D),
(3.13) Tia = a1 E1Fo + asAB + ay[E1 E»(2 + A + B?)

+ (B + E3)AB + ExE3A + FE3B]

+ a3[2E1 By + FyB3C + E1E3D),
(3.14) Tiz3 = a1 E1F3 + as A+ a3C + au[E1E3(2 + A?)

+ (E? 4+ E2)A + FyE3AB + FE» B

+ as[E1E3(1 + D) + (E? + E3)C + E1Ey D),
(3.15) Ty = a1 FyF3+ asB + asD

+ ay[E2E3(2 + B?) + (B3 + E3)B + B1E3AB + E1 Ex A

+ as[E2E3(1 + D) + (E3 + E2)D + E1 ExC).

The invariants are:
I =B} +E24+E2, I,=3+A%+B? I3=2+D,

(3.16) Iy = Bf(1+A*)+E3(1+B*)+E;+2F EsAB+2E, E3A+2F,E3 B,
Is = B>+ B2+ E2D?+2E, E3C+2E» E3D.

On writing the stress tensor in the form T = —pl + T(z), the equilibrium
equations, in the absence of body forces, reduce to:

ap dT13 . 8p dTQg . ap dT33

(3.17) C9r  dz 7y de 0z dz

=0.
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Cross differentiation to eliminate p gives:

d?Ty5 d?Ths
'1 pu— — .
(3.18) 1.2 0, 1.2 0
Thus,
(3.19) Tiz =Tz =P+ Paz, Tog=Toz = + 722

4. Deformations associated with various electric fields
41. B1=E, =0, E3 £ 0

In this special case, the electric field vector is perpendicular to the plates and
the layer. The relevant stress components reduce to the form:

Ti3 = [f'(1—cosQ) + ¢ sin Q) K,
(4.1) Tos = [—f'sinQ + ¢'(1 — cos Q)] K,
K=oy —a3+ (g — a5)E§.
Let it be assumed that the scalars «; are constants so that K is independent

of z. Then, after substituting the stresses in (4.1]) into (3.19)), the system can be
integrated to give two equations for f(z) and g(z):

: h?

(f(1 —cosQ) + gsinQ)K = Bo + frz + P

h2

(=fsinQ+g(1 —cosQ))K =~ +mz+ V2

The boundary conditions on f and g, determined by the intersections of the
axes of rotation with the lower and upper plates, are:

(4.2)

a a
(43) lower: f(~h)=-%, g(-h)=0,  uwpper: f(h)="y, g(h) =0
On applying these boundary conditions, Egs. become:
44 (f(l—cosQ)+gsinQ)K:%(1—0089)[(24—%(732—112),
4.4
(—fsinQ+g(1 —cosQ))K = —% sin QK z + %(22 —h?),
whose solution for f and g is:
f(2)((1 = cosQ)? +sin® Q) K
a 9 .9 22— p2 .
(4.5) :ﬁ((l—cosQ) +sin Q) Kz + (B2(1 — cos Q) — y28in (),
22 _ B2

g(2)((1 — cos Q) +sin* Q) K = h (B2sin Q2 + y2(1 — cos Q).

Two integration constants, 82 and 2, remain to be determined.
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Since

_Op dp Op
(4.6) dp = 8xdm + 8ydy + (9de’

it follows from (3.14)—(3.16]), that
(4.7) p = (faz + 12y) + /ng dz +C,

where C is a constant and T = T + pI.

We notice that the constants 85 and =9 appear in the Eq. for the pressure
field, and if they are non-zero, it implies a pressure gradient along the x and y
directions which are associated with deformation akin to the Poiseuille flows in
fluids. We see later that it follows from and that if the shear stresses
are to be the same on the upper and lower plates, then 8 and 5 are zero, and
vice-versa. The terms Box and 9y denote that there is a Poiseuille like flow due
to the pressure gradient along these directions due to the forces at the edges of
the plates. If there is no such pressure gradient, that is, if 82 and o are both
zero, then, the expressions in reduce to:

a
(1) 1) =5
and the locus of the centers of rotation will be a straight line (see Fig. 3).
However, if 82 and 79 are not zero, then the locus of the center of rotation will
not be a straight line and will be curved (see Fig. 2).
According to , the shear in the material elements in each layer is

z,  g(z) =0,

(4.9) K= (1 = cosQ).

