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The stochastic vortex method for viscous incompressible flows 
in a spatially periodic domain 

J. SZUMBARSKI and A. STYCZEK (WARSZAWA) 

Tii£ RANDOM voKrEX METHOD for two-dimensional, nonstationary fl ows of a viscous li quid in 
a spatially periodic, iniinit e system of airfoils is considered. The main idea is to approximate 
the evolution of the vorticity by a large set of small "vortex particles" (vortex blobs), which are 
transported in the velocity field (convection) and perform random walks according to Wiener 
process with standard deviation depending on the viscosity {diffu sion). The velocity field is due 
to the induction of vortex blobs and includes also certain potentia l components. Since the fl ow 
domain is not simply connected, additional constraints concerning the vort icity production on 
the boundaries are introduced. They are necessary to obtain a solution with physically correct, 
single-valued pressure fie ld. The results of numerical calculations are also presented. 

1. Introdu ction 

DuRING LAST TWO DECADES, large amount of research work has been devoted 
to the development of more sophisticated variants of vortex methods, to widen-
ing the range of their applications and improving their computational efficiency. 
Since 1973, when CHORlN publi shed his fundamental paper [1], many authors 
have applied a stochastic approach to calculate flows with various geometrical 
configurations. However, a majority of avail able publications on external flows 
focus on flows around individual contours only, although, from the engineering 
po int of view, mult i- body systems are even more important. 

The aim of this paper is to present the ·random vortex algorithm for flows 
which are peri odic with respect to one spatial variable. The standard engineering 
example is a flow in a cascade of airfo ils, which is used as a model of turboma-
chinery fl ows. The numerical method constructed here is a natural extension of 
the method proposed by STYCZEK [2] and its primary version was also the subject 
of the thesis of one of the authors (see [3]) . The current version includes careful 
treatment of the pressure problem arising due to multiply connected geometry 
of the flow domain. More refined numerical results are also obtained. 

We remind briefly the general idea of the stochastic approach to viscous liquid 
motion (more detail ed discussion and examples of appli cations can be found in 
[2, 4, 5 and 6]). The equation of the vorticity transport (Helmholtz equation) in an 
incompressible, viscous and two-dimensional flow can be written in the following 
form: 

(1 .l) 

This equation is formally identical to the Fokker- Planck equation corresponding 
to a diffusive stochastic process with the convective vector equal to the velocity of 
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the flow V= [H, v] and with the diagonal matrix of diffusion Diag[2v, 211]. Thus 
the evolution of the vorticity field can be described on the " microscopic level" as 
a movement of a large (theoretically infinite) set of "vortex particles", governed 
by the following Ito equations 

(J .2) 
dx(t) = tt (t , x (t), y(t)) dt + & dvlfx, 

dy (t ) = u (t, x(t) , y(t)) dL + -.)2; dVV" . 

Here ｗｾＮ＠ and W y are independent Wiener processes. 
In a numerical simulation "vortex particles" can be constructed in many ways. 

Here the vortex blobs i.e. small circular vortices with uniform vorticity distri-
bution are used. It should be emphasised that there is no natural, independent 
boundary condition for the vorticity field - there are only conditions for the vel-
ocity. It is known, however, that the vorticity is produced on the boundaries. 
In the vortex method new vortex blobs are created on the boundaries in each 
rime step in order to satisfy the boundary condition for the velocity. Some of 
these blobs subsequently enter the flow domain, while the others move randomly 
across the boundary and are eliminated. This process gives rise to the diffusive 
nux of the vorticity through the contours of embedded bodies. All vortex blobs 
are convected in the velocity field which is partly due to the induction, and also 
has additi onal potential components necessary to fulfil boundary conditions and 
providing appropriate asymptotic behaviour of the velocity field (the condition at 
infini ty). 

