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Thermosolutal convection in ferromagnetic fluid
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The thermosolutal convection in ferromagnetic fluid is considered for a fluid
layer heated and soluted from below in the presence of uniform vertical magnetic
field. For the case of two free boundaries, an exact solution is obtained using a linear
stability analysis. For the case of stationary convection, magnetization has a desta-
bilizing effect, whereas stable solute gradient has a stabilizing effect on the onset of
instability. Graphs have been plotted by giving numerical values to various parame-
ters, to depict the stability characteristics. The principle of exchange of stabilities is
found to hold true for the ferromagnetic fluid heated from below in porous medium
in the absence of stable solute gradient. The oscillatory modes are introduced due to
the presence of the stable solute gradient, which were non-existent in its absence. A
sufficient condition for non-existence of the overstability is also obtained.

Key words: thermosolutal instability, ferromagnetic fluid, uniform magnetic field,
magnetization.

1. Introduction

Ferrohydrodynamics (FHD) deals with the mechanics of fluid motions in-
fluenced by strong forces of magnetic polarization. Ferrohydrodynamics con-
cerns usually non-conducting liquids with magnetic properties and constitutes
an entire field of physics close to magnetohydrodynamics but still different. The
polarization force and the body couple are the two main features that distin-
guish ferromagnetic fluids from ordinary fluids. Magnetic fluids, called also “fer-
romagnetic fluids”, are electrically non-conducting colloidal suspensions of solid
ferromagnetic particles in a non-electrically conducting carrier fluid like water,
kerosene, hydrocarbon etc. A typical ferromagnetic fluid contains 1023 particles
per cubic meter. These fluids behave as a homogeneous continuum and exhibit
a variety of interesting phenomena. Ferromagnetic fluids are not found in nature
but are artificially synthesized.
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Soon after the method of formation of ferromagnetic fluids in the early or
mid-1960s, the importance of ferrohydrodynamics was realized. Due to the wide
ranges of applications of ferromagnetic fluid to instrumentation, lubrication,
printing, vacuum technology, vibration damping, metals recovery, acoustics and
medicine, its commercial usage includes vacuum feed throughs for semiconductor
manufacturing and related uses (Moskowitz [1]), pressure seals for compres-
sors and blowers (Rosensweig [2]). It is also used in liquid-cooled loudspeakers
which involves small bulk quantities of the ferromagnetic fluid to conduct heat
away from the speaker coils (Hathaway [3]). This innovation increases the am-
plifying power of the coil, and hence, it leads to the loudspeaker to produce
high-fidelity sound. In order to bring the drugs to a target site in human body, a
magnetic field can pilot the path of a drop of ferromagnetic fluid in the human
body (Morimoto et al. [4]). The novel zero-leakage rotating-shaft seals are used
in computer disk drives (Bailey [5]).

Experimental and theoretical physicists and engineers gave significant contri-
butions to ferrohydrodynamics and its applications (Odenbach [6]). During the
last half century, research on magnetic liquids has been very productive in many
fields. Strong efforts have been undertaken to synthesize stable suspensions of
magnetic particles with different performances in magnetism, fluid mechanics or
physical chemistry.

An authoritative introduction to this fascinating subject has been discussed
in detail in the celebrated monograph by Rosensweig [7]. This monograph re-
views several applications of heat transfer through ferrofluids. One such phenom-
enon is enhanced convective cooling having a temperature-dependent magnetic
moment due to magnetization of the fluid. This magnetization, in general, is
a function of the magnetic field, temperature, salinity and density of the fluid.
Any variation of these quantities can induce a change of body force distribution
in the fluid. This leads to convection in ferromagnetic fluids in the presence of
magnetic field gradient. This mechanism is known as ferroconvection, which is
similar to Bénard convection (Chandrasekhar [8]). In our analysis, we assume
that the magnetization is aligned with the magnetic field. Convective instabil-
ity of a ferromagnetic fluid for a fluid layer heated from below in the presence
of uniform vertical magnetic field has been considered by Finlayson [9]. He
explained the concept of thermo-mechanical interaction in ferromagnetic fluids.
Thermoconvective stability of ferromagnetic fluids without considering buoyancy
effects has been investigated by Lalas and Carmi [10], whereas Shliomis [11]
analyzed the linearized relation for magnetized perturbed quantities at the limit
of instability.

