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Decay and continuous dependence estimates 
for harmonic vibrations of micropolar 
elastic cylinders 

M. ARON (PLYMOUTH) and S. CHIRJTA (IASI) 

A PRINCIPLE OF SAINT-VENANT-TYPE is established for a r ight cylinder composed 
of an anisotropic, linear, homogeneous micropolar elastic solid and subjected to har-
monic loading on one of its ends. The amplitude of the harmonic vibrations of this 
cylinder is also shown to depend continuously on the prescribed data. 

1. Introduction 

FoR CYLINDRI CAL DOMAINS, the Saint-Venant principle in li near micropolar 
elastostatics was established by BERGLUND [1] and CHIRITA and ARON [2] (see 
also [3]). By adapting certain ideas originally due to TOUPIN [4], these authors 
have shown that certain global measures of the displacements which depend upon 
the distance from the loaded end of the cylinder , decay exponentially with that 
distance. 

More recently, certain aspects of the dynamical version of the Saint-Venant 
principle have been investigated within the framework of the theory of li near 
elasticity. In particular, FLAVIN and K NOPS [5], FLAVIN , KNOPS and PAYNE 
[6] and K NOPS [7] have considered the Saint-Venant principle for the harmonic 
vibrations of linearly elastic cylinders subjected to harmonic type loadings on 
one of their ends. 

In this paper we deal with the Saint-Venant principle for the harmonic vibra-
tions of right cylinders composed of an anisotropic, linear, homogeneous microp-
olar elastic solid. Following [5 - 7] we show that when one end of the cylinder 
is subjected to prescribed harmonic tractions, and provided that the prescribed 
frequency of vibrations is strictly less than a certain criti cal frequency, the energy 
E(z) stored in a part of the cylinder that lies above a cross-section which is at 
the distance z from the loaded end, decays faster than a certain exponentially 
decreasing function of z . The criti cal frequency depends upon the characteristics 
of the material and upon the geometry of the body. Additionally, we establish 
here an estimate for t he total energy of the considered cylinder which implies 
that the amplitude of vibrations depends continuously on the prescribed data 
and which, when coupled with the Saint-Venant-type estimate mentioned above, 
provides us with a more explicit description of the way in which E(z) decays 
as a function of z. Other continuous dependence results in micropolar elasticity 
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have been obtained previously by ARON [8] who considered the case of physically 
nonlinear micropolar elastostatics. 

2. Preliminaries 

Consider a body B composed of a homogeneous anisotropic micropolar linear 
elastic material (1 ). The motion of a particle which belongs to such a body is 
described by the displacement vector field u and the microrotation vector fi eld c,p. 
In what follows we will be employing a six-dimensional vector field U defined by 

(2.1) U = (u, j c,p), j = const, j > 0, 

where j is the square root of the smallest eigenvalue of the microinertia tensor j . 
The microinertia tensor is assumed to be symmetric and positive definite [9] . As 
usual, the inner product in the six-dimensional vector space is defined by 

(2.2) U ·V = u ·v · + J'2tn··1•· - ' ' .,.., 'f/1 ' i = 1, 2, 3, 

where Ui, vi, <pi, '1/Ji are the components of the vectors u, v, c,p, ,P, respectively, 
with respect to a Cartesian system of coordinates Ox1x2x3 and where the sum-
mation convention over repeated indices has been adopted. In view of (2.2), the 
magnitude of the vector field V = ( v, j,P) is given by 

(2.3) 

The theory of micropolar elasticity employs two strain tensors, er6 and "-rs, 

which are defined by 

(2.4) "-rs (U) = '-Ps,r , r , s = 1, 2, 3, 

where csrk denotes the well -known alternating symbol and a comma followed by 
r stands for the partial differentiation with respect to Xr· These are related to 
the stress tensor tk1 and couple stress tensor mkl by the equations 

(2.5) 
tki (U) = aklrs ers(U) + bklrs "-rs(U), 

ffik i(U) = brskl ers(U) + Cklrs "-rs(U), 
k,l,r,s = 1,2,3, 

where akl rs etc. are material constants which satisfy 

(2.6) Cklrs = Crskl · 

(')The theory of linear micropolar elasticity was introduced by ERINGEN in (9). 
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Accordingly, the strain energy density corresponding to U is given by 

(2.7) 

and in what follows we shall assume that this quadratic form is positive definite. 
Following IESAN [3] we label the nine independent index combinations ( r s) 

or (kl) by capital Greek letters r, Ll, etc. so that the constitutive equations can 
be writ ten as 

(2.8) 

t r(U) = ar,1e,1(U) + br<1K,1(U) , 

mr(U) = b,1re,1(U) + cr<1K,1(U), 
r , .1 = 1, 2, ... , 9. 