In the case of a cascade flow the domain is not simply connected. Then there 
exist velocity and vortici ty fi elds which sati sfy the continuity and Helmholtz equa-
tions, but correspond to meaningless, multivalued pressure distributions. In order 
to avoid such "soluti ons", additional constraints should be imposed on the veloc-
ity field (. ee, for instance, [6] o r [7]). These constraints have the form of following 
integral equaliti es: 

(1.3) d J: ;· ( · d ) dt J ｦｔｾ Ｈ ＺｩＩ＠ ､ＮｾＫ＠ U_;' w - 11 dn w (s) ds = 0, 
ck c1, 

where (\ denotes 1.:-th component of the boundary of a multiply connected now 
regio n and L '9 is the boundary velocity d istribution. If U9 is fixed in time then we 
have the condition 

(J.4) J (TfnW - /I!!_W) (s)c/s = 0 
9 dn 

c ,. 

which means that the total nux (convective and diffusive) of the vorticity through 
the contour (\. should be zero . In particular, on an impermeable boundary we 
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have simply 

(1.5) f _ld wds = 0. 
Gn 

ck 

211 

Tt is interesting that the stochastic vortex method developed by Styczek au-
tomaticall y ensures the equality (1.5) in the case of an external flow around a 
single contour. If the geometry is more complicated, the conditions (1.4) or (1.5) 
must be stated explicitly. However, direct implementation of the above equali-
ties requires sufficient regularity of the vorticity fie ld. In the considered method 
the vorticity is a piecewise constant function of space variables and its normal 
derivative on the boundary is not properly defin ed. We show that this d ifficulty 
can be overcome by writing explicitly the conditions for the balance between the 
vorti city productio n and vorticity flux across the boundaries during one time step. 

2. Formulation of the prob lem 

We consider the viscous liquid motion in the exterior of the spatially periodic 
system of airfoil s. The period of the cascade geometry and of the flow field is 
assumed to be 2;rr . The inlet line is identified with v -axis. The computational 
domain is a strip region shown in Fig. 1. Boundary conditi ons for the velocity 
fi eld are prescribed on the inlet line segment 8Dw and on the contour of the 
airfo il aD p. 

2n 

X 

FIG. 1. The computational domain. 
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The mathematical formulation, which is adequate for the vortex method is 
fo ll owing: 

Determine the velocity V= [u (t , x, y), v(t , x, y)] and the vorticity 

w = w(t, X, y) = Ox V- OyU 

satisfyi ng 
1) Helmholtz and the continuity equation 

OtW + UOxW + V OyW = v8w, 

Ox'l.l + OyV = 0; 

2) conditions of y-periodicity 

u(t ,x, y + 21rk) = u(t ,x, y ) 

v (t, :.r, y + 21rk) = v (L, x, y), 

w(t . x y + 21rk) = w(t x, y) , k = ... ,-2, - 1,0, 1,2, .. . ; 

3) boundary conditions 

u/ = 0, 
&Dp 

v/ = 0, 
&Dp 

u/ = Hw(y), 
&Dw 

v / = v w(y). 
8Dw 

This formulation is purely kinematic - the pressure has been elimin ated, but 
it can be recovered a posterioti from the velocity and vorti city fi elds. The results 
of such calculations are physically sensible provided that the velocity and vorti city 
were constructed taking pressure correctness conditions (1.4) into account. 

3. Elements of the numerical method 

3.1. )-' -periodic vortex b lob 

The velocity fi eld induced by the vortex blobs must be y-periodic. To satisfy 
this demand we use y-periodic vortex blobs (PVB) which are simply infi nite, 
y-periodic systems of ordinary vortex blobs (with identical radii e and charge of 
vorticity r) uniformly spaced with the distance 21r along straight lines parall el 
to the y-axis. The positi on of a PVB is a pair (x0, y0) of the coordinates of this 
vortex blob in the system which is located in the computational domain. The 
velocity induced by a PVB is given by the fo ll owing expressions 

(3.1) ｬ ｾ ｮ､＠ = l 
L _I_ 1 = _[__ coth (z-zo) 

n=-oo27ri z-(zo+27rn) 4ni 2 
---,----::---.,.,-

[' I (z-zo) I' 1 r z-(zo+ 2ni ) - cot1 -- -- + -
4ni 2 2ni z-( zo + 2n1ri) 2ni e2 · 
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We apply here a convenient complex no tation. The upper formula is used when 
the point ::: = J.: + iy is located outside the PVB's vortex cores and is nothing 
more than the well known fo rmula for spati all y periodic system of point vortices 
(see [9]). The lower formula is applied when the point z happens to drop inside 
the n -th vo rtex core of the PVB, the center of which is z0 + 2mri, z0 = x 0 + iyo. 

