
Arch. Mech., 56, 2, pp. 137–156, Warszawa 2004

Bifurcation into shear bands on the Bishop and Hill

polyhedron. Part I: General analysis

M. DARRIEULAT(1), A. CHENAOUI(2)

(1)SMS, MMF, UMR CNRS 5146,
Ecole Nationale Supérieure des Mines de Saint-Etienne,
158 cours Fauriel, 42023 Saint-Etienne cedex 2, France.

(2)LMMH, Faculté des Sciences et Techniques de Tanger B.P. 416,
Tanger Morocco.

The present paper is the first of a series of three papers devoted to the micro-
mechanical conditions which render possible the appearance of shear bands in crys-
talline materials. The phenomenon is analysed as a bifurcation from an initially ho-
mogeneous mode of deformation. Following a previous work by Hill and Hutchinson,
the criterion of bifurcation is seen as the compatibility between equilibrium, the par-
ticular form of the shear velocity field and the state of the material, expressed by
its rate constitutive equation. The analysis is restricted to the case of rigid-plastic
crystals with uniform strain hardening whose flow surface is the Bishop and Hill
polyhedron. The paper discusses the form of the criterion according to the state of
deviatoric stress on the yield surface, which determines the various geometries of the
slip and the form of the rate law of behaviour. It shows that when only two or three
independent slip systems are available, only coplanar and codirectional slip systems
currently originate shear banding. With a higher number of slip systems, the condi-
tions required for the bifurcation are different, as will be studied in the subsequent
papers.
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Notations

t time,
f arbitrary function of one variable,

C(t) current configuration,

Ĉ(t) isoclinic configuration,
ai components of the vector a (in C(t)),

Aij components of the tensor A (in C(t)),

ȧ, Ȧ derivative of the vector a (respectively: of the tensor A) with respect to time,
∨

A
∗ derivative of the tensor A with respect to time (components formed on axes

which spin with the lattice),

ā vector a transported in Ĉ(t),

Ā tensor A transported in Ĉ(t),
xij current position of a material point,
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V velocity field,

η velocity field in a shear band,

I second order identity tensor,

F deformation gradient,

P plastic deformation gradient,

R rotation of the lattice,

D Eulerian strain rate,

L Eulerian velocity gradient,

Ω spin rate,

Ω
∗ crystallographic lattice spin rate,

T Cauchy stress,

S deviatoric Cauchy stress,

X deviatoric stress tensor on an edge of the Bishop and Hill
polyhedron,

S0 projection of the centre 0 on an edge of the Bishop and Hill
polyhedron,

ς deviatoric stress tensor in a vectorial subspace comprising an edge,
of the Bishop and Hill polyhedron,

Sυ deviatoric stress at a vertex υ (υ = 1...56) of the Bishop and Hill
polyhedron,

Ẇ rate of plastic work dissipated per unit volume,

M Schmid factor, after symmetrisation,

M′ Schmid factor, before symmetrisation,

p isostatic pressure,

ν unit normal to a shear plane,

τc critical resolved shear stress,

ha microscopic strain-hardening modulus,

R ratio ha/τc,

n unit normal to a crystallographic slip plane,

g unit vector aligned with a crystallographic slip direction,

γ̇ glide rate on a crystallographic slip direction,

E vectorial space of the second order, three-dimensional symmetric
tensors of trace 0,

EV vectorial subspace of E comprising a flow cone,

d dimension of a variety on the Bishop and Hill polyhedron,

N number of active crystallographic slip systems on a variety
of the Bishop and Hill polyhedron,

µi components of the flow rate expressed as a combination
of the crystallographic slip systems,

(S) system of equations on which the bifurcation depends,

λn parameters of the rate constitutive law of behaviour,

y unknown proportional to the gradient of the rate
of hydrostatic pressure,

Cij , αij , βij , γij dimensionless quantities used to calculate the bifurcation criterion,

CP coplanar crystallographic slip planes,

CD codirectional crystallographic slip planes,

ζij parameter taking the values –1, 0, 1 in the system (S),

∆ determinant,

Pe homogeneous polynomial of degree e.
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1. Introduction

Shear bands are zones of highly concentrated deformation between paral-
lel planes. They are observed at large strains in various forming processes on all
sorts of solids including polymers and geological materials. In metals, they form
mainly at room temperature. They start as microscopic bands with a width of
a few 1/10 µm within a grain; other microbands cluster parallel to the previous
ones; then they may cross grain boundaries, generally without deflection, and
form macrobands which extend over the scale of the whole sample. In spite of the
variety of tested metals and deformation paths, they have striking common fea-
tures in their dimensions, their patterns in the material, the way they propagate
and saturate [1].