Introducing the further notations 

(2.9) 
Tr = tr' 

E9+r = JKr , 

T9+r = j - 1mr , Er = er , 

Ar<1 = ar<1 , Ar(9+<1) = j -
1
br<1 , 

A (9+r) <1 = r 1
b<1r, A(9+r)(9+ <1 ) = r 2

cr<1 

we can rewrite the constitutive equations (2.8) in the form 

(2.10) K , £ = 1, 2, ... , 18. 

We define now the tensor 

(2.11) T(U) = [trs(U), r 1mrs(U)] 

whose magnitude is 

(2.12) 

and, using the notations (2.9), we write the strain-energy density function (2.7) as 

(2.13) K , £ = 1, 2, ... , 18, 

where AKL are the components of a symmetric and positi ve definit e tensor. 
According to GURTIN [10, p.197], l ESAN [3, p. 97] and MEHRABADI , COWIN and 
HoRGAN [11], if J.LM denotes the largest characteristic value of AKL, we have 

(2.14) 

Denoting by si(U) and Qi(U) t he components of the stress and couple stress 
vectors acting on the surface 8B of B , respectively, we have 

(2.15) 

where nr are the components of the outwardly d irected unit vector normal to 8B. 
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In the absence of body forces and couples, the equations of motion are wri t-
ten as 

(2.16) 
[tsi(U)], s = 12 Ui, 

[msi(U)],s + Eirs trs(U) = I2Jis 'Ps , e = const, e > 0, 

where Jis are the components of j and e is the mass-density of the body, and 
these have to be supplemented by appropriate boundary and initi al conditions. 
As usual, in (2.16), a superposed dot denotes the part ial derivati ve with respect 
to the time t . 

3. An energy decay estimate for the case of harmonic vibrations 

In this section B will be assumed to occupy a right cylinder of length L whose 
cross-sect ion is bounded by one or more piecewise smooth curves. The Cartesian 
system of coordinates is chosen so that the origin belongs to one of the ends and 
thus the ends of the cylinder lie in the planes x3 = 0 and X3 = L. An arbit rary 
cross-section of the cylinder at the distance z from X3 = 0 will be referred to as 
Sz whereas the part of the cylinder which li es above Sz will be denoted by Bz. 
Clearly, our notation implies that Eo = B . 

We further assume here that 

(3.1) 
ui( x , t ) = 0, cpi (x, t) = 0, 

t E (0, oo) 

and that 

(3.2) 
si(U) = t i (x) sin(wt) , 

qi(U) = Pi(x) sin(wt), x ESo, t E(O,oo), 

where ti and Pi are given functions on So and w > 0 is a given constant. 
Seeking solutions (to the problem given by (2.5), (2.16), (3.1) and (3.2)) of 

the form 

(3.3) ui( x, t) = vi(x ) sin(wt ), cpi(x, t ) = '1/;i(x) sin(wt ) 

we find that the funct ions Vi and '1/;i must satisfy 

(3.4) 

(3.5) 

[tsi(V)J.s + (]W2
Vi = 0, 

[msi(V)J.s + C: irs tr s(V ) + (]W2Jis'l/; s = 0, 

vi (x) = '1/;i (x) = 0, 

V = (vi, J'Ij;i), 

X E oB \ So, 
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and 

(3.6) x E So , 

and, according to the theory developed by FrCHERA [12], under our assumptions 
there exists a unique solution V to the problem (3.4)-(3.6). For the remainder of 
this section we will be discussing the decay properties of the amplitude function 
V of the harmonic vibrations U. 