The velocity fie ld induced by a PVB has an important asymptotic property, 
namely 

1 r 
lim Vi nct H ind _, 0, 

4ni 
=> Vind - 4n ' 

(3.2) 
ｲｾｯｯ＠

r r 
lim Vi nct = => 'U ind _, 0, Vi nd _, - 47r . 

x--oo 4ni 

Thus, if we consider the induction of a system of PVBs, then the behaviour of the 
velocity at infi nity is determined by the to tal vorticity charge of this system - in 
particular the velocity vanishes at infini ty only when the total charge of vortic ity 
is zero. This is an important difference as compared with any finit e system of 
vortex blobs, where the velocity at infini ty tends to zero in any case. 

3.2. Y -per iodic ideal fl uid flow 

We are going to co nstruct the to tal velocity fi eld as a sum of several compo-
nents. Some of them carry vorticity, the other are po tential. I t is reasonable to 
consider separately an ideal li quid flow since it p rovides a natural way to satisfy 
a part of boundary conditi ons on the inlet line and to prescribe the velocity a t 
infin ity. Then the fo ll owing mathematical p roblem is to be solved: 

D etermin e the potential of the velocity !J5 p such that: 

1) (/; p is a harmo nic functio n in the domain D; 
2) the velocity V p = \lCP p is y-periodic i.e. 

V p (l ,x , y + 2kn ) = Vp (L,x,y), k=0,±1.2, ... ; 

3) the Neumann boundary conditi on is satisfi ed: 

dc:P jJ { 0 
----;r;; = 'U w (y) 

on oDp, 
on 8Dw , 

where Vt d Y) = u w (y + 2/.·n), k· = 0, ± 1, 2, ... ; 

4) the circulati on of Vp along the inlet 8Dw is given 

r[. = - j vw (y) dy. 
J Dw 

8 Dw 
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Vector [uw,vw] denotes the given velocity distribution on oDw. It is conve-
nient to seek (j) p in the form of 

where meanings of the symbols are the fo ll owing: 

(3.4) 

2rr 

Uoo = Ｒ ｾ＠ j ttw(y) dy, 
0 

271' 

Vco = Ｒ ｾ＠ j vw(y)dy, 
0 

fp - the circulation of an airfoil-connected vortex, ifJc - the potential of the 
velocity field induced by a unitary airfoil -connected vortex, defined as 

(3.5) ,., R [ 1 L . h z - zc] 
'±' C = e 2ni n sm 2 . 

iP1, iP2 - additi o na l y-periodic harmonic functions, their derivatives vanishing at 
infinity. The potential iP p fulfil s the imposed boundary conditions if 

(3.6) and 

d ( y ) - - + iPc + iP2 = 0 dn 4n 

on oDp, 
on oDw, 

on oDp u 8Dw. 

Thus we obtain the fo ll owing Neumann conditi ons for iP 1 and iP2: 

cM1 { - V00 ·n on aDp , 
dn = uw (y) - U00 on oDw , 

(3.7) 
diP2 diPc ny 

oDp u oDw , = --- -- o n 
dn dn 47!" 

where n = [n_,., ny] is the internal normal vector on the boundary. 
Assume that the functions iP 1 and iP2 have been already determined. Then 

the d ifferentiation of(/) e o n the boundary yields 

(3.8) 

where t = [i .r· t y] denotes the tangent vector o n the boundary and s is the 
arc length coordinate. If we assume that the value s = 0 corresponds to the 
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rear stagnation point then the condition 1/t(O) = 0 yields the circulation of the 
airfoil-connected vortex Fp 

- cl 
Voo·t+ -

1 
<P1 _ et 

Fp - 1 cl . . 
- ty + -cl (<P c + <P2) 
411" s 

(3.9) 

Now we describe briefly the mathematical technique we apply to find the 
harmonic functions <P 1 and i/J2• If we consider a y-periodic function <P, harmonic 
in the domain D and such that 

I clw(Q) t - o 
CSQ -

. clnQ 
ao 

and J dc;P(Q) ds = 0 
ds Q 

J D Q 

i.e. it is not a real or an imaginary part of any multivalued complex function, 
then the function c;P is the only solution of the boundary integral equation (see 
[9] and [1 0]) 