Ferromagnetic fluids are mostly organic solvent carriers having a ferromag-
netic salt acting as a solute. The effects of temperature, rotation and porous
medium on ferromagnetic fluids as a single-component fluid has been studied by
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Sekar et al. [12], Sekar and Vaidyanathan [13], Gupta and Gupta [14] and
Finlayson [9]. Sharma et al. [15] and Sunil et al. [16] have studied thermoso-
lutal instability problems of non-Newtonian fluid in porous medium. They found
that the stable solute gradient has a stabilizing effect when it is salted from be-
low. Normally, ferromagnetic fluids are suspension of magnetic salts in carrier
organic fluids and hence, it is appropriate to study the convective stability in two-
component fluids in which ferric salts are treated as solute and organic carrier
as solvents. Hence, the study of convection in the two-component ferromagnetic
fluid will now throw more light on convective instability. Vaidyanathan et al.

[17] have studied ferroconvective instability of two-component fluid heated from
below and soluted from above. They found that the salinity of ferromagnetic
fluid enables the fluid to get destabilized more when it is salted from above.
The present paper, therefore, deals with the thermosolutal convection in fer-
romagnetic fluid heated and soluted from below in the presence of a uniform
vertical magnetic field.

2. Mathematical formulation of the problem

Here we consider an infinite, horizontal layer of thickness d of an electrically
non-conducting incompressible ferromagnetic fluid, heated and soluted from be-
low. A uniform magnetic field H0 acts along the vertical direction which is taken
as the z-axis. The temperature and solute concentration at the bottom and

top surfaces z = µ
1

2
d are T0, T1 and C0, C1, respectively, and a uniform tem-

perature gradient β

(

=

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

)

and a uniform solute gradient β′

(

=

∣

∣

∣

∣

dC

dz

∣

∣

∣

∣

)

are

maintained (see Fig. 1). The gravity field g (0, 0, − g), pervades the system.

Fig. 1. Geometrical configuration.
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The mathematical equations governing the motion of ferromagnetic fluids for
the above model are as follows:

The continuity equation for an incompressible ferromagnetic fluid is

(2.1) ∇.q = 0.

The momentum equation is

(2.2) ρ0
Dq

Dt
= −∇p + ρg + ∇. (HB) + µ∇2q.

The equations expressing the conservation of temperature and solute concen-
tration are

(2.3)

[

ρ0CV,H − µ0H.

(

∂M

∂T

)

V,H

]

DT

Dt
+ µ0T

(

∂M

∂T

)

V,H

.
DH

Dt

= K1∇2T + ΦT ,

(2.4)

[

ρ0CV,H − µ0H.

(

∂M

∂C

)

V,H

]

DC

Dt
+ µ0C

(

∂M

∂C

)

V,H

.
DH

Dt

= K ′

1∇2C + ΦS .

The density equation of state is taken as:

(2.5) ρ = ρ0

[

1 − α (T − Ta) + α′ (C − Ca)
]

,

where ρ, ρ0, q, t, p , µ, µ0, H,B, CV,H , T, C, M, K1, K ′
1, α, α′, ΦT and ΦS are

the fluid density, reference density, velocity, time, pressure, dynamic viscosity
(constant), magnetic permeability, magnetic field, magnetic induction, specific
heat at constant volume and magnetic field, temperature, solute concentration,
magnetization, thermal conductivity, solute conductivity, thermal expansion co-
efficient, an analogous solvent coefficient of expansion, viscous dissipation factor
containing second-order terms in velocity and viscous dissipation factor anal-
ogous to ΦT but corresponding to the solute, respectively. ΦT and ΦS being
small of second order may be neglected. Ta is the average temperature given

by Ta =
(T0 + T1)

2
, where T0 and T1 are the constant average temperatures of

the lower and upper surfaces of the layer and Ca is the average concentration

given by Ca =
(C0 + C1)

2
, where C0 and C1 are the constant average concentra-

tions of the lower and upper surfaces of the layer. In the Eq. (2.2), we assume
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that the viscosity is isotropic and independent of the magnetic field. We also
use the Boussinesq approximation by allowing the density to change only in the
gravitational body force term.

Maxwell’s equations, simplified for a non-conducting fluid with no displace-
ment currents, become

(2.6) ∇.B = 0, ∇× H = 0.

In the Chu formulation of electrodynamics (Penfield and Haus, [18]), the
magnetic field, magnetization and the magnetic induction are related by

(2.7) B = µ0 (H + M) .

We assume that the magnetization is aligned with the magnetic field, but
allow a dependence on the magnitude of the magnetic field, temperature and
salinity, so that

(2.8) M =
H

H
M(H, T, C).

