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The influence of internal restrictions on the elastic properties

of anisotropic materials
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The influence of internal restrictions on the elastic properties of anisotropic ma-
terials described by Hooke’s law is discussed. Spectral decomposition of the stiffness
tensor and the compliance tensor is applied. Possible types of restrictions imposed on
the deformation modes are considered. An algorithm for accounting for these restric-
tions in a constitutive law that minimizes stiffening of the material is proposed. As
examples, the volume-isotropic materials and fiber-reinforced materials are analyzed.

1. Introduction

Majority of modern materials, that nowadays often replace traditional
materials, are the materials of new generation. These materials already during
their projecting are supposed to be characterized by some prescribed properties.
These properties may refer to their strength, way of deformation, resistance to ex-
ternal forces. Therefore, it is necessary to know appropriate criteria for the assess-
ment of these properties. It requires profound theoretical knowledge and working-
out of new technological solutions. At the same time in many cases computer
Finite Element Method simulations are conducted to determine elastic constants
for the considered biological materials such as bones and other tissues. It is nec-
essary to formulate the criteria of identification of symmetry type of the material.

Advanced materials usually exhibit anisotropic properties. One may control
these properties in the technological process. Internal structure of the material,
such as strong fibers and other reinforcements as well as the way in which these
elements are tightened, imposes bounds on the admissible deformation modes.
These types of restrictions will be called internal restrictions. Usually, it is ac-
cepted to describe them as strain-type internal constraints. It should be noted
that also material symmetry itself introduces restrictions on the way in which
the material is deformed, for example isotropic body (the body made of isotropic
material) will react only by changing its volume due to hydrostatic pressure while
orthotropic body will react also by changing its shape.

In the computational model, the response of the material to the prescribed
stresses is determined by the constitutive law. Additional restrictions, apart from
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material symmetry, concerning the admissible deformation modes are tradition-
ally taken into account by introducing additional relations that are called equa-
tions of constraints. Usually these relations are imposed on the strain tensor,
for example lack of the reaction on the hydrostatic pressure is described by the
equation of incompressibility.

However, in many cases one can account for the observed restrictions (or the
demanded restrictions in view of the project assumptions) by modification of the
material constants, in the case of linear elastic materials by the modification of
the stiffness or compliance tensor. As a result, in the constitutive law one may
use arbitrary strain tensor or arbitrary stress tensor.

The aim of the paper is to analyze the influence of some class of restrictions
imposed on deformation modes on the anisotropic properties of the linear elastic
materials using the above approach.

In order to describe the material anisotropy concept of eigen-states, the
Kelvin moduli and spectral decomposition of the stiffness tensor S (the com-
pliance tensor C) [11] for different material symmetries is applied.

Imposing of restrictions considerably influences the value of Kelvin moduli
and the form of orthogonal projectors. Consequently, these types of restrictions
can make the material symmetry higher or lower. The influence of the possible
types of restrictions on material parameters is analyzed. The obtained results
are illustrated by examples for the selected material symmetry groups.

2. Description of anisotropic properties of linear elastic materials

Let us consider linear elastic materials for which the dependence between the
small strain tensor ε and the stress tensor σ is described by Hooke’s law

(2.1) ε = C · σ or σ = S · ε, C ◦ S = IS ,

where C is a compliance tensor, S is a stiffness tensor and IS is a symmetrized
identity tensor1).

The fourth order tensors C and S are linear operators mapping the space of
symmetric second order tensors S onto itself. Due to symmetry, in any Cartesian
system they are described by 21 essentially different components Cijkl and Smnrs.
These components change when the reference system in the physical space is
changed, so they are not material constants.

From the theory of linear operators it is concluded that conditions

(2.2) S · ω = λω, C · ω =
1

λ
ω

1)In any Cartesian system this tensor has the representation IS
ijkl = 1

2
(δikδjl + δilδjk).
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define eigenvalues and eigenelements of these operators. Generally, the tensor S

has at most six different real eigenvalues λI , λII , ..., λV I , to which six eigen-
states ωI , ωII , . . . ,ωV I correspond that are mutually orthogonal, normalized
and with arbitrary sign. They build an orthonormal basis in the space S of
symmetric second order tensors

ωK · ωL = δKL, K, L = I, . . . , V I.

Stiffness moduli λI , λII , ..., λV I that are also called Kelvin moduli [11, 12] are
non-negative. These are the only restrictions imposed on the elastic constants
by thermodynamics.

Knowing the Kelvin moduli λK and corresponding to them the elastic eigen-
states ωK , the tensors S and C could be represented in the spectral form [11, 13]:

S = λIPI + . . . + λV IPV I ,(2.3)

C =
1

λI

PI + . . . +
1

λV I

PV I ,(2.4)

where fourth order tensors PK are called orthogonal projectors and have the
form

(2.5) PK = ωK ⊗ ωK (no summation).

