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Singularities of aerodynamic transfer functions 
calculated on the basis of an unsteady lifting surface model 
in subsonic flow 

M. NOWAK (WARSZAWA) 

A DIRECT METHOD to calculate the Laplace transformed pressure distribution on subsonic lift-
ing surfaces is considered. The kernel function is analytically continued in the entire p-plane (of 
the non-dimensional Laplace variable), and the discretizing procedure follows the lifting lines (or 
doublet-lattice) method developed for simple harmonic motion. The aerodynamic influence coef-
ficient matrix is a function of Mach number Af and the complex variable p. In the first part of 
the paper, some analytical properties of this matrix were investigated on the basis of numerical 
calculations performed for an aspect-ratio-3 rectangular wing. The main conclusion o f this paper 
is that for 111 'f 0, there exist a large (probably infinite) set of latent roots of the matrix in the 
left half of the p-planc which (usually) reflect in poles of the transfer functions. For 1\1 -+ I, all 
latent roots tend to the origin (p = 0). For J\1 -+ 0, all latent roots move to infinity and p robably, 
for M = 0 there are no roots in the finite part of the p-plane. The distribution of la tent roots 
in the p-plane does not depend o n the number of aerodynamic elements introduced by the dis-
crctization (within the limits of accuracy of the calculation method). The algebraic equations are 
well-conditioned in the right half of the p-plane and in a strip parallel to the imaginary axis in left 
half of the p-plane. The width of this strip depends o n the Mach number. In the second part of 
the paper, an approximation to the aerodynamic transfer functions based on the identified singu-
larities and calculated left and right-hand latent vectors of the aerodynamic influence coefficients 
matrix is developed. It avoids the ill -posed analytical continuation f rom the imaginary axis in the 
whole p-plane. The results clarify also some unexpected phenomena observed in Laplace-domain 
calculations, and described in the lit erature. 

1. Introduction 

THE KNOWLEDGE of unsteady aerodynamic forces acting on a flexible aeroplane 
undergoing small perturbations from a steady equilibrium state of tri mmed, recti-
linear flight , is essential for stability analyses of the motion of the structure. 
The prediction of the unsteady aerodynamic loads is complicated by the fact 
that the unsteady fl owfield surrounding the body is not determined solely by the 
instantaneous state variables of the structure, but it depends also on the past 
history of the motion of the body. The aerodynamic forces exhibit heredity due 
to the influence of vorticity shed into the wake at earli er instants of time. 

The input data in a lifting surface aerodynamic model is the upwash distribu-
tion w(x, y , t) on the wing surface S (Fig. 1 ). Assuming that all linear coordinates 
(x , y, z) are nondimensionali zed by a reference length b (usual root semichord), 
and introducing nondimensional time l 

(1.1) 
U • lreal = b 
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where U is the fli ght velocity, the expression fo r the upwash distribution can be 
put in the form 

(1.2) 
w(x,y,t) Dh Dh ---'---'-----'- = - + -

U Dx Dt ' 

where h(x, y , l) denotes the no rmal (nondimensionalized) displacements of the 
wing surface. 

The lifting surface integral equation relates upwash and liftin g pressure coef-
fic ient cp(x, y , l) (i.e. pressure di fTerence .dp(x, y, I) between the upper and lower 
surface, nondimensiona lized by the dynamic pressure {!U 2 / 2) on the wing. T he 
original fo rm of the liftin g surface equation, given in 1940 by K OSSNER (1] applies 
to harmonic motion, when 

w(x, y , t) = w(x, y , ik )eikt and ( ) 
ｾ＠ ( 'I ) ikt Cp X 1 y 1 t = Cp X, y 1 u.: e . 

The lif ting surface equation relates in this case the amplit udes of upwash and 
pressure coefficient 

(1.3) w(x, y , ik ) 1 j j '( . Ｉ ｾ＠ ( . ) l l ---'-- - -'- = - l\ AI , .1:0' YO , 1. 1.: Cp ｾＬ＠ 1]' z 1.: ( ｾ＠ c 1] ' u 87T 
s 

where x0 = x - ｾ Ｎ＠ Yo = y - 1], M stands fo r the Mach number and 

(1 .4) 1.: = wb 
u 

is the nondimensional frequency coeffi cient (call ed also reduced frequency). 
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The kernel o f this equation is singular and the solution is sought in the class 
o f functions vanishing o n the trailin g edge - this is a necessary condit ion fo r the 
uniqueness of the solution, and physicall y it expresses the Kutta condition. 

There were developed many di1Terent methods for discretization of the li ft-
ing surface equation in the frequency domain. One of the most useful is the 
doublet-lattice technique of ALBANO and R ODDEN [2]. The calculations in this 
paper were made mainly by the lift ing-lines method [3, 4], with algorithms very 
similar to the doublet-l attice method, but usuall y with better convergence prop-
erties (with respect to the number o f introduced aerodynamic elements). 

For many years, the unsteady aerodynamic theories and its applications have 
focused p rimari ly on the frequency domain, since the knowledge of aerodynamic 
forces a t harmonic disturbances is sufficien t fo r the determination of flutter 
boundaries. The advent of active control techno logy for fl exible aircraft has re-
newed interest in unsteady aerodynamic forces given in the time and Laplace 
domains. 