1 ;· (1 7Q- 7p ) iP(P) + ; Re 2 coth -
2 

- · nQ w(Q) dsQ 
DD 

(3.] 0) 1 j R (L . h ZQ - ::: p) dw(Q) d = - e n sm SQ 
7f 2 dnQ ' 

.90 

71Q = Ｈ ｮ ｾＮ＠ + iny)(sQ) -

This is the Fredbolm second kind integral equation. If the curvature of the 
boundary is finit e, the kernel is bounded. This equation can be solved numericall y 
using, for instance, the Boundary Element Method. 

Having the boundary distribution of the function (/>, we can calculate the vector 
fie ld V = vC/J using the fo ll owing procedure. First we determine the boundary 
value of this fi eld 

1-'(s,) = ( c/1(/) - /dl<P ) (sp)· L"(sp ), 
c Ｍ ｾ＠ n 

Next we are able to calculate \/(z) fo r any complex :: = x + iy by means of the 
u-periodic Cauchy integral 

(3.11) 11(.::) = -
1
- . j \l (() coth (-.:: d( . 

4 11"1. 2 
EJD 

It is important that the solution of the boundary integral equation defines the 
mappmg 

(3 .12) L . cl15 _ cliP 
· dn d:o 
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i. e., in the hydrodynamic context, it transforms the normal velocity to the tangent 
one. This mapping is a unique, lin ear and continuous operator. We will use this 
operator in the next section while deriving an equation for the boundary vortex 
layer. 

3.3. Construction of the complete velocity fi eld 

Tbe full velocity of a viscous, y-period ic fl ow is expressed as 

(3.13) V= Vp + Vo + V w + VA + Ve + Vv. 

In (3.13) we denote 
V p the velocity of the potential flow (previous section), 
V0 the velocity induced by old i.e. previously created PVBs, 
Vw the velocity induced by new, boundary PVBs, 
V e the velocity induced by an additional, airfoil -connected vortex with 

the circulation re, 
V A an additional potential velocity fi eld vanishing at infin ity, 
Vv a unifo rm, vertical stream i.e. Vv = [0, vv ]. 

Al l the velocity compo nents are y-peri odic vector fi elds. In each time step the 
foll owing unknowns should be calculated: 

1) the circulations of new PVBs b1 , ... , IN}, 
2) the circula tion re, 
3) the vertical fl ow vv, 
4) the potential velocity field VA. 

The role of all unknowns will be explained further on. In general, new PVBs 
and the velocity VA are necessary to fulfi l the boundary conditions for the veloc-
ity. Additi onal " free parameters" l G and v v are included in order to satisfy a 
co nditi on at infi nity and to ensure correctness of the pressure. 

The ve locity decompositi on wri tten in natural coordinates fo r boundary points 
on () Dw yie lds 

(3.14) 
ｶｾ＠ + v; + 1 ｾ＠ + 116 + ｾｾｾＭ ｾ＠ - vv + v lN = o, 

v; +VB + v\v + Vd = o. 

We have taken into account that V? = 'U tN, llv = 0 and VJ = -urN· 

Analogously, for the points on the airfo il contour aD p we obtain 

(3.14') 
11) + Vj + \16 + ｾｾ Ｇ＠ + 116 + VJ ｾ＠ 0, 

v: + VB + ｶｾ ｾ＠ + ｶ ｣ｾ＠ + vvt = o. 

This time the equali ty lip- = 0 has been used. 
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From (3.14), the normal velocity VAn can be expressed as 

(3.15) 
vAn = - (Vc) + Vw + VC' ) 

V,4 = - (V0 + \l;v + Vet + VJ ) 

on 8Dw , 

on a.Dp . 

The boundary operator L appli ed to VJ gives Vl expressed in terms of other 
velocity components. This results in the following equation 

ｖｾ Ｋ＠ V6 Ｋ ｖｾ Ｋ＠ V6- V v + VIN - L(Vc) + Vw + Vet) = 0 on 8Dw, 
(3.16) 

Vfi + V6 Ｋ ｖｾＭ L(V0 + ｖｶｾ＠ + Vc + VJ ) = 0 on a.Dp. 