We begin by introducing an auxiliary function given by 

(3.7) I( z) =-I [t3r(V) vr + ffi3r(V)7/Jr ] dA, z E [O,L] 
S, 

and note that, in view of the Cauchy- Schwarz inequality and the arithmetic-
geometric mean inequality, we have the estimate 

(3.8) I( z ) :S ｾ｡＠ I [t3r(V) t3r(V) + r 2m3r(V) ffi3r(V)] dA 
s, 

+ Ｒ ｾ＠ I ( VrVr + j 27/Jr7/Jr) dA, z E [0, L], 
s, 

where a is an arbitrary positive constant. On combining (3.8) and (2.14), and 
on taking into account the meaning of the constant j, we infer that 

(3.9) z E [O,L]. 

Using (3.5) and the Divergence Theorem we also find , from (3.7), that 

(3.10) I(L) - I( z) = - I [t sr(V)n5Vr + msr(V)ns7/Jr] dE 
aB, 

=- I [(tsrVr),s + (msr7/Jr),s]dV, z E [O,L] . 
B, 

Since, by assumption, we have I(L) = 0, it follows, from (3.10), (3.4) and 
(2.4) - (2.6), that 

(3.11) I( z ) =I [2W(V)- t?W
2(vrVr + Jrs7/Jr7/Js)] dV, Z E [O,L]. 

B, 

We now consider (analogously with equation (2.17) in FLAVIN and KNOPS 
[5]) 

(3.12) ｷｾＨｨＬ＠ L) = inf I 2W(U) dV I I e(urUr + Jrsi.prt.ps) dV; 
R R 



670 M. ARON AND S. CHI RITA 

a) within the class of all right cylinders R which share the end x3 = L and 
whose lengths belong to the interval [h, L] (where his an arbitrary fixed number 
strictly less than L), and 

b) within the class of smooth vector fields U which are such that ur = 0, 
<{Jr = 0, r = 1, 2, 3, on both X3 = L and the lateral boundaries of these cylinders. 

wm/2rr therefore, represents the minimum fundamental frequency of vibration 
of cylinders described in (a) whose lateral surfaces and ends X3 = L are clamped 
and whose other ends are free. Equations (3.11) and (3.12) lead to 

(3.13) I( z ) ｾ＠ ( 1 - ＺｾＩ＠ 12W(V) dV, 
B, 

z E [0, L - h], 

which, when combined with (3.9), gives 

(3.14) ( 1- ＺｾＩ＠ 12W(V) dV :S ｊＮｌｾ｡＠ 12W(V) dA 
B, S, 

z E [0, L - h]. 

Following TOUPIN [4], we integrate in (3.14) from z to z + h, z E [0, L- h], and 
on making use of the notations 

z+h 

(3.15) E(z) =: 12W(V) dV, Q(z, h) = * I E(() d(, 
B, z 

we obtain 

(3.16) ( 1- ＺｾＩ＠ Q(z, h) ::; ｡ｾｴ＠ I 2W(V) dV 

B(z,h) 

1 I +--
2aeh 

B(z,h) 

where B(z, h) stands for the cylindrical slice Bz \Bz+h· 

Denoting by w0(h)/2rr the lowest frequency of vibrations of the slice B(z, h) 
(whose lateral surface is clamped and whose ends are free) we have, analogously 
with (3.12), 

(3.17) I 2W(V) dV ｾ＠ ew5(h) I (vrVr + Jrs'Ij;r'Ij;s) dV. 

B(z,h) B(z,h) 
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Now (3.17), together with (3.16), leads to 

z E [0, L - h]. 

Since 

dQ 1 1 I (3.19) dz (z, h)= h [E( z +h)- E(z)] = - h 2W(V) dV 
B(z ,h) 

and 

(3.20) 

we obtain from (3.18) the following first-order differential inequality 

(3.21) z E [0, L- h], 

which, by integration, leads to the estimate 

(3.22) Q(z, h) ｾ＠ Q(O, h) exp [ -z ( 1 - Ｚｾ Ｉ＠ wo(h)(JlM I {}) - 112
] , 

z E [O,L- h]. 

Since E(z ) is a non-increasing function of z we have, for all ( E [z, z + h], 

(3.23) E(z ) ｾ＠ E(() ｾ＠ E(z +h) 

which, on account of (3.15)2, gives 

(3.24) E(z ) ｾ＠ Q(z, h) ｾ＠ E(z +h), z E [0, L- h]. 