Numerous experimental investigations have been done on the factors which
favour or hinder their development. They include metallurgical considerations
like the substructure of dislocations [2, 3], the stacking fault energy [4] and a
range of microstructural phenomena like the pinning of dislocations by solute
atoms or, on the contrary, the breakdown of obstacle networks opposing the
dislocation glide [5]. Mechanical factors have also been extensively reviewed.
The fact that changes in the deformation path trigger off the shear bands has
been documented [6]. Some investigators have pointed out that larger grains are
more sensitive to shear banding than the smaller ones [7]; others have put in
evidence the role of the crystallographic orientations [8].

The present series of papers is a contribution to the study of the micro-
mechanical conditions which make possible the appearance of intragranular shear
bands. It tries to determine the conditions under which the initially smooth
evolving, homogeneous mode of deformation may change abruptly into a localised
scheme, an intense shear between two limiting planes. The thermal effects, which
play an important role in the bands that form when the metal is machined [9],
are not taken into account here, and the constitutive law of the material is chosen
as rate-insensitive, which is suitable, for example, for cold-rolling.

Localization phenomena can be studied by various methods. At the macro-
scopic level, successful analyses have been conducted by introducing initial non-
uniformities. Such were the papers by Marciniak and Kuczyński [10] in which
a variation of thickness in a sheet deepens into a groove, or various analyses us-
ing finite element methods [11, 12]. When no imperfections are created at the
frontiers, an important tool is the study of uniqueness and stability performed by
Hill [13]. In the case of rate-sensitive materials, localisation phenomena must
be thought in terms of the development of an initially infinitesimal perturba-
tion [14]. In the rate-insensitive case, on the contrary, they can be analysed in
terms of a bifurcation, that is, an alternative to the homogeneous solution which
fulfils the same boundary conditions. It must be stressed that in this approach,
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the law of behaviour of the material is the same at the onset of shear banding
in the matrix and in the affected zone.

Among the variants of the latter method, Rice’s work [15] must be referred to
because it gives, in the rigorous formalism of large deformations and rotations,
the kinematic and equilibrium conditions for the bifurcation along a surface
within the material. An application to the case of crystals has been done by
Pierce [16], although his results are restricted to the case of symmetric bi-slip.
Here a slightly different approach is used, based on a 1975 work by Hill and
Hutchinson [17]. These authors have proposed an analysis of the bifurcation
in two dimensions of a continuous medium, deformed in tension along its axes of
orthotropy. In spite of this restrictive presentation, their criterion can be adapted
to various types of rate-insensitive, incompressible, incrementally linear materi-
als, in particular ductile f.c.c. crystals which obey the Schmid law. Hence, rigid
plasticity is assumed. The choice of the description of work hardening involved
special difficulties. As shown by Asaro [18], latent hardening favours the local-
ization, and there is no theoretical difficulty in adapting the present calculation
to the case of heterogeneous strain hardening [19]. Anyhow, the testing of real-
istic representations of strain hardening is a complex task. Here, it was chosen
to consider it as uniform, so that the flow surface of the material is the Bishop
and Hill polyhedron. The deviatoric loading and the initially homogeneous flow
may lay anywhere upon it, provided that the flow belongs to the adequate cone
of the normals. The first paper gives the conditions of bifurcation all over the
polyhedron; the second one is devoted to the vertices and the third to the edges
of dimension one.

2. Fundamentals

2.1. Principles of the Hill and Hutchinson analysis

When the deformation is uniform in the material, the velocity field Vi, i= 1...3
is given by combining the fundamental principle of mechanics (in the present
case, the equilibrium equations) and the constitutive law of the solid. The analy-
sis of bifurcation by Hill and Hutchinson [17] states that heterogeneity be-
comes possible when, with the evolution of the mechanical properties of the solid,
the compatibility with a third element, i.e. a particular form of the velocity field,
can be achieved. It must be noticed from the start that for these calculations,
the law of behaviour of the material has to be taken in the form of a rate con-
stitutive equation, which involves the applied stress state (in the present paper
the Cauchy stress T), the stress rate (see below the choice of a derivative of
T with respect to time), the strain rate gradient L = grad (V ) or, in various

applications, the symmetrised strain rate tensor D =
1

2
(grad (V ) + grad (V )

T

),
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and the strain itself, through its consequences on the strength of the material
and its rate of work-hardening. When the latter is uniform, it can be represented
by one parameter, the microscopic hardening modulus ha. Since the material is
incompressible, only the deviatoric part S is responsible for the deformation; the
hydrostatic pressure, denoted p, is such that T = −p I + S.

Due to the fact that the shear band is bounded by planes of unit normal ν,

as sketched in Fig. 1. the particular form of the velocity field is:

Vi = ηi f(νk xk), i , k = 1...3 with ηi νi = 0, i = 1...3,

f depends only on the variable νk xk, and so is the hydrostatic pressure p. Bi-

furcation takes place if there is a non-trivial solution for the velocity field η in

the shear band. The ηi are determined only within a scaling factor, and f is

undetermined, except on the bounding planes of the shear band where f = 0, so

that the continuity of the velocity field (but not the continuity of its gradient)

is fulfilled.