Consequently, the space S of the symmetric second order tensors has been de-
composed into the direct sum of mutually orthogonal one-dimensional subspaces
PK of eigen-states, namely

S = PI ⊕ PII ⊕ . . . ⊕ PK .

Orthogonal projectors PK project any tensor ̟ ∈ S onto the subspaces PK . It
means that there exists an equality

PK · ̟ = αωK ∈ PK

and

(2.6) PI + . . . + PV I = IS .

Each set

(2.7) (λI , . . . , λV I ;PI , . . . ,PV I),

consisting of six Kelvin moduli λK and six elastic orthogonal projectors PK ,
describes a theoretically admissible elastic material.
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In [11] and [12] a hypothesis was posed that in order to define the orthogonal
projectors PK it is sufficient to know 15 quantities2). In [11] it has been con-
cluded that out of these 15 parameters describing orthogonal projectors one may
separate 3, that are not invariants. They fix the stiffness tensor S (a material
sample) in the reference system (a laboratory). They, for example, correspond to
three Euler angles φ1, φ2, φ3. The remaining 12 parameters are defined by non-
dimensional material constants. They characterize the distribution of stiffness
along material fibers and material planes. They are identical for the stiffness
tensor S and the compliance tensor C and they are called stiffness distributors.
Proof of the Rychlewski hypothesis that for fully anisotropic material the num-
ber of irreducible parameters called stiffness distributors does not exceed 12 was
not given. Since they are related to the invariants of projectors PK (fourth order
tensors), this issue is connected with the open question of irreducible basis of
invariants for fourth order tensors.

Following Rychlewski, one may decompose the parameters that describe any
elastic body into three groups

(6 + 12) + 3 = 21.

1. The first group consists of 6 stress-dimensional parameters λI , . . . , λV I –
the Kelvin moduli.

2. The second group consists of non-dimensional 12 stiffness distributors

ℵ1, . . . ,ℵ12.
3. The third group consists of 3 Euler angles φ1, φ2, φ3.

Therefore, one may write instead of (2.7):

(2.8) 〈λI , . . . , λV I ;ℵ1, . . . ,ℵ12; φ1, φ2, φ3〉.

Two bodies are made of the same material if the values of their 18 material
constants, that is λI , . . . , λV I and ℵ1, . . . ,ℵ12, are equal.

Decompositions (2.3), (2.4) and projectors PK (2.5) take these forms, if the
Kelvin moduli corresponding to them are single, that is if λK 6= λL for K 6= L.
Spectral decompositions (2.3), (2.4) are then unique.

If the material exhibits some external symmetries then the number of parame-
ters defining the given material is reduced. In such a case, the set of parameters
(2.8) may be rewritten as follows:

(2.9) 〈λI , . . . , λρ;ℵ1, . . . ,ℵt; φ1, . . . , φn, 〉,
2)The hypothesis was supported by the following reasoning: on 36 components of eigenstates

21 conditions of orthonormality are imposed that reduce the number of independent compo-
nents to 15. Three additional components may be reduced by appropriate basis selection.
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where ρ ≤ 6, t ≤ 12 and n ≤ 3. The Kelvin moduli are then multiple and the
spectral theorem (2.2), instead of (2.3), (2.4), leads to

S = λ1P1 + ... + λρPρ, ρ ≤ 6,(2.10)

C =
1

λ1
P1 + ... +

1

λρ
Pρ, ρ ≤ 6,(2.11)

and

S = PI ⊕ PII ⊕ . . . ⊕ Pρ,

where instead of (2.6)

(2.12) PI + . . . + Pρ = IS .

It can be shown that

PK ◦ PL =

{
0 if K 6= L,

PK if K = L.

Dimension of the subspace Pη, η ∈ 〈I, ρ〉 is equal to the multiplicity of the Kelvin
modulus λη.

If dimensions of the eigen-subspaces PI , . . . ,Pρ are denoted correspondingly
by qI , . . . , qρ then, according to [11], an expression

〈qI + qII + . . . + qρ〉, qI + qII + . . . + qρ = 6

is called the first structural index of the material, while an expression
(see (2.9))

[ρ + t + n]

is called the second structural index. These natural numbers are material
characteristics.

It should be noted that the symmetry of the tensor S (the tensor C) –
the material symmetry of a linear elastic body, results from the properties of
symmetric Euclidean fourth order tensors (that is from the linearity of Hooke’s
law (2.1) and the properties of the three-dimensional Euclidean space).

2.1. The Kelvin moduli λI , . . . , λV I

The Kelvin moduli λI , . . . , λV I are roots of a characteristic polynomial of the
form

(2.13) det(S − λI) = λ6 + a1(S)λ5 + . . . + a5(S)λ + a6(S) = 0.
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A determinant of the fourth order tensor A is defined as follows

detA ≡ det(AKL) = det(νK · A · νL),

where νK , (K = I, . . . , V I) is any orthonormal basis in S, AKL is the matrix
6×6 corresponding to the tensor A in this basis (see Appendix). Selection of the
basis νK has no influence on the values of the coefficients ai(S) in Eq. (2.13).