The magnetic equation of state is linearized about the magnetic field, H0, the
average temperature, Ta and the average salinity Ca to become

(2.9) M = M0 + χ (H − H0) − K2 (T − Ta) + K3 (C − Ca) ,

where H0 is the uniform magnetic field of the fluid layer when placed in an exter-

nal magnetic field H =
∧

kHext
0 , χ =

(

∂M

∂H

)

H0, Ta

is the magnetic susceptibility,

K2 = −
(

∂M

∂T

)

H0, Ta

is the pyromagnetic coefficient and K3 =

(

∂M

∂C

)

H0, Ca

is

the magnetic salinity coefficient, H is magnitude of H and M0 = M(H0, Ta, Ca).
The basic state is assumed to be a quiescent state and is given by

(2.10)

q = qb = 0, p = pb(z),

T = Tb(z) = −βz + Ta, C = Cb(z) = −β′z + Ca,

β =
T1 − T0

d
, β′ =

C1 − C0

d
,

Hb =

[

H0 +
K2 (Tb − Ta)

1 + χ
− K3 (Cb − Ca)

1 + χ

]

∧

k,

Mb =

[

M0 −
K2 (Tb − Ta)

1 + χ
+

K3 (Cb − Ca)

1 + χ

]

∧

k, H0 + M0 = Hext
0 ,

where
∧

k is unit vector in the z-direction.
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3. The perturbation equations

We shall analyze the stability of the basic state by introducing the following
perturbations:

(3.1)

q = qb + q′, p = pb(z) + δp,

T = Tb(z) + θ, C = Cb(z) + γ,

H = Hb(z) + H′, M = Mb(z) + M′

where q′ = (u, v, w), δp, θ, γ, H′ and M′ are perturbations in velocity, pressure,
temperature, concentration, magnetic field and magnetization. These perturba-
tions are assumed to be small and then the linearized perturbation equations
become

ρ0
∂u

∂t
= − ∂

∂x
δp + µ0 (M0 + H0)

∂H ′
1

∂z
+ µ∇2u,(3.2)

ρ0
∂v

∂t
= − ∂

∂y
δp + µ0 (M0 + H0)

∂H ′
2

∂z
+ µ∇2v,(3.3)

(3.4) ρ0
∂w

∂t
= − ∂

∂z
δp + µ0 (M0 + H0)

∂H
′

3

∂z

+ µ∇2w − µ0K2β

1 + χ

(

H
′

3 (1 + χ) − K2θ
)

+
µ0K3β

′

1 + χ

(

H
′

3 (1 + χ) + K3γ
)

− µ0K2K3

1 + χ

(

β′θ + βγ
)

+ gρ0

(

αθ − α′γ
)

,

(3.5)
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

(3.6) ρC1
∂θ

∂t
− µ0T0K2

∂

∂t

(

∂Φ′
1

∂z

)

= K1∇2θ +

[

ρC1β − µ0T0K
2
2β

(1 + χ)

]

w,

where

(3.7) ρC1 = ρ0CV, H + µ0K2H0,

(3.8) ρC2
∂γ

∂t
− µ0C0K3

∂

∂t

(

∂Φ
′

2

∂z

)

= K
′

1∇2γ +

[

ρC2β
′ − µ0C0K

2
3β′

(1 + χ)

]

w,
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where

(3.9) ρC2 = ρ0CV,H − µ0K3H0.

Equations (2.8) and (2.9) yield

(3.10)

H ′

3 + M ′

3 = (1 + χ) H ′

3 − K2θ,

H ′

3 + M ′

3 = (1 + χ) H ′

3 + K3γ,

H ′

i + M ′

i =

(

1 +
M0

H0

)

H
′

i (i = 1, 2) .

Here we have assumed K2βd ≪ (1 + χ)H0, K3β
′d ≪ (1 + χ)H0. Equation (2.6)2

means that we can write H
′

= ∇
(

Φ
′

1 − Φ
′

2

)

, where Φ
′

1 is the perturbed magnetic

potential and Φ
′

2 is the perturbed magnetic potential analogous to the solute.
The vertical component of Eq. (2.2) becomes

(3.11) ρ0
∂

∂t
∇2w = µ∇2

(

∇2w
)

− µ0K2β

1 + χ
∇2

1

(

(1 + χ)
∂

∂z

(

Φ
′

1 − Φ
′

2

)

−K2θ

)

+
µ0K3β

′

1 + χ
∇2

1

(

(1 + χ)
∂

∂z

(

Φ
′

1 − Φ
′

2

)

+ K3γ

)

− µ0K2K3

1 + χ
∇2

1

(

β
′

θ + βγ
)

+ gρ0∇2
1(αθ − α

′

γ).