We call (3 .16) the equation of the ｢ｯｵｮ､｡ｾｹ＠ vortex Layer since the unknown here 
is the distribution of the vorti city (circulation) generated on the boundary. We 
approximate this vortex layer by a finite set of PVBs located on the boundary and 
inducing the velocity component Vw. The circulations {/I , ... , /N} of these PVBs 
are to be determined. Since new PVBs are born always in the same positions, we 
can introduce two sets of functions {T; (s), i = 1, ... , N}, {N; (s), i = 1, ... , N}, 
which describe tangent and normal velocity distributions induced by the boundary 
PVBs with unitary circulations. Then the components of Vw can be written as 
fo ll ows 

N N 

(3.17) ｶｹｾ＠ = ｾ＠ ! J i (s), Vw (s) = ｾ＠ .,;N;(s). 
i =l i = l 

Equation (3.16) can be solved in the mean integral sense over a finite set of 
boundary segments. The division of the boundary lines into segments is quite 
natural -each boundary PVB overlaps a small part of the inlet lin e or the airfoil 
contour. In other words, the boundary is divided into N separate segments, each 
accompanied by an adjacent PVB. If we now substitute (3.17) to (3.16) and 
integrate the latter on each segment O"j = [sj, Sj+ t] then the following system of 
linear equations will be obtained: 

ｾ＠ V m- LN,)(s) ds ]·-y; =-! Ｈｶｾ＠ + Vc\ + Vc\ + " "') (s) d 

+ j L(V0 + llc )(s) ds + vv(sj+ l - sj) for O"j E 8Dw, 

(3.18) 

ｾ＠ V('!';- LN;)(s)ds ]·?; = -! Ｈｶｾ＠ + Vc\ + Vt +vs) (s) ds 

+ j L(V0 + Vc + VJ)(s)ds for O"j E a.Dp. 
aJ 
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The system (3.1 8) consists of N = Nw + N p equations. However, it is not closed 
since we have two additional unknowns r c (hidden in V c ) and vv. In order to 
obtain a solvable problem we have to formulate two equations more. 

First we consider the behaviour of the velocity field at infinity. The following 
condition of asymptotic consistency of nonviscous (potential) flow V p and full , 
viscous flow V is postulated 

(3.19) lim V= lim Vp => lim(Vo +Vw +Wc +Vv)=O. 
x- _- .r - oc' x - oo 

Taking into account the asymptotic formulas (3.2) the condition (3.19) implies 
that 

(3 .20) Io + rw + re: + 4 7TV\( = 0. 

The velocity fi elds V p and V are y-periodic, their circulations along the inl et lin e 
8Dw are equal and they are asymptoticall y consistent at infinity. Then, from the 
Stokes theorem, one concludes that the total charge of the vorticity in the flow is 
equal to Fp. This means, in particular, that the total amount ofvorti city in the fl ow 
is fixed in time. This conclusion is important for further considerations concerning 
the pressure condition (1 .4 ). It should be also noticed tha t total vorti city charge 
is no t identical to total charge of the circulation of PVBs. The reason is that the 
vortex cores of PVBs have finit e dimensions, and some of them protrude partly 
from the computational domain. 

Now we focus o n the problem of the pressure correctness. In order to ob-
tain physicall y meaningful pressure fi eld, the total vorticity production on each 
boundary line must be equal to zero. Since the total charge of the vorticity within 
the flow is fixed due to the asymptotic consistency condition (3.19), it suffices to 
consider the vorticity generatio n process only on one of the boundary lin es - it 
is more convenient to choose 8 0 p . 

The amount of the vorti city created on the airfoil contour in one time step 
is defined as the difference between the contribution of new PVBs located on 
this contour and the vorti city charge carri ed by these PVBs which have left the 
computational domain in the previo us time tep by penetrating the interi or of 
the airfo il. More precisely, the flux of the vorticity through the airfo il contour 
emerges for two reasons: 

A) some PVBs protruding from the computational domain into the airfoil 
interior move to different positions, 

B) some PVI3s (in particular those located closely to the airfoil contour) can 
jump randomly out of the computatio nal domain - they are eliminated. 