The shear is independent of the layer, the material properties and F3 depend only
on the plate separation h, the rotation axis spacing a and the plate rotation 2.
Furthermore, the locus of the centers of rotation of the surfaces of the layer
is a straight line that lies in the z-z plane and does not vary with material
properties or F3. On the other hand, if the forces on the plates are found to
be different, then, according to , the shear at a material particle depends
on the material properties and E3 and its location z. The locus of the centers of
rotation is a curve passing out of the z-z plane and whose shape varies with both
the material and Fs.

4.2. By #0, B2 #0, E3 =0
Using the notation in (3.9)), the relevant stresses become:

T3 = agA + a3C + 044(E%A + ElEQB) + Ck5(E%C + ElEQD),

(4.10)
Ths = asB + azD + ay(E1Fy A + E3B) + as(E1EC + E3D).
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Now, with the expressions for A, B,C, D in (3.9) the stresses can be written
directly in terms of f’ and ¢/,

Tz = f'[K1(1 — cos Q) — K12sin Q] + ¢'[K1sin Q + Kq2(1 — cos Q)]

4.11

( ) To3 = f/[K12(1 — cos Q) — Kosin Q] + ¢'[K12sin Q + Ka(1 — cos )],
in which

(4.12) Ki=as—az+ Ei(as—as), K= FE1Fa(aq — az),

K2 = (p — Q3 +E§(a4 - a5).

Let it again be assumed that the scalars «; are constants so that Ky, Ko, K19
are independent of z. Then, after substituting the stresses in (4.11)) into (3.19)),
the system can be integrated to give two equations for f(z) and g(z),

FIE1(1 —cosQ) — K12sin Q] + g[K1sinQ + Ki2(1 — cos Q)]
2
z
= Bo+ brz+ B2,

(4.13) fIK12(1 — cos Q) — Ko sin Q] + g[Ki2sin Q 4+ Ko(1 — cos )]
=% +mMz+ ’72222-
After applying the boundary conditions, become:
FIE1(1 —cosQ) — K12sin Q] + g[K1sinQ + Kj2(1 — cos Q)]
= i[K1(1 —cosQ) — Ki98inQ]z + @(zQ — h?),
(4.14) 2h 2

f[K12(1 — cos Q) — Ko sin Q] 4 g[K12sin Q + Ka(1 — cos )]

= %[Klg(l —cosQ)) — KosinQ]z + %(22 — h?).
Once again, depending on the structure of the pressure field, we can either have
the locus of the centers of rotation as a straight line or a curve joining the centers
of rotation on the top and bottom plates. The manner in which the locus of the
centers of rotation changes with Fj, with Fy = F3 = 0 is provided in Fig. 6,

while the manner it changes with Ey, 1 = E3 = 0 is portrayed in Fig. 7.

4.3. B2 =0, B, #£0, E3 40

In this case it is intended that the electric field be normal to the plates but
ends up having a component along the X-axis. Using the notation in (3.9)), the
relevant stresses become:

T13 = (a1 + 204 + a5)E1 B3 + (g + (E% + E'g)a4)A
(415) + (043 + (E% + Eg)og)A + E1E3(Oé4A2 + a5D),
Tos = (az + E30u) B + (o3 + E305)D + Ey Ezas AB.
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Let these be substituted in and use . This gives two coupled nonlinear
equations for f’ and ¢’. Even in the special case when the «a; are constants, it
appears that analytical solutions for f’ and ¢’ cannot readily be established and
they must be determined numerically. Our remarks in the previous section with
regard to how the structure of the pressure affects the locus of centers of rotation
apply once again.

5. Numerical example

We now determine how the functions f(z) and g¢(z), and hence the shape
of the locus of the centers of rotation, defined by (f(2), g(z), z), are affected by
the angle of rotation and the electric field. In order to verify that our numerical
scheme is valid, we tested the case when the electric field £y = Ey = F3 = 0,
when (2 and 7y are zero (that is, when the pressure gradients in the X and
Y directions are absent), the top and bottom surfaces being rotated with the
same angular displacement €2 about the points (0,0, —h) and (0,0,h) and a =0
(corresponding to the plates rotating about the same axis), respectively. In this
case we find that both f(z) and g(z) are constant and the solution is a rigid
body rotation. We also find f(z) and ¢(z), once again when a = 0, 82 and 7,
are zero, and when the component of the electric field along the z-direction is
not zero. As can be expected, since the electric field is along the axis of rotation,
we once again find that f(z) and g(z) are constant. Figures showing this are
omitted for the sake of brevity of the presentation. Next we consider the case
when a = 0, but 2 and 9 are non-zero (that is, they are pressure gradients
present in both the X and Y directions). We see parabolic profiles associated
with the deformation, as might be expected. This is depicted in Fig.