From (3.10), we have

(1 + χ)
∂2Φ′

1

∂z2
+

(

1 +
M0

H0

)

∇2
1Φ

′

1 − K2
∂ϑ

∂z
= 0,(3.12)

(1 + χ)
∂2Φ′

2

∂z2
+

(

1 +
M0

H0

)

∇2
1Φ

′

2 − K3
∂γ

∂z
= 0.(3.13)

4. Normal mode analysis method

Analyzing the disturbances of normal modes, we assume that the perturba-
tion quantities are of the form

(4.1)
(

w, θ, γ, Φ
′

1, Φ
′

2

)

= [W (z) , Θ (z) , Γ (z), Φ1 (z) , Φ2 (z)] exp i (kxx + kyy) ,

where kx, ky are the wave numbers along the x- and y-directions respectively,

k =
√

(k2
x + k2

y) is the resultant wave number.
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Equations (3.11), (3.6), (3.8), (3.12) and (3.13) using Eq. (4.1), become

(4.2) ρ0
∂

∂t

(

∂2

∂z2
− k2

)

W = µ

(

∂2

∂z2
− k2

)2

W

+
µ0K2β

1 + χ

[

(1 + χ)
∂

∂z
(Φ1 − Φ2) − K2Θ

]

k2

− µ0K3β
′

1 + χ

[

(1 + χ)
∂

∂z
(Φ1 − Φ2) + K3Γ

]

k2

+
µ0K2K3

1 + χ

[

β
′

Θ + βΓ
]

k2 − ρ0g
(

αΘ − α
′

Γ
)

k2,

(4.3) ρC1
∂Θ

∂t
− µ0T0K2

∂

∂t

(

∂Φ1

∂z

)

= K1

(

∂2

∂z2
− k2

)

Θ +

(

ρC1β − µ0T0K
2
2β

1 + χ

)

W,

(4.4) ρC2
∂Γ

∂t
− µ0C0K3

∂

∂t

(

∂Φ2

∂z

)

= K
′

1

(

∂2

∂z2
− k2

)

Γ +

(

ρC2β
′ − µ0C0K

2
3β

′

1 + χ

)

W,

(1 + χ)
∂2Φ1

∂z2
−
(

1 +
M0

H0

)

k2Φ1 − K2
∂Θ

∂z
= 0,(4.5)

(1 + χ)
∂2Φ2

∂z2
−
(

1 +
M0

H0

)

k2Φ2 − K3
∂Γ

∂z
= 0.(4.6)

Equations (4.2) – (4.6) give the following dimensionless equations:

(4.7)
∂

∂t∗
(

D2 − a2
)

W ∗ =
(

D2 − a2
)2

W

+ aR1/2
[

(M1 − M4)DΦ∗

1 − (1 + M1 − M4)T ∗

]

+ aS1/2
[(

M
′

1 − M
′

4

)

DΦ∗

2 +
(

1 − M
′

1 + M
′

4

)

C∗

]

,



Thermosolutal convection in ferromagnetic fluid 125

Pr
∂T ∗

∂t∗
− PrM2

∂

∂t∗
(DΦ∗

1) =
(

D2 − a2
)

T ∗ + aR1/2 (1 − M2) W ∗,(4.8)

P
′

r

∂C∗

∂t∗
− P

′

rM
′

2

∂

∂t∗
(DΦ∗

2) =
(

D2 − a2
)

C∗ + aS1/2
(

1 − M
′

2

)

W ∗,(4.9)

D2Φ∗

1 − a2M3Φ
∗

1 − DT ∗ = 0,(4.10)

D2Φ∗

2 − a2M3Φ
∗

2 − DC∗ = 0,(4.11)

where the following non-dimensional parameters are introduced:

t∗ =
νt

d2
, W ∗ =

Wd

ν
,

Φ∗

1 =
(1 + χ) K1aR1/2

K2ρC1βνd2
Φ1, Φ∗

2 =
(1 + χ)K

′

1aS1/2

K3ρC2β′νd2
Φ2,

R =
gαβd4ρC1

νK1
, S =

gα′β′d4ρC2

νK
′

1

,

T ∗ =
K1aR1/2

ρC1βνd
Θ, C∗ =

K
′

1aS1/2

ρC2β′νd
Γ,

(4.12) a = kd, z∗ =
z

d
, D =

∂

∂z∗
,

Pr =
ν

K1
ρC1, P

′

r =
ν

K
′

1

ρC2,

M1 =
µ0K

2
2β

(1 + χ) αρ0g
, M

′

1 =
µ0K

2
3β′

(1 + χ)α′ρ0g
,

M2 =
µ0T0K

2
2

(1 + χ) ρC1
, M

′

2 =
µ0C0K

2
3

(1 + χ) ρC2
,

M3 =

(

1 + M0

H0

)

(1 + χ)
, M4 =

µ0K2K3β
′

(1 + χ)αρ0g
,

M
′

4 =
µ0K2K3β

(1 + χ) α′ρ0g
, M5 =

M4

M1
=

M
′

1

M
′

4

=
K3β

′

K2β
.