The d isplacements of the structure are usuall y descri bed by means of a finit e 
set of generali zed coordinates q1 (t), q2(t ), . . . , q11 (t) defi ned on the basis of a set 
o f assumed modes 

n 

(1.5) h(x , y, t) = L ht.(x, y) · fJt. (l), 
k= l 

where the functions ｨ ｾＮ Ｎ＠ ( x, y) ( k = 1, 2, .. . , 11) correspond in the most cases to 
natural vibratio n modes of the structure. The upwash d istribution on the li f ting 
surface may be expressed in terms of the generalized coordinates and generalized 
velocit ies 

(1.6) w(x , y ,l) Ln Dht. (x, y) () :z=" I ( ) • () = -'l • fJk I + tt. X ' y • q k I . 
U u:t 

k= l k= l 

The generalized aerodynamic forces (related to the dynamic pressure and b2) 

are defin ed by integrals taken over the surface 

(1.7) fk (l) = j j ht.(x , y)cp(x , y, t ) dS 

s 
fo r 1.: = 1, 2, . . . , n. 

The problem consist in determination of the generalized force vector {!( t)} 
(wi th n elements (1.7)) fo r a given motion, descri bed by the function {q (r )} 
for -oo < r ｾ＠ t. Independently o f the detail s of the aerodynamic model, the 
aerodynamic operator which relates {q( l)} to {f(t) } possesses always so me ba-
sic propert ies, such as single-valuedness, lineari ty, time-invariance and continuity. 
According to a theorem o f SCHWA RTZ [6], these four properties can be replaced 
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by the entirely equivalent condition that states that this operator has a ( distribu-
tional) convolutio n representation. 

(1 .8) {f( t)} = [A(M, t) ] * { IJ(l) }, 

where [A(M , t)] is the unit impulse response matrix function (call ed also heredi-
tary matrix [5]), the (j , k) element of which is the generali zed indicia! response in 
the j -th mode due to the pressure cp(x, y, t) generated by the motion in the k-th 
mode with Qk(t) = 8(t ). The elements of this matrix depend also on the M ach 
number M . The aerodynamic fo rces can depend only on the history and not on 
the future of the motion. That means that the aerodynamic system is causal, and 
therefore 

[A(.t\1, t )] = 0 for t < 0. 

D irect calculation of the elements o f [A(M, t)] for arbitrary time may be 
d iffi cult and in practice, these functions are usually determined only by means o f 
the inversion of Fourier o r Laplace transform. Taking the Laplace transformation 
of the convolution (1.8) it fo ll ows that 

(1.9) { f(p)} = [ A(i\J.p)) U/(p)} , 

where p is the Laplace variable, and the circumflex accents C) denote transforms 

(1.10) {f(p)} = .C{f(t) }, {(j (p)} = .C{q (t)} and [ii (J\!,7J)] = .c[!I( M , t)]. 

The aerodynamic t ransfer functio ns matrix [;l(.H, 7J)] is a Laplace transform o f a 
real distribution and is real whenever 1' is real. Hence 

(1.11) 

where the star ( *) deno tes complex conjugate values. 
The co nvo lution (1.8) and the Laplace transformation should be interpreted 

on the basis of the theory of distri butions [6]. The aerodynamic transfer func-
tions grow with increasing IPI li ke O(IPI) in the case o f compressible fl ow, and 
like O(lpl2) in the incompressible case. Additionally, the d istributional Laplace 
transform does not contain explici tl y the in itia l values and this simpl ifi es the 
analysis. 

If the Laplace variable is pure imaginary ]J = ｩ ｬｾ Ｌ＠ then (1.9) determines the 
steady-state frequency respo nse function, which relates the amplitu des o f gener-
alized coordinates to the amplitudes of generalized fo rces in harmonic motion. 

(1.12) {f (ik)} = [ii(M, ·i/,;)] { (j(ik)} , 
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where k is the frequency coefficient defined in (1.4), and 

[A(M, i k)] = li m [ii (M , p)] 
ｰｾ• ｫ＠

is the matrix of harmonic transfer functions. 
The elements of the matrix [A( AI, ik)] can be calculated numerically for given 

values M and k on the basis of the liftin g surface equation (1 .3), and the relations 
(1.6) and (1.7). 

The aerodynamic transfer matrix [A(i\1, JJ ) ] is the final product of aerodynamic 
calculations and it is usually determined by means of the analytic continuation of 
the elements of matrix [.X(M, i k)] from the imaginary axis into the whole complex 
plane. 1Wo types of approximation have been used in practice for this purpose. 

1. The first approach begins with calculating the values of harmonic transfer 
functions over a specifi ed range of the frequency coefficients k = k1, k2, ... , k m. 
Next, the harmonic transfer functions are approximated by rational function which 
fit best the calculated values. The last step is the analytic continuation of the 
resulting rational functions into the whole 7;-plane. 

2. In the second (direct) approach, the kernel function of the li ft ing surface 
equation (1.3) is extended from the imaginary axis to the entire complex plane 
li.'(M , xo, Yo, ik) ---.. A'(M, xo, yo, p) by means of an exact analytic continuation. 
The elements of the aerodynamic transfer functions are calculated directly for 
a given value of the Laplace variable p on the basis of this generalized li fting 
surface equation. 