For a given λ⋆, an eigen-state corresponding to it is obtained from the set of
6 linear homogeneous equations:

S · ω⋆ = λ⋆
ω

⋆ =⇒ (S − λIS) · ω⋆ = 0

with constraints ω
⋆ · ω⋆ = tr(ω⋆)2 = 1. If the basis νK = ωK (i. e. it is the

basis of eigen-states), then the matrix SKL = ωK · S · ωL is diagonal with the
Kelvin moduli on the diagonal.

2.2. Orthogonal projectors PI , . . . ,Pρ

Having found the Kelvin moduli λK from which ρ are different one may
introduce some ordering rule for λI , ..., λρ. For instance, they can be num-
bered according to their magnitude. After that the orthogonal projectors PK

corresponding to them can be derived from the following set of ρ fourth order
tensorial equations [11]

PI + PII + . . . + Pρ = IS ,

λIPI + λIIPII + . . . + λρPρ = S,

...
. . .

...

λρ−1
I PI + λρ−1

II PII + . . . + λρ−1
ρ Pρ = Sρ−1,

where
Sk = S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸

k times

.

Consequently, one obtains



PI

PII

...
Pρ




=




1 1 . . . 1

λI λII . . . λρ

...
...

. . .
...

λρ−1
I λρ−1

II . . . λρ−1
ρ




−1 


IS

S

...

Sρ−1




.

The inverse of the above matrix exists since the determinant of it is equal to

∆ =
∏

ρ≥K>L≥1

(λK − λL)

and by definition λK 6= λL.
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Distributors ℵ1, . . . ,ℵ12 are the parameters that should uniquely specify pro-
jectors PK in the selected basis. Specific forms of these functions that allow to
define uniquely projectors for the given material are not derived here and will
be discussed in the next paper for the selected material symmetry classes.

From the relation (2.12) it follows that condition

1 · PI · 1 + 1 · PII · 1 + . . . + 1 · Pρ · 1 = 1 · IS · 1 = 3

is fulfilled. This equality gives the following relationship between the traces of
eigen-states ωK for ρ = 6

(2.14) (trωI)
2 + (trωII)

2 + . . . + (trωV I)
2 = 3.

2.3. Symmetry groups of an anisotropic linear elastic material

If the material exhibits some external symmetries, then the number of the
Kelvin moduli and the stiffness distributors is reduced. Symmetry group QS of
the stiffness tensor S (the compliance tensor C) is defined as follows:

QS = {Q ∈ Q;Q ⋆ S = S},

where Q is a full orthogonal group, Q is the second order orthogonal tensor in
the physical space, while ⋆ is the rule of rotation of the fourth order tensor. The
following relationship is true

QQT = QTQ = 1.

Classification of linear elastic materials in view of their symmetry corresponds to
the classical set of eight classes of elastic symmetry [4, 5, 6]. Two limit classes are:
full anisotropy (QS = {1,−1}) and full isotropy (QS = Q). Sets of generators of
subsequent symmetry groups are collected in Table 1. Any material that is not
fully anisotropic is called a symmetric elastic material [2].

Spectral decompositions (2.10), (2.11) into subspaces PK , in view of material
symmetry, fulfill conditions

(2.15)
∧

Q∈QS

Q ⋆ PK = PK ,

where QS is the symmetry group of material and consequently, the symmetry
group of all projectors, so that

(2.16) QS = QPI
∩QPII

∩ . . . ∩ QPρ ,
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where QPK
is the symmetry group of the tensor PK . If the eigen-subspace PK

is one-dimensional, then the condition (2.15) is equivalent to
∧

Q∈QS

Q ⋆ (ωK ⊗ ωK) = (QωKQT ) ⊗ (QωKQT ) = ωK ⊗ ωK .

It brings us to ∧

Q∈QS

QωKQT = ±ωK .

Table 1. Generators of the symmetry groups (in every case e1 · e2 = 0).

Symmetry group Set of generators in Q

full anisotropy Qa = {1,−1}

monoclinic symmetry
(symmetry of a prism Qm

e1
= {1,−1, Ie1

}
with an irregular basis) e1 – normal to a prism basis (a symmetry plane)

orthotropy
(symmetry of a prism Qo = {1,−1, Ie1

, Ie2
}

with a rectangular basis) e1, e2 – normals to symmetry planes

trigonal symmetry

(symmetry of a prism Q3t
e1

=
n
1,−1,R

k 2

3
π

e1
, Ie2

o
, (k = 1, 2)

with a triangular basis) e1 – a symmetry axis, e2 – normal to a symmetry plane
perpendicular to a prism basis

tetragonal symmetry

(symmetry of a prism Q4t
e1

=
n
1,−1, Ie1

, Ie2
,R

k π

2
e1

o
, (k = 1, 2, 3)

with a quadratic basis) e1 – symmetry axis, e1, e2 – normals to symmetry planes

transversal symmetry Qti
e1

=
�
1,−1, Ie1

, Ie2
,Rφ

e1

	
, (φ ∈ 〈0, 2π〉)