5. Exact solution for free boundaries

Consider the case where both boundaries are free as well as perfect conductors
of heat. The case of two free boundaries is of little physical interest, but it is
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mathematically important because it enables us to find the exact solutions, whose
properties guide our analysis below.

The boundary conditions are

(5.1) W ∗ = D2W ∗ = T ∗ = C∗ = D Φ∗

1 = D Φ∗

2 = 0 at z = ±1

2
.

Following the analysis of Finlayson, the exact solutions satisfying the bound-
ary conditions are given by

(5.2)

W ∗ = A0e
σt∗ cos πz∗, T ∗ = B0e

σt∗ cos πz∗, D Φ∗

1 = C0e
σt∗ cos πz∗,

Φ∗

1 =

(

C0

π

)

eσt∗ sin πz∗, Φ∗

2 =

(

E0

π

)

eσt∗ sin πz∗,

D Φ∗

2 = E0e
σt∗ cos πz∗, C∗ = F0e

σt∗ cos πz∗,

where A0, B0, C0, E0, F0 are constants and σ is the growth rate which is, in
general, a complex constant.

Substituting Eq. (5.2) in Eqs. (4.7)–(4.11) and dropping asterisks for conve-
nience, we get the following five linear, homogeneous algebraic equations

(5.3)
(

π2 + a2
) (

π2 + a2 + σ
)

A0 − aR1/2 (1 + M1 − M4) B0

+ aR1/2 (M1 − M4)C0 + aS1/2
(

1 − M
′

1 + M
′

4

)

F0

+ aS1/2
(

M
′

1 − M
′

4

)

E0 = 0,

aR1/2 (1 − M2) A0 −
(

π2 + a2 + Prσ
)

B0 + (PrM2σ) C0 = 0,(5.4)

aS1/2
(

1 − M
′

2

)

A0 −
(

π2 + a2 + P
′

rσ
)

F0 +
(

P
′

rM
′

2σ
)

E0 = 0,(5.5)

−π2B0 +
(

π2 + a2M3

)

C0 = 0,(5.6)

−π2F0 +
(

π2 + a2M3

)

E0 = 0.(5.7)

For existence of non-trivial solutions of the above equations, the determinant
of the coefficients of A0, B0, C0, E0, F0 in Eqs. (5.3)–(5.7) must vanish. This
determinant after simplification yields

(5.8) −iUσ3
1 − V σ2

1 + iWσ1 + X = 0,
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where

(5.9) U = (1 + x)PrP
′

r

[

{(1 − M2) + xM3}
{(

1 − M
′

2

)

+ xM3

}]

(5.10) V = (1 + x)2













(1 + xM3)
[

P
′

r

{(

1 − M
′

2

)

+ xM3

}

+Pr {(1 − M2) + xM3}]

+PrP
′

r {(1 − M2) + xM3}
{(

1 − M
′

2

)

+ xM3

}













,

(5.11) W = (1 + x)3 (1 + xM3)

[

(1 + xM3)

+
[

P
′

r

{(

1 − M
′

2

)

+ xM3

}

+ Pr

{

(1 − M2) + xM3

}]

]

+ xS1Pr

(

1 − M
′

2

){

(1 − M2) + xM3

}

·
{(

M
′

1 − M
′

4

)

+ (1 + xM3)
(

1 − M
′

1 + M
′

4

)}

− xR1P
′

r (1 − M2)
{(

1 − M
′

2

)

+ xM3

} {

1 + xM3 (1 + M1 − M4)
}

,

(5.12) X = (1 + x) (1 + xM3)



















(1 + x)3 (1 + xM3)

+xS1

(

1 − M
′

2

){(

M
′

1 − M
′

4

)

+ (1 + xM3)
(

1 − M
′

1 + M
′

4

)}

−xR1 (1 − M2)
{

1 + xM3 (1 + M1 − M4)
}



















,

where R1 =
R

π4
, S1 =

S

π4
, x =

a2

π2
and i σ1 =

σ

π2
.

6. The case of stationary convection

When the instability sets in as stationary convection (M2
∼= 0 and M

′

2
∼= 0),

the marginal state will be characterized by σ1 = 0, then the Rayleigh number
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is given by

(6.1) R1 =
(1 + x)3 (1 + xM3)

x {(1 + xM3) + xM3M1 (1 − M5)}

+

S1M
′

1

[

1

M
′

1

+ x
M3

M
′

1

+ xM3

{

1

M5
− 1

}]

{(1 + xM3) + xM3M1 (1 − M5)}
,

which expresses the modified Rayleigh number R1 as a function of the dimen-
sionless wave number x, the magnetization parameter M3, stable solute gradient
parameter S1 and the ratio of the salinity effect on the magnetic field to pyro-
magnetic coefficient M5.