Both approaches have their own advantages and disadvantages. The e lements 
of [A(Af, p)] are ho lomorphic functions with branch points p = 0 and p = -oo 
(for M < 1) which are neglected in the approximati on by rational functions. When 
the transfer functions are approximated by polynomials o r rational functi ons, it 
is possible to cast the aeroelastic (and aerose1voelasti c) equations of motion in 
a linear time-invariant state-space form (instead o f integro - difTerential form), 
although the size of the state vector increases d ue to the approximatio n. Currently 
there are three basic formulations used in approximating the aerodynamic transfer 
functions by means of rational functions: least-squares [7] , modifi ed matrix-Pade 
[8] and minimum-state [9]. The common disadvantage of these methods is the 
necessity of numerical realisation of an ill- posed analytic continuation. 

The direct analytic continuation of functions which appear in the expression 
for harmonic aerodynamic fo rces gave ri se in the past to arguments on the valid-
ity of the results in the left-hand half-pl ane of the L aplace variable and was 
rejected in a series o f articles [10, 11, 12, 13]. This problem was later resolved by 
M ILNE [14], EDWARDS [15] and others, but nowadays some doubts arose about the 
possibility of a practical utili sation of this approach [1 6]. It was stated, that the 
application o f numerical solution techniques to the integral equation in the left 
half o f the p-plane may result in a highly ill- conditi oned set of linear equations 
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[17). An unexpected phenomenon was observed in [1 8). Some of the generali zed 
forces for strongly decaying motions in high subsonic fl ow reveal a looping be-
haviour in the complex plane. Testi ng a new method fo r solving the liftin g surface 
equation, UEDA [1 9) stated that " it looks probable that an aerodynamic singulari ty 
exists in the left half of the p plane when the flow becomes high subsonic". 

Another interesting approach to the approxjmation of transfer functions was 
given by STARK [20). He proposed an expression for the li ft deficiency function in 
the time domain and assumed that this function is independent of the deflection 
mode of the wing. Laplace transform of his deficiency function possesses branch 
points p = 0 and p = - oo, which are the only singulariti es of the transfer 
functions in the entire p plane. This approach leads to a good approximation in 
the incompressible case, but for non-zero Mach numbers the results were less 
satisfactory. 

The knowledge of analyt ic properties of aerodynamic transfer functions in the 
p plane is until now only fragmentary. It is known that the matrix [ rl(Af, p )] can-
not have any poles in the right half of the p plane, since the transient aerodynamic 
response is always stable. It is also known, that for a subsonic flow, the aerody-
namic transfer functions have logarithmic branch points 7' = 0 and p = - oo, 
as a result of the unlimited length of the wake. It is usually expected, that the 
aerodynamic transfer functions have no poles also in the left half of the ]J plane 
[5). This is true for the exact solution of two-dimensional airfo il in incompressible 
flow but was newer proved for the compressible case. The problem is addition-
ally complicated by the fact, that the solution of the singular integral equation is 
ill-posed, but the numerical methods used in the chordwise integration introduce 
a self-regularization and, after discretization, the resul ting set of algebraic lin ear 
equations is usuall y well-conditi oned. In the two-dimensional case (of an airfo il) 
the proof of this statement was given by LI FANOV [21 ]. 

The aim of this paper is to investigate the numerical problems which occur 
in solving the lifting surface equation in the Laplace domain and the analytical 
properties of the transfer functions in the left half of the 7' plane (for decaying 
motion). Particular attention wil l be paid to the conditioning of the lin ear alge-
braic equations obtained by the discreti zation of the li ft ing surface equation, and 
to the identification of singulariti es of the transfer fu nctions. 

2. Lifting sud'ace equation in the Laplace domain 

The liftin g surface equation in the Laplace domain is the result of an analyti c 
continuation of the kernel of (1.3). Formally, the variable i!.: should be replaced 
by the Laplace variable 

(2.1) w(x, y , p) 1 jj ( Ｉ ｾ＠ ( ) U = S1r X \1, x0, y0, 1' cP C 17, 7' ､ｾ＠ d17. 
s 
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The singular kernel (in the case of a flat surface) may be expressed in the form 
[4, 18] 

(2.2) A'(M, xo,yo, JJ) = Ｗ ｾ Ｒ＠ [(1 + ｾＩ＠ e - pru- F(pr,u)] e-pxo, 

where 

XO = X-C 

YO = Y - 7], 

T = lvol, 
R = Jx6 + {327.2' 

{3 = Jl- ]o.J2' 

MR -xo 
u = f32r 

The function F(z, u) is defined by means of following integrals 

z loo (1 - 17 ) e- Z!J dq 
J1 + ,,2 

u 

for Re (z) ｾ＠ 0, 

(2.3) F(z, u) = 
2ezu + ::; ;t• (1 + 7] ) e-"'7 d17 - i1l"z11f\:) 

J1 + 1]2 
-oo 

for Re (z) < 0. 

The second expression (for Re (.z) < 0) may be obtained from the first integral 
in (2.3), by an appropriate contour deformation. 

Only a few papers (e.g. [18, 19, 22]) are known which are devoted to the 
numerical problems which occur in li ft ing surface calculations in the Laplace 
domain. 