Both types of the events mentioned above give rise to the vorti city flux across 
u Op. However, the direct calculation of this flux (especiall y due to events of 
A type) is a rather strenuous problem. Fortunately, we have a very convenient 
indicator of the vorticity flux - the circulation of the velocity on the airfoil con-
tour. At the beginning of each time step ( i.e. before the PVBs' movement), the 
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boundary conditions are satisfied and the velocity circulation on aD p is exactly 
zero. As a result of PVBs' motion, the boundary distribution of the velocity is 
slightly perturbed - its circulation on aDp is, in general, different from zero. 
This variation is related directly to the amount of vorticity which left the flow 
domain due to PVl3s' motion. This amount should be balanced by the contribu-
tion of new PVBs generated on fJDp at the beginning of the next time step. The 
mathemati cal expression for this balance is the following 

(3. 21) 

In (3.21) we have used the follow ing notation: 
n;!7 1(aDp) - the contribution of new PVBs (i .e. created at the beginning of 

the (n+l)-th time step) on aDp, 
ｮｾ［ ＨｄｰＩＭ the amount ofvorticity carried by old PVBs, which sti cks out from 

the computatio na l domain o r, equivalently, is inside the airfo il Dp, 
1 OUT( aD p) - the sum of circulations of PVBs removed from the computa-

tional domain because they have penetrated into D p. 

Now, the foll owing equality holds 

(3.22) 

where l't(71 denotes the sum of circulations of new PVBs on aD p, whil eS? ｾ ［
Ｑ

Ｈｄ＠ p) 
denotes the amount of vorticity carried by these PVBs, but sticking out from the 
flow domain into Dp. 

From (3.21) and (3.22) we derive the equation 

(3.23) 

The velocity fi eld V f ulfil s the boundary conditio ns at the beginning of the 
(11 + 1 )-th time step. Thus its circulation along 8 0 p is equal to zero, which implies 
that 

(3.24) 
n+l n n n n+ l Fp + r c + J t 0 ( D P) + J , 1\f ( D P) = 0. 

The last equation allows for eliminating troublesome quantities n ［ｾＫ ｉ＠ (D p) and 

ｉ＿ｾ＠ (f) p ). Finally we obtain the equation involving only the circulati ons 

(3.25) 

Equations (3.20) and (3.25) supplement the system (3.18) giving together a solv-
able algebraic problem. However, it is interesting to show that Eq. (3.20) can be 
rep laced by the other one, which is, in a certain sense, symmetric to Eq. (3.25). 
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If we subtract Eq. (3.20) written for the n -th time step from the same equation 
but written for the next, (n + 1)-th step, then the result will be as fo ll ows: 

(3.26) r a+l - r 3 + rw+l - rw + r e+l - r e + 47r(vv+l - vv ) = o. 

Now, from Eq. (3.25) we have 

(3.27) 

The substitution of (3.27) to (3.26) yields 

(3.28) r !)+ 1
- r !) + ｲ ｾＯ Ｑ Ｍ ｲｾ Ｌ＠ + rouT(fJDp) - ｲｾ Ｏ Ｑ Ｈ ｡ｄｰＩ＠

+47r(vv+l - vv ) = o. 

Writing the balance of the total charge of circulations of PVBs 

(3.29) 

we are able to eliminate F0+1 from (3.28). Moreover, the foll owing equali ty holds 

(3.30) 

Af ter substitution of (3.29) and (3.30) to (3.26) most of the terms cancel and we 
end up with the fo ll owing, simple condition 

(3.31) 

Summarising, the lin ear, algebraic system (3.18) can be completed by the pair of 
additional equations, which read 

Np 

"L , ,n+l = rouTCaDp) - cre +l - r e), 

(3.32) 
i =l 

Np+N ,,, 

"L ,,n+l = r ouT(fJDw) - 47r(vv+1 - vv ). 
i=Np + l 

These equations are remarkably symmetrical. The fi rst one describes the vari ation 
of the airfo il -connected vortex and involves the information concerning only the 
airfoi l contour. The second equation describes the variation of the additional, 
vertical stream and involves the information concerning only the in let line. The 
vortex and the vertical stream provide the mechanism for controlling the vorticity 
productio n on the airfoi l and on the inlet li ne, respectively, which in turn ensures 
physical correctness of the pressure fie ld. 
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3.4. Summary of the computational a lgorithm 