To investigate the effects of magnetization and stable solute gradient, we
examine the behaviour of dR1/dM3, dR1/dS1 analytically. Eq. (6.1) yields

(6.2)
dR1

dM3
= −(1 + x)3

x

[

xM1 (1 − M5)

{1 + xM3 + xM3M1 (1 − M5)}2

]

− S1M
′

1









x (1 − M5)

{

M1

M
′

1

− 1

M5

}

{1 + xM3 + xM3M1 (1 − M5)}2









,

(6.3)
dR1

dS1
=

M
′

1

[

1

M
′

1

+ x
M3

M
′

1

+ xM3

{

1

M5
− 1

}]

{(1 + xM3) + xM3M1 (1 − M5)}
.

This shows that, for a stationary convection, the magnetization has a desta-
bilizing effect, whereas the stable solute gradient has a stabilizing effect on the
onset of instability.

The critical Rayleigh number for the onset of instability is determined by the
condition dR1/dx = 0. When M1 = 0 and M1

′ = 0, then from Eq. (6.1), we get

(6.4) xc =
1

2
with Rc =

27

4
+ S1.

For M1 sufficiently large, we obtain the results for the magnetic mechanism:

(6.5) N = R1M1 =
(1 + x)3 (1 + xM3)

x2M3 (1 − M5)
+

S1

{

1 + xM3 + xM
′

1M3

(

1

M5
− 1

)}

xM3 (1 − M5)
,

where N is the magnetic thermal Rayleigh number.
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The critical magnetic Rayleigh number for the onset of instability is deter-
mined by the condition dN/dx = 0.

The critical magnetic Rayleigh number, Nc, depends on the magnetization
parameter M3, ratio of the salinity effect on magnetic field to pyromagnetic
coefficient M5 and stable solute gradient S1. In the particular case

xc = 1, Nc = 17.78 for M3 = 1, S1 = 0

and

xc =
1

2
, Nc = 7.5, for M3 → ∞, S1 = 0

and intermediate values for intermediate M3.
The dispersion relation (6.1) is analyzed numerically. In Fig. 2, R1 is plotted

against the wave number x for M1 = 1000, M ′
1 = 0.5, M5 = 0.1, S1 = 500;

M3 = 1, 3, 5, 7. In Fig. 3, R1 is plotted against the wave number x for M1 =
1000, M ′

1 = 0.5, M5 = 0.5, M3 = 1; S1 = 100, 200, 300, 400. It is clear that
the magnetization has destabilizing effects as the Rayleigh number decreases
with the increase of the magnetization parameter whereas stable solute gradient
has a stabilizing effect as the Rayleigh number increases with the increase in
stable solute parameter. In Fig. 4, R1 is plotted against the wave number x
for M1 = 1000, M ′

1 = 0.5, M3 = 1, S1 = 500; M5 = 0.1, 0.2, 0.3, 0.4. The
increase in M5, which represents the ratio of the salinity effect on magnetic field
to pyromagnetic coefficient, reduced R1. Therefore, magnetic parameter M5 has
also a destabilizing effect on the system.

Fig. 2. Variation of Rayleigh number (R1) with wave number (x) for M1 = 1000, M
′

1 = 0.5,
M5 = 0.1, S1 = 500; M3 = 1 for Curve 1, M3 = 3 for Curve 2, M3 = 5 for Curve 3,

and M3 = 7 for Curve 4.
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Fig. 3. Variation of Rayleigh number (R1) with wave number (x) for M1 = 1000, M
′

1 = 0.5,
M5 = 0.1, M3 = 1; S1 = 100 for Curve 1, S1 = 200 for Curve 2, S1 = 300 for Curve 3

and S1 = 400 for Curve 4.

Fig. 4. Variation of Rayleigh number (R1) with wave number (x) for M1 = 1000, M
′

1 = 0.5,
S1 = 500, M3 = 1; M5 = 0.1 for Curve 1, M5 = 0.2 for Curve 2, M5 = 0.3 for Curve 3

and M5 = 0.4 for Curve 4.

Suggestion by Finlayson [9] and Gupta and Gupta [14] have also been
taken for variation of these parametric values. There are many types of ferroflu-
ids formed by changing ferric oxides and carrier organic fluids. In the present
analysis, the range of values pertaining to ferric oxide, kerosene and other or-
ganic carriers are chosen. With the same ferric oxide, the different carriers like
alcohol, hydrocarbon, ester, halocarbon, silicon could be chosen.
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For such fluids, M2 is assumed to have a negligible value and hence it is
taken to be zero (Sekar and Vaidyanathan [13]). M3 is varied from 1 to 25
because M3 can not take a value smaller than 1 (Vaidyanathan et al. [19]).
M

′

1 (the effect on magnetization due to salinity) is allowed to vary from 0.1 to
0.5, taking values smaller than the magnetization parameter M3. M5 represents
the ratio of the salinity effect on magnetic field to pyromagnetic coefficient. This
varies between 0.1 and 0.5. The salinity Rayleigh number S1 varies from −500
to +500. In the above analysis, the magnetization parameter M1 is taken to be
1000. These values are used for analysis in the present paper.