For small values of lpntl it is convenient to split F(pl', 'IL) into two parts [1 8] 

(2.4) 

where 

(2.5) F,(z) = z J (1 - / I : 
172

) e- '" d17 =I+ z- ｾ ｺ Ｈｉｉ Ｑ Ｈ ｺ Ｉ Ｍ Y1(z)) , 
0 

and the integral F2(z, u) defines an entire analytic function of the z variable, 
which may be expanded into a convergent seri es 

(2.6) F2(z, u) = z ju (1 - 17 
2

) e-z•J ch7 = f 1 
1 
ｧｾＬ［ＨｵＩｺｫＫ ｬ Ｌ＠

O j 1+17 k=O (k +J). 
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with a recursive relationship for the coefficients 

( ( ..; ) k ) k 1 k gk(u) = u 1 + u2 - u - k _ 
1 

( - u) - - k _ 
1 

9k- z(u) for k ｾ＠ 2 

and initial terms 

go(u) = 1 - ( V1 + u2 - u) , 
g1(u) = ln (v1+u2 -u) + u(v1+ u2 -u) . 

The H ankel function ｈｾ Ｑ ＾Ｈ ｺ ＩＬ＠ Struve function lf1(z) and Dessel function of the 
second kind Y1 (z) may be calculated with high accuracy on the basis of the series 
given e.g. in [23]. The accuracy of the series (2.6) is limited by the numerical 
instability due to the round-ofT error in actual computation. For calculations per-
formed with double precision, this limit depends on the values of parameters 
and sufficient accuracy can be achieved only if jprui < 6. For larger values of 
parameters it is necessary to provide o ther approximations. 

For very large values of jpr j satisfactory results may be obtained from the 
asymptotic expansion derived by means of integrating by parts the integrals 
in (2.3) 

(2.7) F(z, u) ｾ＠ (1 -J(u) - [; J<">(u) ;:;
1k) e - zu 

where 

and 

for Re (z) ｾ＠ 0, 

for Re (z) < 0, 

j<k+l)(u) = --1
- [C2k + l) uf (k)(u) + (1.: + 1)(1.: - 1)/(k-I)(u)] . 

1 + u 2 

The asymptotic seri es (2.7) is usually divergent and only a limited number of 
terms can be employed in the calculations. 

Very useful in practice is an expo nentia l approximation for the integrands of 
(2.3) 

12 

1 - 7J 
2 
ｾ＠ L a k exp (-zi' bo '7), 

) 1 + 1] k= I 

proposed by D esmarais. The values of coefllc ients u0 and a k are given in [18] . 
The resulting rational approximation of F(JJI' , u) may be used in the range 1r / 4 < 
jarg (p)i < 37f /4 and - oo < u < 
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3. Discretization of the lifting surface equation 

It is possible, independently of the used discretization procedure, to distinguish 
three steps of calculations of the values of transfer functions for a structure with 
n degrees of freedom (for a given Mach number M and value of the Laplace 
variable p ): 

a. Calculation of the substantial derivative to obtain a N -dimensional approxi-
mation of the upwash distribution 

(3.1) 
Nx l Nxn Nxn Nxl 

b. Solution of a linear system of algebraic equations 

(3.2) 
{ w(p)} = [A"(M, p)] { cp(p)}; 

Nx l NxN Nx l 

c. Determination of the transforms of the generalized coordinates 

(3.3) {lCP)} = [S] { cp(J,)}. 
Nx i nxN Nx l 

N is the size of the aerodynamic influence coefficients matrix which approximates 
the integral operator. The vectors { w(p)} and {C'p(p)} describe the upwash and 
pressure distributions on the wing surface. In practice, typical values are: n = 
20730 and N ,...., some hundreds (but always N ｾ＠ n ). The differentiation matrices 
[D l] , [D2] are determined by the formula (1.6), and the integration matrix [S] 
by the definit ion of the generalized forces (1.7). These constant matrices depend 
only on the used discretization method. Matrix [1\"(A! , JJ)] depends also on the 
M ach number and on the assumed value of p. The evaluation o f this matrix is 
the most time-co nsuming part o f the computation. 

Equations (3.2), (3.3) and (3.4) may be put together in the form 

nx l nxN NxN Nxn Nxn N x 1 

Hence, the aerodynamic transfer functions matrix is given by the formula 

(3.4) 
nxn n x N NxN Nxn Nxn 

If the d iscret ization procedure in the L aplace domain is the same as in the 
frequency domain (when ]J = ik ), then the matrix (3.4) is the result o f an exact 
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analytical continuation of the harmonic transfer matrix [rl(JII, ik) ]. On the oth er 
hand, if the calculations fo r a harmonic motion are based on the discretiz:ed 
equation (1.3), then the values of analytic functions determined in the entire 
complex plane p are in fact calculated on the imaginary axis. Therefore, the 
knowledge of analytic properties of the transfer functions may be useful also in 
the case, when the calculations are restricted to the imaginary axis only. 

In the case of subsonic fl ow (Jil < 1 ), the elements of [1\. (M, p )] have a 
branch-point in the origin (p = 0) and from the expression for the kernel function, 
it follows that 

[K(M, p)] = [A.(Af, 0)] + 0 (/ ln(p)) fo r p _, 0. 

The transfer functions are holomorphic functio ns in the complex plane cut along 
the negative real axis. 

Poles of the transfer matrix [1l (M, p)] may exist only in those points of the p 
plane, where the matrix [1\.(Al, p)] is singular 

(3.5) 

The number of la tent roots of the equation (3.5) may be large o r in finite, because 
the elements of the matrix [1\.(J\f , p)] are transcendental functions o f p. 