(cylindrical) e1 - symmetry axis, e1, e2 – normals to symmetry planes

cubic symmetry Qc
ei

=
n
1,−1, Ie1

, Ie2
R

k π

2
e1

,R
k π

2
e2

o
, (k = 1, 2, 3)

(symmetry of a cube) e1, e2 – symmetry axes, e1, e2 – normals to symmetry planes

isotropy QI = Q

Notations: Ik – the orthogonal tensor that describes mirror reflection with respect to the
symmetry plane with normal k, R

α
k – the orthogonal tensor that describes rotation around

direction k about the angle α.
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Using the above symmetry conditions one may derive the form of orthogonal
projectors of the tensors S and C corresponding to the subsequent symmetry
groups of the elastic material. In Table 2 the first and second structural indices
are given for all symmetry groups. The form of the second structural index for
fully anisotropic material is based on the Rychlewski conjecture. However, its
form proved to be true for the symmetric materials (at least monoclinic). The
forms of the corresponding orthogonal projectors one may find in the papers
cited next to the symmetry name in Table 2.

Table 2. First and second structural indices for all symmetry groups
of linear elastic materials.

Symmetry group First structural Second structural number of
index index parameters

full anisotropy [11] 〈1 + 1 + 1 + 1 + 1 + 1〉 [6 + 12 + 3] 21

monoclinic symmetry [2] 〈(1 + 1 + 1 + 1) + 1 + 1〉 [6 + 6 + 3] 15

orthotropy [1] 〈(1 + 1 + 1) + 1 + 1 + 1〉 [6 + 3 + 3] 12

trigonal symmetry [12] 〈(1 + 1) + (2 + 2)〉 [4 + 2 + 3] 9

tetragonal symmetry [8] 〈(1 + 1) + 1 + 1 + 2〉 [5 + 1 + 3] 9

transversal symmetry [7] 〈(1 + 1) + 2 + 2〉 [4 + 1 + 2] 7

cubic symmetry [9] 〈1 + 2 + 3〉 [3 + 0 + 3] 6

isotropy [12] 〈1 + 5〉 [2 + 0 + 0] 2

3. Additional restrictions

An anisotropic material, in spite of its symmetry, may exhibit some additional
properties that are caused by its internal structure. Usually these properties
impose some restrictions on the character of deformation [10, 14].

For an anisotropic linear elastic body with the prescribed symmetry group,
that is with the corresponding form of the stiffness tensor S and the compliance
tensor C, the following types of additional restrictions can be taken into account:

1. There exists a prescribed stress state σ
0 (σ0 ·σ0 = 1) so that for any ασ

0,
α ∈ R one does not observe any deformation

(3.1) C · σ0 = 0.
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Any stress state ασ
0 is called a passive state. This condition may be equiv-

alently written in the classical form of constraints equation (see [10])
∧

ε∈S

ε · σ0 = 0.

2. There exists a prescribed stress state σ
⋆ (σ⋆ · σ

⋆ = 1), so that for each
ασ

⋆, α ∈ R one observes the following proportionality between strains and
stresses

(3.2) C · σ⋆ = ε
⋆ =

1

λ
σ

⋆.

This condition may be rewritten in the form

∧

ε∈S

(
ε − 1

λ
σ

)
· σ⋆ = 0,

where σ fulfills Eq. (2.1) for the considered ε.
3. There exists a prescribed stress state σ̃ (σ̃·σ̃ = 1) that enforces a prescribed

strain state ε̃ so that any stress state ασ̃, α ∈ R enforces some strain state
αε̃ and

(3.3) C · σ̃ = ε̃.

This condition is equivalent to
∧

ε∈S

ε · σ̃ − σ · ε̃ = 0,

where σ fulfills Eq. (2.1) for the considered ε.
Taking into account the above types of restrictions leads to additional con-

ditions imposed on the tensor C (in other words, the conditions imposed on
the quantities that characterize the considered material symmetry). Therefore,
spectral decomposition of the tensor C implies that taking into account these
additional requirements has impact on the values of stiffness distributors, the
Kelvin moduli and the form of eigen-subspaces. It should be noted that it is not
possible to describe by linear elasticity the restrictions for which the relation
between the prescribed stress state and the strain enforced by it is nonlinear.

3.1. Passive stress states

From (3.1) it follows that the passive state σ
0 is the eigen-state of the tensor

C and the corresponding eigenvalue is equal to zero. From spectral decomposition
of the tensor C (2.11) one obtains that the condition (3.1) is equivalent to

(3.4) C · σ0 =
1

λ1
P1 · σ0 + . . . +

1

λρ
Pρ · σ0 = 0, ρ ≤ 6.
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Trivial solution of Eq. (3.4) is obtained by assuming that all Kelvin moduli fulfill
the equality 1/λK → 0 (K = I, . . . , ρ). It means that the whole space S is the
space of passive stress states.