We summarise briefly main steps of the numerical method. The calculation 
of each step of the flow evolution begins with the computation of the right-hand 
sides of the system (3.18). Then the lin ear equations (3.18) coupled with the 
pair of Eqs. (3.32) are solved. As a result, the circulations of new PVBs, the 
airfoil-connected circulation Fe and the vertical stream velocity vv for the new 
time step are determined. Next the boundary distribution of V;\ is evaluated from 
(3.15). The solution of the boundary integral equation yields the value of the har-
monic potential cJ) A and, after differentiation, the tangent velocity Vl . This way 
the complete velocity V A on the boundary is known and can be reconstructed in 
the flow domain (in particular in PVBs centres) via y-periodic Cauchy integral. 
Other components of the velocity field can be calculated directly from the induc-
tion formulas (1.4) (Vo, Vw and Vc ) or are determined in advance (Vp) and 
interpolated to PVB centres from nodes of an auxiliary grid. 

The key problem is the computational efficiency. Actually direct application of 
the induction formulas for all PVBs leads to enormous computational cost exclud-
ing the possibility to perform computations on widely available, small computers. 
A natural way to overcome this difficulty is to calculate the induced velocity only 
in the grid points and then interpolate it. However, two problems appear im-
mediately. First, the interpolation of velocity smooths out fine, local variations, 
which can remove important detail s of the flow pattern. Secondly, the velocity 
interpolation should be divergence-free. To avoid these problems we applied a 
hybrid approach - the interaction between close PVBs is calculated from exact 
formulas (3.1), while distant induction is determined via an interpolation. The 
interpolating algorithm is based o n the fact that the velocity induced by a PVB 
is potential outside the vortex core. Thus we can calculate the complex potentia l 
function of this velocity in grid points and then interpolate it in grid cells by com-
plex polynomials to obtain, after difTerentiation, a divergence-free approximation 
of the velocity. This method has an obvious disadvantage - the approximate ve-
locity fi eld is not continuous on the cell sides. In other words, the approximation 
of the velocity is divergence-free only in a weak sense. This difficulty can be partly 
cured by using more complicated, Hermitean interpolation algorithms. 

Now the problem of ini tial condition will be considered shortly. While dealing 
with external flows we have generally two possibili ties: 

1) sudden "switching on" of the viscosity, or 
2) continuous acceleration from the state of rest. 
In the fir st case the viscosity suddenly appears in an ideal liquid flow, which 

causes first generation of the vortex particles to be created. Tn the second one, the 
flow is viscous from the very beginning and is progressively accelerated by chang-
ing the free stream velocity. Both methods have certain good and weak points. 
The fir st one is not physical and, which is much worse, the primary generated 
vortex particles are charged with relatively large circulations - they can induce 
locally a velocity comparable in magnitude with the free stream velocity. The sec-
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ond method is more natural but during acceleration one has to deal with a more 
complicated version of the pressure problem. If the acceleration is performed by 
rescaling the " ideal-flow background" V p, then the total amount of the vorticity 
in the flow field changes in time and this fact must be taken into account while 
formulating the pressure correctness condition. Our choice is the fir st method 
supplemented by the concept of vortex particle splitting. The idea is to limit the 
permissible value of the velocity induced by a single PVB to small fraction of 
the free-stream velocity, say to several percent. This means that every PVB born 
on the boundary, which is too "strong", is immediately split into a number of 
"weaker" PVBs moving separately (their trajectories diverge since they perform 
separate random walks). Although this procedure brings rapid increase of the 
number of PVBs, in the computations it has also significant advantages. It pro-
vides fast saturation of the computational domain with the vortex particles which 
is desirable when one is interested mainly in the final , quasi-stationary state, not 
a transient one. 