4. Condition number and latent roots or the aerodynamic influence coellicients 
matrix 

Most of the calculations in the fo llowing analysis were performed for a rect-
angular wing with an aspect ratio 11 = 3 in symmetric motion. This wing was 
also investigated in (20] and [22]. For the discretization, the lifting lin es method 
(4] was used, but some of the calculations were repeated with the doublet-lattice 
method [2] (with the same or almost the same results). 

The sensitivity of the solution o f (3.2) to the perturbation of the data 

may be measured by the condition number o f u\·cu, Jl)] defined as the product 
of two matrix norms 

(4.1) (1 s cond s oo). 

Logarithm to the base 10 o f the condition number can be used to estimate 
the number of significant digits of the result which can be lost, independently 
of the accuracy of the method used to solve the linear equations. Hence, if the 
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calculations are performed with double precision, then the matrix is numerical 

singular when log10 ( cond [I\ "( i\1, p))) > 16. 

The conditions numbers of the matrix [F (M, p)] were calculated for different 
Mach numbers and for a large set of p-values by means of the SVD a lgorithms 
[24) for complex matrices. 

Figure 2 shows the results of calculati ons made for Mach number }.1 = 0.8 
in a la rge region - 1.75 :S Re (p) :S 0, 0 :S Im (7;) :S 3.5 of the complex p-plane. 
The size of the aerodynamic model was N = 10 x 20 = 200 elements (10 lif ting 
lines and 20 strips uniformly distributed on the half-span of the wing). It is seen, 
that the matrix in this region is well-conditioned, altho ugh for Re (p) < - 1.0 the 
condition number grows very fast. There are also many local "spikes" which may 
indicate, that in its neighbo urhood exist singular points of the matrix [F(M ,p)]. 

M= 0.8 

fiG . 2. 

F igure 3 shows the same results in the form of a contour map. The latent roots 
were also calcula ted on the basis of Eq. (3.5) by means of the Muller method [25). 
The results of these calculations are posted on the contour map in the fo rm of 
black do ts. In each o f this calculated points log10(cond [!1.( i\f,p)]) > 16, hence 
the matrix is numerically singular. The initi al values for the Mull er iteration pro-
cedure were determined on the basis of the shape of contour lin es. The condition 
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number grows rapidly only in the vicinity of each root. In a very small region 
( j.dpj < w-8), the determinant of the matrix decreases usually by a factor about 
w- 10, although its value may be still very large. This is shown in the Fig. 4, where 
the contour lin es correspond to constant values of log10 I det(f\"(M, p)] j. 

The singular points exist for each M ach number in the range 0 < M < 1. 
The root distributions at Mach numbers 111 = 0.5, 0.7, 0.9 and 0.95 are shown 
in Fig. 5. It is seen that, as the Mach number increases, the width of the strip 
in the left half of the p plane where the matrix [A"( M, 71)] is well-conditioned, 
decreases. At the same time, all latent roots move in the direction to the origin. 
This phenomenon is shown in Fig. 6 where the loci of about 20 selected roots 
are depicted. The outer ends of these curves correspond to the Mach number 
M = 0.5, and the inner ends to M = 0.9. 

On the basis of Fig. 5 and Fig. 6 it is possible to formulate a hypothesis that 
for M --. 0, all roots move to infinity and in the incompressible case M = 0, 
there are no roots in the finite part of the plane IJJI < oo. On the other side, for 
M --. 1, all roots move to the origin and may significantly inOuence the behaviour 
of transfer functions at high subsonic Mach numbers. 
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It has been found in the example o f a rectangular wing, but also for o ther 
surface configurations, that the calculated roots of Eq. (3.5) were always simple 
roots only. 

5. The influence of the disc,·etization on the distribution of latent roots 

It is no t clear if the roots have a physical meaning and are related to the lif t ing 
surface equation or if they occur only in numeri cal calculations and are related 
to the discretized problem. 

Figure 7 shows the influence o f the size (N = 48-:-437) of the matr ix [1\' (M , p)] 
on the distri bution o f la tent roots in the p plane. The calculatio ns were made 
by means o f the liftin g lin es me thod, for a rectangular wing, at Mach number 
M = 0.8. It is seen that the difTerences may be related to the accuracy which 
may be achieved with the diffe rent models. For la rge values of the frequency 
coefficient, the pressure distri bution is oscill ati ng along the chord (Kutta waves) 
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and a large number o f aerodynamic elements is required at the discretization. I t 
fo ll ows, that the number and distri bution of latent roots do not depend on the 
size o f matrix [A' (AI, p )] wit hin the limits of accuracy of the used method. 

The most time-consuming part of the procedure to calculate latent roo ts is the 
search fo r a good initi al approximation. T he resul ts presented in Fig. 7 suggest a 
practical approach, which may be applied fo r an arbitrary large N . The process 
should be divided into a sequence o f steps, in which the number o f aerodynamic 
elements increases N 1 < N 2 < . .. < N . The results obtained in each step are 
used as the ini ti al values for the next step . The cho ice of the init ial approximations 
for the fir st step may be not strenuous if N1 is small enough. 