7. Principle of exchange of stabilities

Here we examine the possibility of oscillatory modes, if any, on the stabil-
ity problem due to the presence of stable solute parameter and magnetization
parameter. Equating the imaginary parts of Eq. (5.8), we obtain

(7.1) σ1







































− (1 + x)3 (1 + xM3)
{

(1 + xM3) +
[

P
′

r

{(

1 − M
′

2

)

+ xM3

}

+Pr {(1 − M2) + xM3}
]}

−xS1Pr

(

1 − M
′

2

)

{(1 − M2) + xM3}
{(

M
′

1 − M
′

4

)

+ (1 + xM3)
(

1 − M
′

1 + M
′

4

)}

+ xR1P
′

r (1 − M2)
{(

1 − M
′

2

)

+ xM3

}

· {1 + xM3 (1 + M1 − M4)}

+ σ2
1

[

PrP
′

r (1 + x) {(1 − M2) + xM3}
{(

1 − M
′

2

)

+ xM3

}]







































= 0.

It is clear from Eq. (7.1) that σ1 may be either zero or non-zero, meaning that
the modes may be either non-oscillatory or oscillatory. In the absence of stable
solute gradient [S1 = 0 and consequently P

′

r = 0], Eq. (7.1) reduces to

(7.2) σ1 [(1 + x) (1 + xM3) + Pr {(1 − M2) + xM3}] = 0.

Here the quantity inside the brackets is positive definite because the typical
values of M2 are +10−6 (Finlayson, [9]). Thus σ1 = 0, which means that
oscillatory modes are not allowed and the principle of exchange of stabilities
is satisfied in the absence of stable solute gradient. The oscillatory modes are
introduced due to the presence of the stable solute gradient, which were non-
existent in its absence.
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8. The case of overstability

The present section is devoted to determine the possibility as to whether
instability may occur as overstability. Since we wish to determine the Rayleigh
number for the onset of instability via a state of pure oscillations, it suffices to
find conditions for which (5.8) will admit the solutions with real values of σ1.

Equating real and imaginary parts of (5.8) and eliminating R1 between them,
we obtain

(8.1) A1σ
2
1 + A0 = 0,

where

(8.2) A1 = (1 + x) P
′2
r

{(

1 − M
′

2

)

+ xM3

}2 [

(1 + xM3)

+ Pr {(1 − M2) + xM3}
]

,

(8.3) A0 = (1 + xM3)

























(1 + x)3 (1 + xM3)
{

(1 + xM3)

+Pr

{

(1 − M2) + xM3

}

}

+ xS1

(

1 − M
′

2

){(

M
′

1 − M
′

4

)

+ (1 + xM3)
(

1 − M
′

1 + M
′

4

)}

[

Pr {(1 − M2) + xM3} − P
′

r

{(

1 − M
′

2

)

+ xM3

}]

























.

Since σ1 is real for overstability, both values of σ1 are positive. But σ2
1 is always

negative if A0 is positive (because A1 > 0). It is clear from Eq. (8.3) that A0 is
always positive if

(8.4) Pr > P
′

r and Pr >
P

′

r

(1 − M2)
,

which implies that

(8.5) K ′

1 > K1









ρC2

ρC1

{

1 − µ0T0K
2
2

(1 + χ) ρC1

}









,

however Pr > P
′

r is already satisfied in the above condition.
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Thus, for K ′
1 > K1









ρC2

ρC1

{

1 − µ0T0K
2
2

(1 + χ) ρC1

}









, overstability cannot occur

and the principle of the exchange of stabilities is valid. Hence the above condi-
tion is a sufficient condition for the non-existence of overstability, the violation
of which does not necessarily imply the occurrence of overstability, whereas in
absence of the magnetic parameters, the above condition, as expected, reduces
to K ′

1 > K1, i.e. the solute conductivity is greater than thermal conductivity.

9. Conclusions

In this paper, we have studied the thermosolutal convection in ferromag-
netic fluid heated and soluted from below in the presence of a uniform vertical
magnetic field. In the preceding sections, we have investigated the effects of mag-
netization and stable solute gradient on the onset of convection. The principal
conclusions from the analysis of this paper are as follows:

1. For the case of stationary convection, the magnetization speeds up the
onset of convection what is evident from Eq. (6.2). The results obtained
for different values of magnetization parameter are depicted in Fig. 2. It is
seen that the magnetization accelerates the onset of convection and this is
in agreement with the analytical result.