Fig. 1. Sketch of the shear band geometry.

2.2. The Bishop and Hill polyhedron

The yield surface of a purely plastic metal in which the slip systems are

defined by {111} 〈110〉 or {110} 〈111〉 has been studied by Bishop and Hill

[20, 21]. The present section sums up the notations and some results of further

works on the subject, particularly those classifying the edges: Kocks et al., [22],

Fortunier et al. [23].

Let n̄s and ḡs be the unit normal to the slip plane and the unit vector aligned

with the slip direction of a crystallographic system of index s, noted, for example,

in the isoclinic configuration (see below). The symmetrised Schmid factors are

defined by M
s

=
1

2
(ḡs ⊗ n̄s + n̄s ⊗ ḡs), the unsymmetrised Schmid factors by
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M
′s

= ḡs ⊗ n̄s. Since a shear line can work in two opposite directions, a total

of 24 slip systems are considered, numbered so that n̄ s+12 = n̄ s, ḡ s+12 = −ḡs,

M
s+12

= −M
s
. The critical resolved shear stress common to all the systems is

denoted τc. Thus, all the glide rates γ̇ s s = 1...24 on the crystallographic slip

systems are taken as positive or zero.

The Bishop and Hill polyhedron is a convex hypersurface, symmetric with

respect to the origin 0. The deviatoric stress states which correspond to it can

be described as a subset EV of the five-dimensional vectorial space E of the

second order, three-dimensional symmetric tensors of trace zero. So are the

Schmid factors and the flow strain rates. Like a polyhedron in the Euclidian

space, which exhibits facets, edges and vertices, the polyhedron is composed

of subsets of dimension d = 0 to 4:a total of 698 ones, recapitulated in Ta-

ble 1. These subsets are sometimes called varieties [23]. The varieties d = 4

are the hyperplanes (facets) corresponding to the activity of only one crystallo-

graphic slip system; there are 12 × 2 = 24 of them. The 28 × 2 = 56 vertices

are the varieties d = 0; each one corresponds to only one state of deviatoric

stress which is denoted S υ υ = 1...56. S ν+28 = −S ν . The case of the varieties

d = 1 to 3 (edges) is more complex; some of their characteristics have been

summarised in Table 1. Altogether, there are 26 crystallographically distinct

types [22].

Let N be the number of slip systems active on a given variety of dimension d.

The corresponding Schmid factors M
s

s = 1...N form a subspace of E , the di-

mension of which is (5–d); of course, N ≥ 5−d. It is important to note at this

stage that, whatever is the stress on the Bishop and Hill polyhedron, the velocity

field η must belong to the cone of the normals to the corresponding facet, edge

or vertex. Hence, only a limited number of systems can be activated, depending

on the stress state of the crystal; when the bifurcation occurs, the glide rates

change, causing a discontinuity in the velocity gradient, but the Schmid law

stands and no extra system is activated. This is in accordance with the postu-

late of bifurcation, which states that pre-localization conditions prevail at the

onset of the phenomenon. Besides, it will be seen in the applications of this the-

ory that characteristic cases of shear banding correspond to the stoppage of the

glide on certain crystallographic slip systems, while others continue at an in-

creased rate.

A classical description of the uniform strain hardening is that the rate of

resolved shear stress τ̇c on all the slip systems is given by τ̇c = ha

N
∑

k=1

γ̇k where

ha is the above-mentioned microscopic strain hardening modulus, and γ̇k the

glide rates on the N active slip systems of the variety on which the deformation

takes place; N = 1, 2, 3, 4, 5, 6 or 8, see Table 1.
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Table 1. The facets, edges and vertices on the Bishop and Hill polyhedron.

Dimension (d) Number and nature Number Variety Number
crystallographic of active slip

classes systems (N)

0 56 vertices 5

4A 8

4B 6

4C 8

4D 6

4E 8

1 216 edges (d = 1) 8

3A 4

3B 6

3C 4

3D 4

3E 4

3F 4

3G 4

3H 5

2 270 edges (d = 2) 7

2A 3

2B 4

2C 4

2D 3

2E 3

2F 3

2G 3

3 132 edges (d = 3) 5

1A

2

1B

1C

1D

1E

4 24 facets 1 0A 1

2.3. The mechanical framework

Much work has been done to define with rigour the various representa-

tions which describe the elasto-viscoplastic deformation of a solid [24]. Although

the case of rigid plasticity is much simpler, it is worth referring to the iso-

clinic configuration, introduced by Lee [25] and discussed by Mandel [26]

and other authors, since it is the framework of all theoretical work on plasticity

today.
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Let C(t) be the current configuration, to which belongs the Cauchy tensor