The form of σ
0, as well as the type of the considered symmetry cause that

σ
0 may not be projected onto some subspaces, that is, there may exist such µ,

that

(3.5) Pµ · σ0 = σ
0
µ ∈ Pµ, and σ

0
µ = 0.

Then in Eq. (3.4) all elements (1/λµ)Pµ · σ0 for which (3.5) is fulfilled do not
appear, that is projectors that give zero-value projections of σ

0 into the corre-
sponding eigen-subspaces (λµ 6= 0).

Equation (3.4) takes the form

(3.6) C · σ0 =
1

λ I
PI · σ0 + . . . +

1

λν
Pν · σ0 = 0, ν ≤ ρ.

Among projectors PI , . . . ,Pν that are left there may exist such ones which do not
depend on the distributors ℵ1, . . . ,ℵt. For example, in the case of orthotropy this
kind of projectors is represented by these PK that project onto one-dimensional
subspaces of pure shears in symmetry axes (see [1]).

Let the projector Pµ (µ ∈ 〈I, ν〉) be independent of the distributors. Con-
tracting Eq. (3.6) with tensor σ

0
µ = Pµ · σ0 one obtains

(3.7)
1

λ I
σ

0
I · σ0

µ + . . . +
1

λµ
σ

0
µ · σ0

µ + . . . +
1

λν
σ

0
ν · σ0

µ = 0,

where
σ

0
K = PK · σ0, K = I, . . . , ν.

Because subspaces PK and PL are orthogonal, that is, the following equality is
fulfilled

σ
0
K · σ0

L = 0, for K 6= L,

only one element remains in (3.7)

(3.8)
1

λµ
|σ0

µ|2 = 0.

Projection σ
0
µ is not equal to zero by assumption, therefore

(3.9)
1

λµ
→ 0, (λµ → ∞)

and the subspace Pµ becomes the subspace of passive stress states.
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One may conduct the above reasoning for all projectors that do not depend on
distributors. Consequently, for all projectors Pµ independent of the distributors,
Eq. (3.9) is fulfilled. Eigen-subspaces Pµ sum up and become one eigen-subspace
of passive stress states.

The above considerations refer to the case when projectors PK give projec-
tions of σ

0 onto the whole subspaces PK . This situation is always observed when
subspaces PK are one-dimensional (dimPK = qK = 1). If eigen-subspaces PK

have dimension qK ≥ 2, then there may exist such a projector Pµ that

(3.10) Pµ · σ0 ∈ P0
µ ⊂ Pµ, dimP0

µ < dimPµ.

Projector Pµ projects σ
0 onto subspace P0

µ. Therefore it is possible to assume
that

Pµ = P0
µ + P⊥

µ (P0
µ ◦ P0

µ = P0
µ, P0

µ ◦ P⊥
µ = 0),

where
Pµ · σ0 = P0

µ · σ0 = σ
0
µ ∈ P0

µ,

P⊥
µ · σ0 = 0.

Because the projector P⊥
µ gives zero-projection of σ

0, in Eq. (3.6) the component
with the projector Pµ may be rewritten in the form

1

λµ
Pµ · σ0 =

1

λ0
µ

P0
µ · σ0 +

1

λ⊥
µ

P⊥
µ · σ0 =

1

λ0
µ

P0
µ · σ0,

where without restrictions λ0
µ = λ⊥

µ = λµ. Contracting then Eq. (3.6) with
P0

µ · σ0 = σ
0
µ one obtains

1

λ0
µ

|σ0
µ|2 = 0

and the condition (3.9) is then equivalent to

(3.11)
1

λ0
µ

→ 0,

(
where

1

λ⊥
µ

=
1

λµ

)
.

In this case the subspace Pµ is decomposed into two subspaces with two distinc-
tive Kelvin moduli. The above derivations may be applied for all projectors with
property (3.10). Eigen-subspaces of the form of P0

µ sum up and constitute one
subspace of passive stress states.

In Eq. (3.7) only these projectors that depend on the distributors ℵ1, . . .ℵt

remain. These projectors do not have to depend on all distributors. For some
types of material symmetry one may divide them into groups of projectors de-
pendent on different, independent sets of distributors. As an example, trigonal
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symmetry may be considered. Four projectors: PI , PII , PIII and PIV depen-
dent on 2 distributors may be divided into two groups: projectors PIII and PIV

depend only on ℵ1, while PI and PII depend only on ℵ2 [12].
Equation

(3.12)
1

λ1
P1 · σ0 + . . . +

1

λγ
Pγ · σ0 = 0, γ ≤ ν,

may be fulfilled by imposing some restrictions on the values of distributors and
Kelvin moduli. It should be stressed that Eq. (3.12) cannot be fulfilled by im-
posing restrictions only on the distributors.