6. Approxima tion to the trans fer matrix in the vicini ty of its poles 

The resolvent [26] of the matrix [r,·(J l ,JJ) ] fo r a given p has the form 

(6.1) 

where the scalar parameter A is distinct from the e igenvalues A j(P ), j = 1, 2, ... , N 
of [1\' (.i\f , p)], while { uj(p)} and { Vj (JJ)} are the right and left eigenvecto rs asso-
ciated with Aj(p), and normali sed in such a way, that { vj (lJ)f' { ui (P)} = 1. T he 
relati o n (6.1) is true also for A = 0, because the matrix [ h"( i\I , O)] is no t singular. 
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The derivative of an eigenvalue of [A"(.M, p)] is given by the expression 

(6.2) 

If the value p = Pk is a latent root of (3.5), then a t least o ne of the eigenvalues 
Aj (Pk), j = 1, 2, ... , N is equal to zero and in the vicinity of Pk 

(6.3) 

On the basis of (6.1 ), (6.2) and (6.3) it is possible to obtain an approximation 
to the matrix inverse [A" (i\f , p)t1 in the proximity of the root p = Pk 

(6.4) 

where [<P(p)] is a regular function in the vicinity of Pk. whil e the latent vectors 
{ uk} and { vk} are non-trivial solutions of the sets of homogeneous equations 

(6.5) and 

normali sed in such a way, that 

(6.6) 

It foll ows from (6.4) that the latent roots of (3.5) usuall y reOect in poles of 
the transfer functions (3.4 ). However, there are two obvious exceptions to this 
rule. 

If { s;} T is the i -th row of the integration matrix [ S] which was defined in 
(3.3) and { s;V { uk} = 0, then the latent root lh is not a pole of the functions 
(elements) in the i-t h row of the transfer matrix [A(J\I , p)]. Simil arly, if {d 1j} and 
{d2j } are the j -th columns of the di ffe renti ation matrices [D l] and [Dz] and at 
the same time { vk} T { d1j} = 0 and { vk} T { d21} = 0, then the latent root Pk is no t 
a pole of the functions in the j-th column of the transfer matrix. 

The right latent vector which is a solutio n of the second homogeneous equa-
ti on (6.5) determines a pressure distribution. In F ig. 8 and Fig. 9 two examples of 
such pressure distribut ions are shown which are associated with two latent roots. 
It has been numerically proved, that the shapes of these functions do not depend 
on the number of aerodynamic elements used to the discretization of the integral 
equation. 
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7. Approximation to the transfer functions based on their singularities 

The knowledge of the singulari ties: branch points (p = 0 and p = -oo) and 
poles (l atent roots of (3.5)) makes possible an approximate reconstruction of 
the transfer functions in the enti re complex p plane, without any use of analytic 
continuation (from the imaginary axis). 

The solution of the equation may be put in the form 

(7.1) 

where [ Ae(p)] denotes the matrix [A.(.i\/, p)]- 1. 

Th simplify the notation, in (7.1) and later in this section, the dependence of 
the matrices which define the aerodynamic system on the Mach number was not 
marked explicitly. 

It should be emphasised that the relation (7.1) concerns the aerodynamic 
model only and does not depend on the defin ition of generali zed coordinates 
used to describe the motion of the structure. 

The inverse La place transform .c-1 applied to (7.1) gives the relation between 
upwash and pressure distri butions in the ti me domain in the form of a convolution 

(7.2) { cp(l)} = [Ac(l )] * {w (l) }, 

where the elements of [Ac(l )] are the responses {cp(l) } which result from a uni t 
impulse o(l) in the elements of the discretized upwash distri bution { w(l)}. In 
practice, it is usually more convenient to use inditial functions [11 (1)], which are 
responses to a unit step change in the (discretized) upwash distri bution. From 
(7.2) it foll ows that 

(7.3) { c P (I)} = ( fl (I) ) * { 1i1 (I)} , 

where { w (1)} is the derivative wi th respect to time l of the upwash vector {w( l) }. 
The inditi al functions(!! (I)] are related to the hereditary functions [Ac(l )], 

(7.4) and 

where 1+(t) is the unit step function (Heaviside function). 
From the fin al value theorem [6) it fo ll ows 

(7.5) [ ff( oo)) = lim (1I (I) ] = lim [rtc(p)] = [;tc(O)) = [h.(M,0)]- 1
• 

ｴｾ ］＠ p-0 

This limi t corresponds to the steady solution (for constant boundary conditions 
on the surface). In compressible fl ow ＨＮ ｾ Ａ＠ 'f 0), there exists also the limit given 
by the initial value theorem 

(7.6) [D] = li m [1! (1)] = li m [;ic (p)] = [;tc( )) , 
t-0+ p- = 
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which can be calculated directly on the basis of the piston theory [27] 

(7.7) (· O )- 4w(x, y ,O+) 
Cp x , y , + -M U 

(discretization of this relation in the method of the li fting lines is given in the 
Appendix). 

In the incompressible flow (M = 0) the limiting values (7.6) do not exist, but 

(7.8) [MA ]= lim ([If(t)] * l+(t)) = lim Ｈｾ＠ [Ac(p)j) 
ｴｾｏＫ＠ p-.oo ]J 

is the apparent mass matrix, which can be determined on the basis of a simplified 
model (without wake). 

Thking into account the properties of the elements of the matrix [A"(M,p)], it 
is possible to obtain (e.g. [5, 8, 14]) an asymptotic representation 

(7.9) [ Ac(p)] - [rlc(O)] = 0(/ In p) for p -. 0. 

It fo ll ows, that in the time domain 

(7.10) [ll( t)]- [!!( ｾ Ｉ｝＠ = O(t.- 2) fo r t ---. oo. 