2. Figure 4 is a plot of R1 versus the wave number x for various values of
M5. M5 is the ratio of the salinity effect on magnetic field to pyromagnetic
coefficient. As M5 increases R1 decreases. Hence M5 has also a destabilizing
effect on the onset of instability. From this figure we also observe that the
ferromagnetic fluid layer is slightly destabilized.

3. From Eq. (6.3), we observe that the stable solute gradient postpones the
onset of instability. Figure 3 illustrates the stabilizing effect of stable solute
gradient. The stabilizing effect of stable solute gradient is accounted by
Veronis [20] and is found to be valid also for a ferromagnetic fluid.

4. The principle of exchange of stabilities is found to hold true for the ferro-
magnetic fluid heated from below in the absence of stable solute gradient.
The oscillatory modes are introduced due to the presence of the stable
solute gradient, which were non-existent in its absence.

5. The condition, i.e. K ′
1 > K1









ρC2

ρC1

{

1 − µ0T0K
2
2

(1 + χ) ρC1

}









is the sufficient

condition for non-existence of overstability. In absence of the magnetic
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parameters, the above condition, as expected, reduces to K
′

1 > K1 i.e.
solute conductivity is greater than thermal conductivity.

Acknowledgment

The financial assistance to Dr. Sunil in the form of Research and Development
Project [No. 25(0129)/02/EMR-II] of the Council of Scientific and Industrial
Research (CSIR), New Delhi, is gratefully acknowledged.

References

1. R. Moskowitz, Dynamic sealing with magnetic fluids, ASLE Trans., 18, 2, 135–143, 1975.

2. R. E. Rosensweig, Advances in electronics and electron physics, 48L, p. 103, Marton

[Ed.], Academic Press, New York 1979.

3. D. B. Hathaway, Use of ferrofluid in moving coil loudspeakers, dB-Sound Eng. Mag., 13,

42–44, 1979.

4. Y. Morimoto, M. Akimoto and Y. Yotsumoto, Dispersion state of protein – stabilized
magnetic emulsions, Chem. Pharm. Bull., 30, 3024–3027, 1982.

5. R. L. Bailey, Lesser known applications of ferrofluids, J. Magn. Magn. Mater., 39, 178–
182, 1983.

6. S. Odenbach, Magnetoviscous effects in ferrofluids, Springer-Verlag, Berlin, Heidelberg
2002.

7. R. E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge 1985.

8. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Oxford University Press,
London 1981.

9. B. A. Finlayson, Convective instability of ferromagnetic fluids, J. Fluid Mech., 40, 753–
767, 1970.

10. D. P. Lalas and S. Carmi, Thermoconvective stability of ferrofluids, Phys. Fluids, 14,
436–437, 1971.

11. M. I. Shliomis, Magnetic fluids, Soviet Phys. Uspekhi (Engl. transl.), 17, 153–169, 1974.

12. R. Sekar, G. Vaidyanathan and A. Ramanathan, The ferroconvection in fluids satu-
rating a rotating densely packed porous medium, Int. J. Eng. Sci., 31, 241–250, 1993.

13. R. Sekar, and G. Vaidyanathan, Convective instability of a magnetized ferrofluid in a
rotating porous medium, Int. J. Eng. Sci., 31, 1139–1150, 1993.

14. M. D. Gupta and A. S. Gupta, Convective instability of a layer of a ferromagnetic fluid
rotating about a vertical axis, Int. J. Eng. Sci., 17, 271–277, 1979.

15. R. C. Sharma, Sunil and Suresh Chand, Thermosolutal instability of Walter’ rotating
fluid (model B′) in porous medium, Arch. Mech., 51, 2, 181–191, 1999.

16. Sunil, R. C. Sharma and M. Pal, Hall effect on thermosolutal instability of Walter’s
fluid (model B′) in porous medium, Arch. Mech., 53, 6, 677–690, 2001.



Thermosolutal convection in ferromagnetic fluid 135

17. G. Vaidyanathan, R. Sekar and A. Ramanathan, Ferrothermohaline convection,
J. Magn. Magn. Mater., 176, 321–330, 1997.

18. P. Penfield and H. A. Haus, Electrodynamics of moving media, M.I.T. Press, Cambridge,
Massachusetts 1967.

19. G. Vaidyanathan, R. Sekar and R. Subramaniam, Ferroconvective instability of fluids
saturating a porous medium, Int. J. Engng. Sci., 29, 1259–1267, 1991.

20. G. Veronis, On finite amplitude instability in thermohaline convection, J. Marine Res.,
23, 1–17, 1965.

Received July 14, 2003; revised version January 8, 2004.