T, and C(0) – the initial configuration. The deformation gradient tensor F is the

product of the plastic deformation gradient P and of the rotation of the lattice

R, so that F = R ·P. P results from the contribution of various crystallographic

slip systems. The isoclinic configuration Ĉ(t) corresponds to a fictitious state of

the material in which the glide has taken place on the active systems, but no

rotation has affected the crystal lattice, which remains the same as in the refer-

ence configuration C(0). When transported from C(t) to Ĉ(t), the vectors and

tensors (for example a and A) are written ā and A. In Ĉ(t), the crystallographic

slip systems do not rotate, hence the above-mentioned notations ḡs, n̄s and M
s

to introduce the Schmid factors. When expressed in the current configuration

C(t), ḡs becomes gs such as gs = R · ḡs and n̄s becomes ns such as ns = R · n̄s,

so that Ms = R ·M s ·RT and Ṁ
s

= 0 whereas Ṁs 6= 0. All the usual tensors

of stress and kinematics have been defined in the isoclinic configuration, but for

the present work it is only necessary to consider:

• the isoclinic strain rate D =
1

2
(Ṗ · P−1 + P−T · ṖT ), which is the corre-

spondent in Ĉ(t) of the Eulerian tensor D, which belongs to C(t):

(2.1) D = RT · D · R

• the isoclinic stress T and its deviatoric part S which are such that:

(2.2)
T = RT · T · R,

S = RT · S · R.

The tensors T and D are conjugated, as shown by calculating the rate of plastic

work dissipated by unit volume Ẇ :

(2.3) Ẇ = T : D = S : D = T : D = S : D.

The isoclinic configuration allows to write the Schmid law straightforwardly:

(2.4) τc = M
sk : T = M

sk : S for k = 1...N.

(When elasticity is considered, which is not the case here, it offers the advantage

to give an expression of the law independent the deformation of the crystal lat-

tice). But the main interest of Ĉ(t) is that it provides a reference frame invariant

throughout the deformation, so that the derivatives Ṫ and Ṡ are objective ten-

sors. On the contrary in C(t), the objective stress rate tensor must be defined as

a derivative in some frame which accompanies the material in its rotation. In the
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present case the axes which spin with the crystal lattice are chosen to derivate

the components of T. This particular derivative is noted
∨

T∗, and is different

from the usual Jaumann derivative [18]. The lattice rotates with respect to the

initial or isoclinic frame with a rotation rate Ω∗ = Ṙ · RR so that:

(2.5)

∨

T∗ = Ṫ + T · Ω∗ − Ω∗ · T,

∨

S∗ = Ṡ + S · Ω∗ − Ω∗ · S.

The Schmid law can be derived straightforwardly in Ĉ(t) as τ̇c = M
sk · Ṡ for

k = 1...N and some algebra involving Eqs. (2.4) and (2.5) shows that:

(2.6) τ̇c = M
sk : Ṡ = (RT · Msk · R) : (ṘT · S · R + RT · Ṡ · R + RT · S · Ṙ)

= M sk : (Ṡ + S · Ω∗ − Ω∗ · S),

hence the consistency condition, expressing that the stress remains on the flow

surface when deformation goes on, becomes:

(2.7) Msk :
∨

S∗ = τ̇c for k = 1...N.

It can be noted that Eqs. (2.4) and (2.7) can also be written with the unsym-

metrised Schmid tensors M′s (or M
′s

in the isoclinic configuration), since the

involved stress tensors are symmetric.

2.4. The equilibrium equations

Since a rate constitutive law is used, the usual equilibrium equations must

be derived with respect to time, and adapted to the case of a bifurcating crystal.

Bifurcation along a plane considers only the gradients perpendicular to this

plane, hence the description of the velocity field as Vi = ηif(νkxk). The same

applies to the hydrostatic pressure which is taken as a function p(νkxk). In the

pre-localization state, the deformation of the crystal is considered as uniform,

without gradients in the strain rate or the applied stress (stress and strain,

nevertheless, vary with time). Hence ∂γ̇s/∂xk = 0 and ∂Tij/∂xk = 0.

These assumptions are fully justified because the shear bands are very thin

(1/10 µm wide), thus no gradient of applied stress in their width would be signif-

icant. When shear banding occurs, it extends along the whole plane throughout

the crystal, at least as long as the lattice, hence the ns and gs retain rigorously

their orientation. This actually happens in real crystals in which the shear bands
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are seldom stopped in their straight development, except by grain boundaries or

outer surfaces.

If there are no body forces (e.g. weight) and no accelerations, as usual in

metal forming problems, the equilibrium equations can be written in C(t) as

∂Tij/∂xj = 0 for i = 1...3. They are derived with respect to time by considering

the total derivative of T(t , xk) k = 1...3:

(2.8) Ṫij =
dTij

dt
=

∂Tij

∂t
+

∂Tij

∂xk
Vk for i, j, k = 1...3.