Constraints of the form (3.1) can make material symmetry higher by reducing
the number of eigen-subspaces (the number of Kelvin moduli is then lower). They
can also make material symmetry lower by subdivision of subspaces in the way
discussed above.

A special case of constraints (3.1) is observed, when σ
0 is the eigen-state of

the tensor C. Then there exists eigen-subspace Pµ so that σ
0 ∈ Pµ. In such a

case it is sufficient to assume that

1

λµ
→ 0

and the eigen-subspace Pµ becomes the subspace of passive stress states. If the
subspace Pµ is not one-dimensional, it may happen that

Pµ · σ0 ∈ P0
µ ⊂ Pµ

and from the subspace Pµ one may separate the subspace of passive stress states.
An example of the constraints (3.1) is obtained by assuming, as for isotropic

fluids, that the material is incompressible. It means that the hydrostatic stress
state (the spherical tensor) is passive, that is

(3.13) σ
0 =

1√
3
1, C · 1 = 0, (⇒ ε · 1 = 0).

Another subspace of passive stress states is obtained by assuming that the
material is inextensible in some prescribed direction k. Then, restrictions take
the following form

σ
0 = k ⊗ k, C · (k ⊗ k) = 0, (⇒ ε · (k ⊗ k) = 0).

The model of the body with forbidden deformations may be applied to describe
composites reinforced by a dense family of thin fibers that are so strong and
fastened to the matrix that extensions in the fiber direction can be negligible.
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3.2. Proportionality between strains and stresses

Another type of restrictions is described by relation (3.2). The response of
the material to the prescribed stresses is then assumed to be proportional to
these stresses. This assumption is equivalent to the assumption that the stress
state σ

⋆ is the eigen-state of C.
Spectral decomposition of the tensor C (2.11) implies that the condition (3.2)

is equivalent to

(3.14)

(
1

λ I
− 1

λ

)
PI · σ⋆ + . . . +

(
1

λρ
− 1

λ

)
Pρ · σ⋆ = 0,

where decomposition of the tensor σ
⋆ has been applied, that is (see (2.12))

σ
⋆ = PI · σ⋆ + PII · σ⋆ + . . . + Pρ · σ⋆.

After denoting
1

ηK

≡ 1

λK
− 1

λ

Eq. (3.14) is reduced to the form (3.12) with 1/λK being here replaced by 1/ηK .
Therefore derivations conducted in Sec. 3.1 can be repeated. In this case condi-
tions (3.9) or (3.11) correspond to the following ones

1

λµ
=

1

λ
or

1

λ0
µ

=
1

λ
.

Multiple Kelvin moduli appear. There exists a possibility of decomposition of
eigen-subspaces.

If σ
⋆ is the eigen-state of C then there exists the eigen-supspace Pµ so that

σ
⋆ ∈ Pµ. The subspace Pµ is subjected to subdivision only if σ

⋆ ∈ P⋆
µ ⊂ Pµ.

This type of restrictions may cause material symmetry to be higher or lower.
Volume-isotropic materials discussed by Burzyński in [3] are the example

of materials with this type of internal restrictions. Burzyński assumed that for
any material symmetry, the response of the body to the hydrostatic pressure is
always restricted to the change of its volume (without the change of its shape)

(3.15) σ
⋆ =

1√
3
1, C · 1 =

1

λ
1.

This kind of restriction is called the Burzyński restriction.
Another example could be obtained by assuming that any stress state given

in a diagonal form in the symmetry axes for orthotropic material is the eigen-
state

∧

σi∈R,i=1,2,3

σ
⋆ =

1

σ2
1 + σ2

2 + σ2
3

3∑

i

σiei ⊗ ei, C · σ⋆ =
1

λ
σ

⋆.
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In this case one has to do with arbitrary triaxial tension or compression along
the symmetry axes. It is then obtained that

1

λ1
=

1

λ2
=

1

λ3
=

1

λ

where λi correspond to eigen-states with the principal directions coaxial with
the orthotropy axes [1]. Number of the Kelvin moduli is reduced to 4. One of
them is triple. Values of distributors are in this case not significant.

3.3. Enforced strains

The third type of restrictions is described by (3.3). Note that this relation
includes also the types analyzed in previous subsections. If ε̃ = 0 then the case
analyzed in Sec 3.1 is obtained, and when ε̃ = (1/λ) σ̃ then the one analyzed in
Sec. 3.2 appears.

From spectral decomposition (2.11) for the restrictions (3.3) the equality
follows

1

λ I
PI · σ̃ + . . . +

1

λρ
Pρ · σ̃ = ε̃,

which can be rewritten in the form

(3.16)
1

λ I
PI · σ̃ + . . . +

1

λρ
Pρ · σ̃ = PI · ε̃ + . . . + Pρ · ε̃

due to (2.12) and S = PI ⊕ . . .⊕Pρ. The form of σ̃ as well as the type of material
symmetry may cause that σ̃ will be not projected onto some subspaces. If

PK · σ̃ = 0, λK > 0,

then contracting Eq. (3.16) with the tensor PK · ε̃, one obtains that

|PK · ε̃|2 = 0.