-
5 5
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0} —0 =087
Q=104
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—Q = 0.69
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Q=104
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f(2) 9(z)
(a) f(2) vs z (b) g(2) vs z
Fia. 2. Parametersa =0, h=5mm, as =as =2, az = a5 =1, fo = —10, 72 = —1,

Ei=F,=0, B3 =1.
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When a # 0 (that is, when the plates are rotating about distinct axes),
B2 and 2 are zero (no pressure gradients in the X and Y directions), and the
electric field is also zero, we see that f(z) is a straight line that joins the centers
of rotation of the top and bottom plates and g(z) is a constant (see Fig.|3]). Next,
when there is no pressure gradient (52 and 72 are zero), but the electric field
is purely along the z-axis, we once again find that the locus of centers of rota-
tion is a straight line joining the centers of rotation of the top and bottom plates.
This is again to be expected as the electric field is perpendicular to the plates and
does not have an effect on the locus of the centers of rotation, the locus being
completely determined by the displacement due to shear (recall the earlier dis-
cussion that showed that the deformation being considered is made up of a shear
and a rotation). This is depicted in Fig. 4l Figure [5| portrays the situation when

5r 5

= — = 0.69 = —Q = 0.69
E 0f —Q =087 £ 0} —0 =087
0 0 =1.04 w2 0 =1.04
-5 . . . : ] -5 . .
-3 -2 -1 0 1 2 3 -1 -0.5 0 0.5 1
f(z) g9(2)
(a) f(z) vs 2z (b) g(2) vs z

Fic. 3. Parametersa =5mm, h=5mm, s =as =2, a3 =a5 =1, f2=0, 72 =0,
E,=FE>;=0, E3=0.

e

S5¢

= — = 0.69 = —Q = 0.69
E 0f —Q =087 £ 0} —0 =087
0 0 =1.04 w2 0 =1.04
-5 . . . : ] -5 . .
-3 -2 -1 0 1 2 3 -1 -0.5 0 0.5 1
f(z) g9(2)
(a) f(z) vs 2z (b) g(2) vs z

Fic. 4. Parametersa =5mm, h=5mm, acs =as =2, a3 =a5 =1, 2 =0, 72 =0,
E,=FE>;=0,E3=1.
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|

z [mm

0 —Q =087

z [mm]
o

'
o
o

0 5 10 15 20 25 30 h 0 20 40 60 80 100

fz) 9(2)
(a) f(2) vs = (b) g(2) vs =
Fi1G. 5. Parameters a =5 mm, h =5 mm, as = a4 =2, as = a5 = 1, B2 = —10, v2 = —1,

Ei=F,=0, Bs = 1.

a # 0, B and 79 are non-zero, while F3 # 0, but E; and Es are zero. In this case,
we find that the locus of the centers of rotation has a skewed parabolic profile
due to the shearing associated with the initial offset of the plates to which the
deformation due to the pressure gradient that would be parabolic, is suppressed.
Figures depict the variation of f(z) versus z and g(z) versus z, for different
values of the electric field and the pressure gradients. All of them essentially
have the skewed parabolic profile that is a consequence of the Poiseuille type
flow superposed on the shearing due to the plates rotating about non-coincident
axes.

[
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Fi1G. 6. Parameters a =5 mm, h =5 mm, as = a4 =2, az = a5 = 1, f2 = —10, v2 = —1,

Ey=1,E,=0, E3=0.

A few important caveats are in order. The material parameters that have
been chosen are arbitrary as there is no experimental determination that has been
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Ei=1E =1 E;3=0.

made of the same. Also, it is assumed that a constant electric field can be en-
forced. In reality, one has to solve Maxwell’s equations in conjunction with the
usual balance laws of mechanics. In fact, in practical situations, the problem
has to be cast within a fully thermodynamic setting, ensuring that the sec-
ond law of thermodynamics is met. This would lead to restrictions on the values
that the material constants can take. Thus, this attempt is merely a first crude
stab at a very complex problem.
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