The general fo rm of the inditi al matrix may be put in the form 

(7.11) [II(l)] =[If( )] - [C(t)] + [ AIA ]8(t) , 

where the function [C (t)] is usuall y called the deficiency function, and its asymp-
totic behaviour is determined by (7.10). The constant matrix [If( )] determines 
the steady-state limit and may be calculated o n the basis of (7.5). The apparent 
mass matrix [MA] is involved only for incompressible flow. 

This paper is focused on the poles of the transfer functions and their influence 
on the aerodynamic forces. It was shown that the latent roots of (3.5) appear 
only when M > 0, and therefore, the following analysis will be restricted to the 
compressible flow when [M A] = 0 and the relations (7.6) and (7.7) may be used. 

It is convenient to make a decompositi on 

(7.12) 

where the first term represents the influ ence of po les, and on the basis of (6.4) 
it may be put in the form 

(7.13) 
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where the summation concerns all the (calculated) roots, which exist alw1ys as 
conjugate pairs. It may be assumed, that the second term [/te2(p)) does not 
possess any poles and represents the innuence of the branch-points p = 0 and 
p = 00. 

Similar decomposition of the indicia! matrix has the form 

(7.14) [JJ (t)) = [!T1 (t)) + [II2(t)], 

where on the basis of (7.13) it follows that 

(7.15) 

(7.16) 

and for t --+ oo 

(7.17) 

[Ht(oo)) = lim [Ht(t)] = li m [A et(P)] = [Aet(O)], 
t-oo p-0 

where a = max(Re (Pk)) < 0 
!.· 

H ence, the asymptotic behaviour of [JI (t) ] is determined by [II 2(t)] - [/l 2(ro): = 
O(c 2). 

From (7.6) and (7.15) follows also the limi ting value 

(7.18) lim [If2(t)] = lim [!f(t)] = [D] . 
t - 0+ t-0+ 

The deficiency function matrix may be also represented in the form of a SJm 
of two components 

(7.19) 

and 

(7.20) 

The fir st component is determined by (7.13), but for the second component, m ly 
the limi ting value is known 

(7.21) [C2(0)) = [Il 2(oo)) - [D] = [X( AI, O)r1
- [li et(O)] - [D] 

and the asymptotic behaviour 

(7.22) fo r t --+ oo. 

Finally, the problem of approximating the response matrix with the use of 
identified singulariti es is reduced to the determination of deficiency functims 
which fulfils the conditions (7.21) and (7.22). 
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For this purpose it is possible to use a method proposed by STARK [20] in a 
similar problem. If the defi ciency matrix function can be approxjmated by a scalar 
function 

(7.23) [C2(t)] = [C2(0)] · g(t), where g(O) = 1, 

and g(t) = o(t-2
) fo r t --+ oo, 

then 

(7.24) [II(t) ] = [II 1(t)] + (lf2(oo)]- [C2(0)] · g(t). 

Thking the Laplace transform of (7.24) and mul tiplying the result by p we obtain 

(7.25) [A' (M,p)r 1 = [ile(p)] 

ｾ＠ [ Ae1 (p)] - [ile1 (O)] + [S(AI, o)r1 
- [C2(0)] • pg(p), 

where the matrix [C2(0)] is given by (7.21), and g(p) = £g(t). 
STARK proposed [20, 28] some forms of the function g(t). The best results 

were obtained with the set 

(7.26) ( 
a )m [/m(l) = -

a+ l 
(m = 1, 2,3, ... ) , 

where a is a positi ve real number which can be chosen in numerical experiments. 
Laplace transforms of functions (7.26) may be expressed by the exponential in-
tegral functions. T he conditions (7.23) fulfil the function rn (t). 

8. Conclusions 

The numericall y calculated aerodynamic fo rces in the frequency domain are 
a lways the values of analytic functions determined in the entire complex plane of 
the Laplace variable. T hese functions have poles in the left half of the complex 
plane, which determine the li mits for the approximation by means of rational 
functions (with analytic continuation from the imaginary axis into the complex 
plane) and which may signi ficantly influ ence the aerodynamic forces in the time 
domain. 

1. In the case when the d iscretizing procedure of the li fting surface equation 
follows the liftin g li nes o r doublet-lattice methods, the result ing algebraic equa-
tions are well-conditi o ned in the ri ght half of the p-plane and in a strip parall el to 
the imaginary axis in the le ft half o f the p-plane. T he width of this strip decreases 
with increasing Mach number, but is wide enough for almost all applications. 
Only for high subsonic fl ow the problem of conditi oning may be severe. 
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2. In the compressible case (AI f- 0), there exist a large (probably infinite) set 
o f latent roots of the aerodynamic coefficients matrix in the left half of the p-plane 
which reflects (usually) in poles of the transfer functions. The distribution of 
these latent roots in the p-plane does not depend on the number of aerodynamic 
elements introduced in the discretization procedure (only small differences were 
obseiVed which may be related to the accuracy of the results). 

3. Also the pressure distributions which correspond to latent vectors of the 
aerodynamic influence coefficients matrix do not depend on the number of aero-
dynamic elements introduced in the discretization procedure. 

4. For decreasing Mach number 111 -r 0, all latent roots move away from 
the origin to infinity and probably, for AI == 0 there are no roots in the finite 
part of the p-plane. It seems to agree with the results of the STARK method [20] 
which takes into account only one singularity - the branch-point in the origin. 
The remarkable accuracy of this method in the incompressible case and less 
satisfactory results for AI > 0 may be caused by the inf1uence of the poles of 
transfer functions. 