Hence:

(2.9)
∂Ṫij

∂xj
=

∂

∂xj

(∂Tij

∂t

)

+
∂

∂xj

(∂Tij

∂xk

)

Vk+
∂Tij

∂xk

∂Vk

∂xj
for i, j, k = 1...3.

Inverting the partial derivatives and taking ∂Tij/∂xj as zero yields:

(2.10)
∂Ṫij

∂xj
− ∂Tij

∂xk

∂Vk

∂xj
= 0 for i, j, k = 1...3.

By introducing the derivative
∨

T∗ and taking advantage of the fact that Ω∗ is a

skew tensor, it is possible to write the equilibrium equations under the form:

(2.11)
∂

∨

T∗
ij

∂xj
+Tik

∂Ω∗

jk

∂xj
+Tjk

∂Ω∗

ik

∂xj
+

∂Tik

∂xj
·Ω∗

jk−
∂Tij

∂xk

∂Vk

∂xj
= 0 for i = 1...3.

As seen above, ∂Tij/∂xk = 0 in the present analysis. One important conse-

quence of the local uniformity of the glide rates concerns the relation between

the rigid body rotation rate Ω =
1

2
(grad(V )−grad(V )T ) and the lattice rotation

rate Ω∗. Their difference is the plastic spin due to the activity of the slip systems

Ω = Ω∗+
1

2

N
∑

k=1

γ̇k(g
sk⊗nsk −nsk ⊗gsk). With the above-mentioned hypotheses:

(2.12) grad Ω = grad Ω∗.

But div (
∨

T∗) = −grad (ṗ) + div(
∨

S∗). Since the ∂Ωij/∂xk are skew tensors, it is

easy to find that:

(2.13) Tik
∂ Ωjk

∂xj
+ Tjk

∂ Ωik

∂xj
= Sik

∂ Ωjk

∂xj
+ Sjk

∂ Ωik

∂xj
.
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This allows to specialise the equilibrium equations as:

(2.14)
∂

∨

S∗
ij

∂xj
+ Sik

∂Ωjk

∂xj
+ Sjk

∂Ωik

∂xj
− ∂ṗ

∂xi
= 0 for i = 1...3

which are used in this form infra.

3. The criterion of bifurcation

3.1. The differential constitutive equation

The most important task to implement Hill and Hutchinson’s analysis in the

case of a crystalline solid is to find the expressions of the rate constitutive law

which, due to the incompressibility of the material, can be taken in the form
∨

S∗ = Fha
(S, L). As pointed out in [17], this law can be piecewise linear, and on

the Bishop and Hill polyhedron its expression is different on each variety. It is

obtained by combining:

i) the flow rule, written in C(t) as L =
N
∑

k=1

γ̇kM′sk γ̇k ≥ 0,

ii) the hardening rule, already written as τ̇c = ha

N
∑

k=1

γ̇k,

iii) the consistency condition τ̇c = M
sk :

∨

S∗ = M′
sk

:
∨

S∗.

These relations allow to calculate the rate of plastic work dissipated per unit

volume as:

(3.1) Ẇ = S : L = S :
N
∑

k=1

γ̇kM′sk = τc
τ̇c

ha

so that the differential constitutive law verifies the set of relations:

(3.2) ∀ k k = 1...N Msk :
∨

S∗ =
ha

τc
S : L.

This can be written as a set of N linear equations of five of the variables Sij

(Sii = 0). The rank of this system cannot be greater than five since the Msk

belong to the vectorial space E . An arbitrary facet, edge or vertex on the Bishop

and Hill polyhedron is part of the set of the tensors ς such as:

(3.3) Msk : ς = τc

for k = 1...N (slip systems active on the variety). The ς do not know the restric-

tion imposed on the deviatoric states S because the Bishop and Hill polyhedron
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is convex and finite. As noted supra, the flow cone is orthogonal to the subset of

deviatoric stress states. Hence, for a given flow rate D, for any S of the activated

variety or for any element ς of the subset defined by Eq. (2.4), it is possible to

write:

(3.4) ∀ ς S : D = ς : D = S0 : D = S : L = ς : L = S0 : L

where S0 is the projection of the centre 0 on the variety. Equation (2.5) gives

multiple expressions of the rate of plastic work, which is unique on a variety

when D is known. Substituting L to D does not change this result. The solution

of Eq. (2.3) is:

(3.5)
∨

S∗ =
ha

τ2
c

(ς ⊗ ς) : L

as can be checked by writing:

∀ k = 1...N,

M sk

ij

∨

S∗

ij = M sk

ij

(ha

τ2
c

ςij ςmn Lmn

)

=
ha

τ2
c

(

M sk

ij ςij

)

ςmn Lmn =
ha

τc
SmnLmn.