It implies that
PK · ε̃ = 0.

Consequently, tensor ε̃ cannot be projected onto the subspaces PK onto which σ̃

is not projected.

On the other hand, if
PJ · ε̃ = 0,

then contracting Eq. (3.16) with the tensor PJ · σ̃ one obtains that

1

λJ

|PJ · σ̃|2 = 0
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and it is not necessary for PJ · σ̃ to be equal to zero (it is sufficient to assume
1/λJ → 0). One may therefore omit in Eq. (3.16) projectors PK that give zero-
projections of σ̃ onto corresponding subspaces PK .

The following equality is then obtained

1

λ I
PI · σ̃ + . . . +

1

λν
Pν · σ̃ = PI · ε̃ + . . . + Pν · ε̃, (ν ≤ ρ).

At the right-hand side of the above equality, the elements that are equal to zero
may appear. Let the χ < ν elements be not equal to zero at the right-hand side
of this equation. One may group them in the following way:

(3.17)
1

λ I
PI · σ̃ − PI · ε̃ + . . . +

1

λχ
Pχ · σ̃ − Pχ · ε̃

+
1

λχ+1
Pχ+1 · σ̃ + . . . +

1

λν
Pν · σ̃ = 0.

For K > χ, similarly to (3.8), it is obtained that

1

λK
|PK · σ̃|2 =

1

λK

|σ̃K |2 = 0.

Trivial solution is one of the form (3.9). It is the only solution for the subspaces
PK that are one-dimensional and do not depend on the distributors. In such a
case these subspaces sum up and become one subspace of the passive stress states.
If the projectors PK depend on the distributors then fulfilling of the equality may
require to adopt some restrictions imposed on the distributors and the Kelvin
moduli. For the subspaces PK of dimension qK ≥ 2 the situation considered in
Sec 3.1 may take place. In this case σ̃ is projected onto the subspaces P̃K ⊂
PK and from the subspaces PK , the ones of passive stress states P̃K may be
separated.

It remains to consider the case when σ̃K = PK · σ̃ 6= 0 and ε̃K = PK · ε̃ 6= 0.
Let the tensors σ̃µ and ε̃µ be the elements of the same eigen-subspace Pµ

(µ ∈ 〈I, χ〉). If the subspace dimension dimPµ ≥ 2, then these tensors do not
have to be proportional. Generally σ̃µ 6= ηµε̃µ.

Projecting σ̃µ onto the direction of ε̃µ it is obtained that

σ̃µ = σ̃
(1)
µ + σ̃

(2)
µ ,

where σ̃
(1)
µ , σ̃(2)

µ ∈ Pµ and

σ̃
(1)
µ = |σ̃µ| cos ϕ

ε̃µ

|ε̃µ|
,(3.18)

σ̃
(2)
µ = σ̃µ − |σ̃µ| cos ϕ

ε̃µ

|ε̃µ|
(3.19)
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while ϕ is the angle between the tensors ε̃µ and σ̃µ in the space S (here the
summation convention does not apply). From Eq. (3.18) it is obtained, that

between tensors σ̃
(1)
µ and ε̃µ proportionality is observed

(3.20) σ̃
(1)
µ = ηµε̃µ, where ηµ =

|σ̃µ|
|ε̃µ|

cos ϕ.

Consequently, Eq. (3.17) may be rewritten as

(3.21)

(
1

λ I
− 1

ηI

)
σ̃

(1)
I +

1

λ I
σ̃

(2)
I + . . . +

(
1

λχ
− 1

ηχ

)
σ̃

(1)
χ +

1

λχ
σ̃

(2)
χ = 0.

If there exists such a subspace Pν that

(3.22) σ̃ν = ην ε̃ν ,

then σ̃
(1)
ν = σ̃ν and in Eq. (3.21) the element (1/λν) σ̃

(2)
ν disappears.

In such a case from the orthogonality of the eigen-subspaces it can be con-
cluded that

(3.23)
1

λν
=

1

ην

and the restrictions for the Kelvin moduli are obtained.
On the other hand, if proportionality (3.22) is not observed, then the subspace

Pν is decomposed into two subspaces P(1)
ν and P(2)

ν with the corresponding
Kelvin moduli equal to

(3.24)
1

λ
(1)
ν

=
1

ην
,

1

λ
(2)
ν

→ 0

and dimP(1)
ν = dim ε̃ν while dimP(2)

ν = dimPν − dimP(1)
ν . In this way, from

the subspace Pν the subspace of passive stress states P(2)
ν is separated. It should

be noted that also in this case there exists a possibility to separate from P(2)
ν

the subspace onto which σ̃
(2)
ν is not projected.

If there exist l subspaces that are decomposed into two subspaces then the

subspace of passive stress states is the sum of subspaces P(2)
ν , where ν = 1, . . . , l.