Another important problem is associated with artificial or numerical viscos-
ity. Although the vortex methods are, at least in principle, grid-free, the built-in 
vorticity discretization produces inevitably an effect of additional, nonphysical 
diffusion rate. This phenomenon is connected with two parameters of vortex par-
ticl es, theoretically infinit esimal, but in practice always finit e - a radius and a 
circulation charge. It is quite obvious that the radii of the PVBs vortex cores 
should be as small as possible - otherwise the method would be unable to resolve 
fine-scale details of the vorti city and velocity fields. Large PVBs mean that the 
fl ow is too organised spatiall y - relatively large portions of fluid are in regular 
(" laminar") movement. In the language of modern dynamical system theory, the 
number of degrees of freedom of such fl ow is too small - the corresponding, 
effective "viscosity" is larger than that assumed in the random walk process. Sim-
il ar effect is obtained when the vortex particles are too "strong". Regions of weak 
vorticity cannot be reproduced properly, the vorticity gradients are exaggerated 
and strong, local variations of the induced velocity make PVBs to spread rapidly 
in all directions like in a diffu sion process. I t should be emphasised that the above 
description is only a simple heuristics-no systematic investigatio n of the artifici al 
viscosity in vortex methods is known to the authors. The practical experience says 
that the limit of the induced velocity on the level of several percent is sufficient 
in a sense, that further splittin g of PVBs does not make any visible effects on the 
velocity and vorticity field. Nevertheless, the "real" Reynolds number obtained 
in our simulations is surely lower than the " theoretical" o ne resulting from the 
assumed value of the viscosity. 

4. Results of numerical computations 

The general data chosen in sample calculations are the following: 
• The inlet line 8D 111 is divided uniformly into 120 segments whil e the airfo il 
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FIG. 3 a. The PVBs and instantaneous veloci ty fi eld at t = 2.0 (case II ). 
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contour 8 D p into 520 segments. The dimension of the algebraic system connected 
with the boundary integral equation is 640; 

• Each PVB of next generation is adjacent to four subsequent segments, hence 
Nw = 30 and Np = 130; 

• T he inlet line velocity distribution is uniform and fix ed in time; 
• Reynolds number calculated o n the basis of a characteristic length (the 

chord of the ailio il ), the assumed viscosity and the value of the inlet ve locity is 
approximately 105; 

• Ti me step is fixed (!1t = 0.05) and the Ito equations are solved by the Euler 
integration scheme. 

Three cases of flow with d ifferent inl et conditi ons are presented: 
1) low angle of incidence flow uw = 1.0, vw = -0.2, 
2) high posit ive angle of incidence fl ow uw = 1.0, vw = 1.0, 
3) high negative angle of incidence flow uw = 1.0, vw = - 1.0. 
The instantaneous positions of PVBs and the velocity fi eld calculated in the 

first case are presented in Fig. 2. Analogous results for the second case are shown 
in F ig. 3 and, for the third case, in Fig. 4. In all cases the growth of vortical struc-
tures in wakes is apparent. In the cases of a high angle of attack, the closed 
separation regions appear and evolve in ti me. Figure 5 a shows locations of the 
sections perpendicular to the airfo il contour, where the averaged velocity distri -
butions of the boundary layer were calculated in the fi rst case. The computed 
velocity profiles are shown in Fig. 5 b. 

5. Concluding remarks 

The stochastic vortex method proposed above seems to be capable of re-
producing characteristic features of nonstationary viscous flows in spatiall y peri-
odic domains. T he efrect of local separation has been captured and the velocity 
d istributio n in the boundary layer exhibits reasonable qualitative features. The 
boundary layer thickness is, however, much exaggerated. The reason is that the 
characteristic dimension of PVBs is of the same order (or even grater) as this 
th ickness at the considered Reynolds number. Obviously, flow detail s of such 
a spatial scale cannot be properly resolved. It can be expected that significant 
improvement would be achieved if the number of PVBs were much greater and 
their vortex cores were much finer. Al so some other types of vortex parti cles (like 
y-peri odic vortex sheets) could be applied in the vicinity of the airfoil conto urs. 

Altho ugh only stationary inlet velocity distributio ns are considered here, it is 
not d iffic ult to generalise the method to nonstationaty or even random inlet con-
di ti ons. Such generalisation would all ow us to perform approximate calculations 
of multi-stage cascade flows: the velocity behind a row of blades and relative 
movement of the rows wou ld yield the nonstatiomuy inlet conditions for the next 
row. Randomness of the inle t conditions can be applied to simulate turbulent 
Ouctuations in an incoming stream. 
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