In the calculations infra, it is used in the form:

(3.6)
∨

S∗

ij =
ha

τ2
c

ςij S0mn Dmn.

Some important features of this result are:

i. At the vertices Sυ υ = 1...56, the solution is unique since ς = S = S0 = Sυ.

ii. This is not true on the edges of the polyhedron, on which the expres-

sion of the rate constitutive law includes a tensor ς whose value cannot

be determined by mechanics of the crystal itself, but results from other

considerations, the bifurcation requirements for instance. The same hap-

pens with the state of deviatoric stress which, in incompressible solids, can

be determined by considerations of equilibrium, while the complete stress

tensor is known only by adding the boundary conditions.

3.2. Existence of a criterion of bifurcation

The considerations above show that bifurcation occurs when there are non

trivial solutions ηi to the system (S) of equations composed of:

i. Three equilibrium equations:

(3.7) div

(

ha

τ2
c

(ς ⊗ S0) : D + Ω · S − S · Ω
)

− grad (ṗ) = 0
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in which the tensorial expressions can be calculated using
∂ f

∂ xj
= νj f ′ and

∂ ṗ

∂ xi
= νi ṗ

′, since hydrostatic pressure is taken as a function of νkηk only; then

∂Dmn

∂xj
=

1

2
νj (νmηn + νnηm) f ′′ and

∂ Ωim

∂ xj
=

1

2
νj ( νmηi − νiηm) f ′′, and

similarly
∂ Ωjm

∂ xj
.

ii. The condition of orthogonality η · ν = 0.

iii. Five equations due to the fact that the bifurcation flow, Dij =
1

2
(νi ηj +

νj ηi)f
′, which has five independent components, belongs to the cone of the

normals to the considered variety. This condition requires different treatments

whether the number N of active slip systems is equal to or greater than (5− d):

see Table 1.

• if N = (5−d), D can be decomposed in a unique way on the Schmid factors

which define the cone, so that the five equations express that:

∃ µ′

k k = 1...N with D =
N
∑

k=1

µ′

kM
sk .

It must be verified later that the µ′

k are all of the same sign, so that D

actually belongs to the flow cone and not simply to the vectorial subspace

EV of dimension (5− d) which contains it. In this case the µ′

k are the glide

rates γ̇k on the slip systems;

• if K > (5 − d), it is necessary to choose a base among the Msk , that is

(5− d) of them which generate the subspace EV . The five equations of the

system express that D belongs to EV :

∃ µ′′

m m = 1...(5 − d) with D =

5−d
∑

m=1

µ′′

mMsm

and the µ′′
m m = 1...(5−d) do not give directly the glide rates, since several

combinations of γ̇k can produce the same strain rate D.

The system (S) has nine equations ṗ′ and f ′′ only intervene through their

ratio in the three equilibrium equations. For a given state of deviatoric stress S,

for a given ν (all the planes of the Euclidian space will be successively tested for

bifurcation), (S) is linear with respect to the ηi, i = 1...3 the ratio ṗ′/f ′′ and

the coefficients µ′
m or µ′

m, m = 1...(5 − d). The criterion of bifurcation, which

is the condition for the existence of non zero solutions, is calculated below.

3.3. Principle of calculation of the criterion

In order to solve the system (S), the first task is to determine the tensors ς

which represent the part of the differential constitutive law which is still un-
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determined at this point of the analysis. For this, a base Xn, n = 1...d is

taken on the variety of the Bishop and Hill polyhedron, so that it is possi-

ble to write ς = S0 +
d
∑

n=1
λnXn, the λn being quantities which can take any

real value and on which depends the existence of non zero solutions. The Xn

are orthogonal to the Msk of the cone of the normals, and ∀n Xn:D = 0.

Hence, the equilibrium equations take the form:

(3.8)

[

ha

τ2
c

(S0ik +
d
∑

n=1

λnXn
ik)S0jl νk νl

+
1

2
(Sik νj νk − Sjk νi νk − Sij + δijSkl νk νl)

]

ηj − νi
ṗ′

f ′′
= 0

for i = 1...3. Results are easier to present with the help of:

• the variable y = ṗ′/(f ′′τc),

• the dimensionless quantities αij , βn
ij and γij , defined by:

αij =
1

τ2
c

S0ik
S0jlνkνl, βn

ij =
1

τ2
c

Xn
ik S0jlνkνl,

γij =
1

τc
(Sikνjνk − Sjkνiνk − Sij + δijSklνkνl),

• the ratio R = ha/τc,

which, taken together, allow to define Cij = R (αij +
d
∑

n=1
λnβn

ij) + γij .