5. In subsonic now for JIJ -+ 1, all latent roots tend to the origin (p == 0). 
The proximity of many poles may cause significant difficulties in the calculation 
of transfer functions in the range of high subsonic flow. 

6. The decomposition of the deficiency function into a part which expresses 
the inf1uence of latent roots (7.19) and a part inf1uenced by the branch point 
(7.20) enables the extraction of the part which is responsible for the starting 
pulse. This agrees with the results of EDWARDS [1 5] who stated, that the step 
response function obtained by integrating along the branch cut does not contain 
the starting pulse. 

7. The looping behaviour of some of the generali zed forces for strongly decay-
ing motion obseiVed in [18] may be explained as the result of inf1uence of poles 
of the transfe r functions. It may be regarded as an indirect confirmation of the 
existence of latent roots in the kernel-functio n results. 

The calculations and all considerations presented in this paper concern the 
aerodynamic model and the results are independent of the choice of generalized 
coordinates used to describe the motion of the structure. 

The approximation to the aerodynamic transfer functions based on the iden-
tified singularities and the calculated left and right-hand latent vectors of the 
inf1uence coefficients matrix avoids the ill -posed analytical continuation from the 
imaginary axis into the whole p-plane. It may be applied also in regions which 
contain poles of the transfer functions. 

Appendix. Discretization of the pis ton theory in the lirtin g lin es method 

In the li fting lin es method of discretizatio n (simil arl y to many other methods), 
the pressure distribution on a profi le (cross-section of the wing) is approximated 
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by means of a truncated series of functions wi th appropriate singulariti es on 
the leading and trailing edges. The pressure distribution in the piston theory 
follows the upwash distribution and is a regular, continuos function. Therefore it 
is not possible to cast the piston theory in the liftin g lines discretization scheme 
exactly. Nevertheless, the approximation can assure the exact values of moments 
of aerodynamic forces in the case if the upwash distribution is a polynomial of 
degree less than the number of liftin g lines on the cross-section. 

The procedure of calculating the (approximate) pressure distribution on the 
profile cp(x) on the basis of a known upwash distribution w(x)/U in the lifting 
lin es method [4] consists of the following steps 

(A.l) 

The vectors {!} and { w} , as well as { cP} and {a} describe in the cross-section 
the approximate distributions of the upwash and pressure coefficient, respectively. 
The sizes of these vectors are equal to the number of liftin g lin es (denoted later 
by rn). The vectors { w} and { cp} for all cross-sections of the wing create the 
vectors in (3.2) and N = L m. 

The pressure distribution on a cross-section is, in the lifti ng lines method, 
approximated by a truncated series of Jacobi polynomials 

(A.2) 
Ｑ ｾＭ ｸ＠ m -1 

cp(x) = ｾ＠ -- L akPk(x ), 
U[ 1 + X k=O 

where 2bt is the local chord, the coordinate x is normali sed to the interval 
- 1 < x < 1 and ｐｾＮＭＨ Ｎ｣ Ｉ＠ are polynomials which fulfil the orrhogonality condition 

(A.3) 

The vector {a} of the coeiTicients ak is determined for a given pressure dis-
tribution by the expression 

1 

(A.4) bt J {n} = ; {P(.t )} Cp(x)d.t. 

- 1 

The elements of the vector { P(.r)} are the polynomials Pk(x). The quantities 
calculated in the lifting lines method from the set of algebraic equations are the 
strengths of liftin g lines (pressure doublets). They are related to the ak coefficients 
directly 

(A.S) 
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where [W] is a diagonal matrix with weight coeffi cients of the Gauss-Jacobi 
quadrature, and the elements of the matrix [P] are the values of the polynomials 
h(x) in the nodes of this quadrature. 

The upwash distribution is approximated by means of the polynomials Q ｾＮＭ Ｈ ｸ Ｉ＠ = 
Pk( -x) 

( ) 1 n-1 1 
w x ｾＭ L /J.-Qk(x) = - {Q(x)}T {!} , 

U 7r k=O 7r 

(A.6) 

where the coefficients f k are determined by the expression 

{! } = jl J l + x {Q (x)) w(x ) dx. 
1 -x U 

- 1 

(A.7) 

They are next transformed to the form 

(A.S) {w} = .!_[Pf{f} = ([ P][I V])- 1 {!}. 
7r 

The discretized model of the piston theory may be constructed on the basis of 
the fo ll owing scheme 

(A.9) 
w(x) 

{w} => {!} => U => cp(.t) => {a}=> {cp}, 

with the use of the relations (A.8), (A.6), (7.7), (A .4) and (A.5). 

(A.IO) {c, } ｾ＠ ［ ［ ｾ Ｏ＠ [ll'][ Pf (l {I ' ( >) ){Q(x))T d.c) [P ][ IV ]{ w) , 

where 

1 {1+( - 1)k+n 1 - (- 1)"-k 

J k+ n +] n-k 
(All) Pk(x )Qn(x ) dx = 

2 
- I fo r n = k 

2n + 1 

fo r n :f k , 

The matrix [ D] defin ed in (7.6) has, in the case of li fting lin es method, a quasi-
diagonal fo rm and each diagonal block corresponds to a cross-section of the wing 
and has the form determined by (A.1 0). 
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