Equation (3.24) implies 

(3.25) Q(O, h) ｾ＠ E(O) 

and thus, on account of (3.24)2 and (3.22), we have 

(3.26) E(z ＫｨＩ ｾ＠ E(O) exp [ -z ( 1 - ＺｾＩ＠ wo(h)(JlM I {}) - 112
] , z E [0, L - h], 
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which can be re-written as 

(3.27) 

Inequality (3.27) shows that, in the strain-energy measure, the amplitude V 
decays exponentially as a function of z E [h, L], provided that w < Wm. As such, 
(3.27) is a Saint-Venant type inequality as originally envisaged by TOUPIN [4]. In 
the following section we will be obtaining an estimate for E(O) which, in addition 
to providing us with an explicit estimate for E(z ) in terms of the data, implies 
the continuous dependence on data of solutions to the boundary value problem 
(3.4)- (3.6). 

4. The estimate for E(O) 

Since, by (3.13), we have (see (3.15)1) 

( 4.1) 
w2 

E(O) ｾ＠
2 

m 
2 
1(0), 

wm - w 
w < wm, 

we will be estimating in what follows the quantity 1(0) which, in view of (3.6), 
can be written as 

(4.2) 1(0) =- I (trVr + Pr1/Jr) dA. 
So 

To this end, we note that the Cauchy- Schwarz inequality implies 

( 4.3) 

where we have employed the ·notation 

(4.4) D(V) := I ( VrVr + j 21/Jr1/Jr) dA. 
So 

Next, we use an appropriate re-scaling of the well-known trace theorem [12, 
p. 353] which reads 

(4.5) I WrWr ds ｾ＠ A1 I WrWr dV + A2 I ｗｲＬｾｗｲＬｾ＠ dV, 
CJB B B 
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where A1 and A2 are positive constants which depend upon B and aB and 
where Wr are functions of class C1(B u aB). Accordingly, from (4.4) and (4.5), 
we infer 

( 4.6) D (V) ｾ＠ A1 I ( VrVr + j 21/Jr1/Jr) dV + A2 I ( Vr,sVr,s + j 2
1/Jr,s1/Jr,s) dV 

B B 

which, in view of the signifi cance of the constant j , leads to (see (2.4)2) 

(4.7) D(V) ｾ＠ A1 I (vrVr + lrs1/Jr1/J$) dV 

B 

+ A2 l[vr ,$Vr,$ + j 2Krs(V)Krs(V)] dV. 

B 

Since v = 0 on aB\So we have the first Korn inequality 

I Vr,sVr,s dV ｾ＠ ｾ＠ A3 I ( Vr,s + Vs,r) ( Vr,s + Vs,r) dV, 

( 4.8) 
B B 

which, when combined with [8] 

(4.9) 

and (4.7), gives 

(4.10) D(V) ｾ＠ A1 I (VrVr + lr$1/Jr1/J$) dV 

B 

+ A4 I [ers(V)er$(V) + ｩｾｾＺｲＤＨｖＩ＠ Kr$(V)] dV, 

B 

where 

The assumption that W is positive definite implies that there exists a positive 
constant J.Lme) so that 

(
2

) J.lm is the lowest characteristic value of AKL · See [10, p.l97]. 
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and, by denoting with wv/27r the fundamental frequency of the cylinder B whose 
entire surface, apart from its end plane So, is clamped we also have, as before, 

( 4.12) I 2W(U) dV 2 ｑｗｾ＠ I (urUr + Jrscpr cps) dV, 
B B 

for any smooth vector fi eld U. Thus, from (4.3), (4.10), (4.11) and (4.12) we find 
(see (3.15)1) 

(4.13) [ l 
1/ 2 

I(o) s Ｈｾ［＠ + ::) '
1
' E(o)1i ' £ (t,t, + r'p,p,) dA , 

which, together with ( 4.1), gives 

(4.14) ｷｾ＠ ( A1 A4) I ( ._2 ) E(O) :S ( 2 _ 2 ) 2 - 2 + - trtr + J PrPr dA. 
Wm W QWv J.Lm 

So 

Inequality (4.14) expresses the fact that in the strain-energy measure, the 
solution to the boundary value problem (3.4)-(3.6) depends continuously on 
the data fat w < Wm . Continuous dependence estimates for stresses, strains 
and displacements can be obtained by combining (4.14) with (2.14), (4.11) and 
(4.12), respectively. Finally, we note that on combining (4.14) with (3.27) we can 
obtain an explicit decay estimate for E(z ) in terms of the data prescribed on the 
boundary of the cylinder. 
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