In the same way, it can be noted that the components of the Msk in the

axes of the crystal are 0, ± 1√
6
, ± 1

2
√

6
. So, by introducing the coefficients

µm = − µ′
m√
6f ′

or µm = − µ′′
m√
6f ′

, it is possible to write that D belongs to EV with

the help of coefficients ζij which take the values 0, 1 or –1, and are characteristic

of the variety. Hence the system (S) takes the form:

(3.9)

C11η1 + C12η2 + C13η3 + ν1y = 0,

C21η1 + C22η2 + C23η3 + ν2y = 0,

C31η1 + C32η2 + C33η3 + ν3y = 0,
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(3.9)
[cont.]

ν1η1 + ν2η2 + ν3η3 = 0,

ν1η1 + ζ11µ1 + ... + ζ1(5−d)µ(5−d) = 0,

ν2η2 + ζ21µ1 + ... + ζ2(5−d)µ(5−d) = 0,

ν2η1 + ν1η2 + ζ31µ1 + ... + ζ3(5−d)µ(5−d) = 0,

ν3η1 + ν1η3 + ζ41µ1 + ... + ζ4(5−d)µ(5−d) = 0,

ν3η2 + ν2η3 + ζ51µ1 + ... + ζ5(5−d)µ(5−d) = 0.

Hence, (S) is a linear, homogeneous system of nine equations with (9 − d) un-

knowns ηi, µj and y, whose coefficients depend on the quantities R and λn,

n = 1...d, plus the νk, which are taken as the data. Another way of looking

at it is to consider (S) as a system of nine equations, linear and homogeneous

with respect to the (8 − d) unknowns ηi and µj , nonlinear with respect to the

(d + 1) unknowns R and λn. The value of y can be fixed arbitrarily since the

velocities ηi and the related quantities µj need only to be known within a scalar

factor. With this approach, it appears that for a given shear plane ν, (S) might

provide the orientation of the shear, the ratio R of strain hardening, and fix the

quantities λn.

The approach of (S) as a homogeneous linear system with (9− d) unknowns

has been favoured in the algorithm of resolution, all the planes in the Euclidian

space being successively tested for bifurcation. Whether the latter is actually

possible is discussed infra. When the parameter R can be calculated, its values

form a continuous set limited by Rmax and Rmin. The physical sense of the cal-

culation is the following: at the beginning of the deformation, ha is high and so

is the ratio R = ha/τc; but as the deformation goes on, ha drops and τc rises

steadily, so that R diminishes. So the bifurcation becomes possible on certain

planes Rmax corresponding to the most favoured ones.

3.4. Cases in which the criterion can actually be calculated

Bifurcation is impossible on the facets of the polyhedron, since only one di-

rection of flow is possible because of the Schmid law. Only deviations from this

law allow to consider bifurcation when a single slip is active [27].

The more numerous are the active slip systems on a variety, the easier is

the bifurcation. At the vertices (6 or 8 available slip systems, no λn, only

one possible state of deviatoric stress), the solution of the system (S) is sim-

ple because Eqs. (3.9)1 to (3.9)4 contain the four unknowns ηi and y,

and can be solved separately. This case is studied in the second paper of the

series.
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On the edges d = 1 (4, 5 or 6 available slip systems), the system (S) can be

solved as a linear, homogeneous system of nine equations and eight unknowns,

which has non-trivial solutions if all its nine determinants of order eight are

zero. In practice, the nullity of two of them is sufficient so that R and λ can be

determined, as seen in the third paper of the series.

Examining (S) in the case d = 2 (3 or 4 available slip systems) shows that

Eqs. (3.9)4 to (3.9)9 form a linear, homogeneous system of six unknowns ηi and µi

which has non-trivial solutions only if the determinant ∆ = 0:

(3.10) ∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ν1 ν2 ν3 0 0 0

ν1 0 0 ζ11 ζ12 ζ13

0 ν2 0 ζ21 ζ22 ζ23

ν2 ν1 0 ζ31 ζ32 ζ33

ν3 0 ν1 ζ41 ζ42 ζ43

0 ν3 ν2 ζ51 ζ52 ζ53

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ζij = 1,−1 or 0 according to the case). Hence only the planes such that their

normal components νk abide a certain polynomial relation are suitable for bifur-

cation. This is distinctive from the case d = 0 and d = 1, for which the ν form

continuous cones in the Euclidean space.

The complete study of the shear flows on all the edges of the Bishop and

Hill polyhedron is in progress in [28] and the results for d = 2 are summarized

in Table 2. For the suitable ν, Eqs. (3.9)4 to (3.9)9 yield the values of η. Con-

versely, with the suitable νi and ηi, Eqs. (3.9)1 to (3.9)3 give three relations

linear in R, Rλ1, Rλ2 and y. This leaves R undetermined. Hence, for d = 2, the

present theory does not provide a threshold of bifurcation. Basically, three types

of situations happen:

• Only two coplanar (CP) systems are active (one or two µi= 0, according

to the edge). Their combination according to any new glide rates gives a

shear flow different from the initial one. This is consistent with the fact

that this mode of shear banding needs no condition on strain hardening,

hence no threshold for R.

• The same, but with codirectional (CD) systems.

• A particular combination of the µi (hence of the γ̇k) is necessary. It takes

the form of a homogeneous polynomial of degree n = 1, 2 or 3 in µi,

according to the case. These polynomials are uniformly referred to as Pe in

Table 2, e being their degree (1, 2 or 3) although they are all different. These

conditions involve such a specific geometry for the flow that it is doubted

whether they correspond to actual shear banding. On the contrary, there
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is plenty of evidence that coplanar or codirectional slip systems combine

to originate shear bands: see Jaoul [29].

Table 2. Bifurcation on the edges d = 2.

Class Slip System Conditions of bifurcation

2A CP + CP+X
a– ∀µ1 ≥ 0, ∀µ2 ≥ 0 µ3 = 0

b– P2(µ1, µ2, µ3)

2B CP + CP + CD + CD
a– ∀µ1 ≥ 0, ∀µ2 ≥ 0 µ3 = 0, µ4 = 0

b– ∀µ1 = 0, ∀µ2 = 0 µ3 ≥ 0, µ4 ≥ 0

2C CP + CP + X + X
a– ∀µ1 ≥ 0, ∀µ2 ≥ 0 µ3 = 0, µ4 = 0

b– P2(µ1, µ2, µ3)

2D (CD/CP) + CD + CP

a– ∀µ1 ≥ 0, ∀µ2 ≥ 0 µ3 = 0

b– ∀µ1 ≥ 0, ∀µ2 = µ3 ≥ 0

c– P1(µ1, µ2, µ3)

2E CD + CD + X
a– ∀µ1 ≥ 0, ∀µ2 ≥ 0 µ3 = 0

b– P1(µ1, µ2, µ3)

2F CP + CP + X
a– ∀µ1 ≥ 0, ∀µ2 ≥ 0 µ3 = 0

b– P2(µ1, µ2, µ3)

2G X + X + X a– P3(µ1, µ2, µ3)

Three or four slip systems available. X means that the system is neither
(CP) nor (CD).

Table 3. Bifurcation on the edges d = 3.

Class Slip Systems Conditions of bifurcation

1A CP + CP ∀µ1 ≥ 0, ∀µ2 ≥ 0

1B CD + CD ∀µ1 ≥ 0, ∀µ2 ≥ 0

1C X + X Impossible

1D X + X Impossible

1E X + X P1(µ1, µ2)

Two slip systems available. Same conventions as in Table 2.

The same occurs in the case d = 3 (two available slip systems) but here the

conditions on ν are more rigorous, since all the determinants of order 5 formed by

Eqs. (3.9)4 to (3.9)9 must be zero. Table 3 recapitulates the possible cases, which

are, with one exception, combinations of (CD) and (CP) systems. Five unknowns

R, Rλ1, Rλ2, Rλ3 and y are found in the equilibrium equations, so that there is

no condition on work hardening. Such results differ from those of Pierce [16]
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who found that only a low value of strain hardening leads to bifurcation in the

case of two slip systems. This discrepancy could come from the fact that Pierce

considers elasto-plasticity, instead of the rigid-plastic model used here.

4. Partial conclusion

In this paper, several elements necessary for the study of the localisation into

shear bands of the rigid plastic f.c.c. crystals with uniform strain hardening have

been presented, in the wake of Hill and Hutchinson’s work. The differential con-

stitutive relations, classical at the vertices [15], have been formulated for all the

varieties of the Bishop and Hill polyhedron. The equilibrium requirements, the

kinematic compatibility and the normality rule impose conditions which form a

system (S) of nine equations. Additional inequalities ensure that the flow rate

is compatible with the deviatoric state of stress. The appearance of the band

corresponds to a redistribution of the glide rates on the available slip systems.

The occurrence of such events has been repeatedly pointed out in metallurgical

studies, both the obstruction of certain systems (due, for example, to a lamel-

lar substructure of dislocations) and, with the opposite effect, the ease of the

dislocation glide in privileged directions after some critical work hardening [30].

The form of the system (S) changes according to the state of the applied

deviatoric stress, which determines the dimension d of the activated variety on

the Bishop and Hill polyhedron. The bifurcation criterion is the compatibility

condition which ensures that the velocity field in the shear band is not identi-

cally zero. When d = 2 or 3 (edges with few available slip systems), only specific

geometries allow shear banding and the rigid-plastic analysis provides no thresh-

old for bifurcation. The conditions of the latter are quite different in the case of

the edges d = 1 or at the vertices d = 0, which will be studied in the subsequent

papers.
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