From ρ subspaces P1, . . . ,Pρ we obtain at most ρ + 1 subspaces, where Pρ+1 is
the subspace of the passive stress states.

Restrictions of the form (3.3) introduce conditions (3.23) imposed on the
Kelvin moduli, where (see (3.20))

ην =
|σ̃ν |
|ε̃ν |

cos ϕ.

For ϕ = 0 the proportionality (3.14) is observed.
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It seems that the conducted analysis includes all possible restrictions imposed
on the deformation of linear elastic anisotropic bodies. It should be stressed
that taking into account the given types of restrictions, one has to minimize the
requirements imposed on the material symmetry. The restrictions considered in
this section will now be discussed in examples for the selected types of material
symmetry.

4. Examples

4.1. Volume-isotropic materials

Example of the restrictions analyzed in Sec. 3.2 are Burzyński’s postulates
(3.15). Let us consider these relations for all symmetry groups. Let us start from
a fully anisotropic material. In this case the tensor σ

⋆ = 1/
√

3 I is projected onto
all eigen-subspaces among which each subspace depends on distributors. Because
these subspaces are one-dimensional, projectors are defined by Eqs. (2.5). Con-
sequently, Eq. (3.14), after substituting σ

⋆ (3.15) takes the form:

1√
3

6∑

K=1

(
1

λK

− 1

λ

)
(trωK)ωK = 0.

Contracting the above equation with subsequent ωK , the following six equations
are obtained (no summation)

(4.1)
1√
3

(
1

λK

− 1

λ

)
trωK = 0, (trω2

K = 1), (K = I, . . . , V I),

where for trωK the identity (2.14) should be fulfilled. Trivial solution of the
above set of equations is obtained by adopting for all K that 1/λK = 1/λ.
However, there exists other solution that imposes restrictions on the distributors.
Five out of six trωK may be equal to zero and then3)

trωV I = ±
√

3.

The last equation (4.1) will be fulfilled if

(4.2)
1

λV I

=
1

λ
.

3)In view of the above considerations, other rule of ordering of the Kelvin moduli and or-
thogonal projectors than that proposed in Sec. 2.2 should be introduced, e.g. the one based on
the magnitude of I · PK · I.
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The eigen-state ωV I is then the normalized spherical tensor ±σ
⋆. Further, if

one assumes that the material is volumetrically incompressible, what means that
constraints of the form (3.13) are prescribed, then

(4.3)
1

λV I

→ 0.

It can be shown that the number of parameters describing a fully anisotropic
elastic material with prescribed Burzyński’s restrictions is reduced to 7 stiffness
distributors and 6 Kelvin moduli for which Eq. (4.2) or (4.3) is fulfilled. Only
16 = 6 + 7 + 3 out of 21 parameters are left.

In the case of monoclinic symmetry, the stress state σ
⋆ is not projected onto

the eigen-subspaces PI and PII because two corresponding eigen-states are pure
shears with common direction of shearing e1 [2]. By repeating the reasoning
adopted for a fully anisotropic material one obtains non-trivial solution of the
form

trωK = 0, K = III, IV, V

and Eq. (4.2) (in the case of incompressibility constraints (4.3)). Also in this
case the number of parameters that describe monoclinic material is reduced – 6
Kelvin moduli and 3 stiffness distributors are left. It should be noted that in this
case, a trivial solution is obtained by adopting

1

λK

=
1

λ
where K = III, IV, V, V I.

Considering Burzyński’s restrictions for subsequent types of material symmetry
one obtains the results presented in Table 3. It should be stressed that in the
analyzed case, only for four types of symmetry one has to do with non-zero
number of independent stiffness distributors.

Table 3. First and second structural indices for all types of symmetry of linear
elastic materials with Burzyński’s restrictions.

Symmetry group First structural Second structural number of
index index parameters

full anisotropy 〈1 + (1 + 1 + 1 + 1 + 1)〉 [6 + 7 + 3] 16

monoclinic symmetry 〈1 + (1 + 1 + 1) + 1 + 1〉 [6 + 3 + 3] 12

orthotropy 〈1 + (1 + 1) + 1 + 1 + 1〉 [6 + 1 + 3] 10

trigonal symmetry 〈1 + 1 + (2 + 2)〉 [4 + 1 + 3] 8

tetragonal symmetry 〈1 + 1 + 1 + 1 + 2〉 [5 + 0 + 3] 8

transversal symmetry 〈1 + 1 + 2 + 2〉 [4 + 0 + 2] 6

cubic symmetry 〈1 + 2 + 3〉 [3 + 0 + 3] 6

isotropy 〈1 + 5〉 [2 + 0 + 0] 2
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4.2. Fiber-reinforced materials

Let us consider other type of restrictions (3.2), that is restrictions of the form

(4.4) C · k ⊗ k =
1

η
k ⊗ k.

Using spectral decomposition of the compliance tensor C (2.4), (2.11) and con-
tracting it with diad k ⊗ k, the following equality is obtained (see (3.14))

(
1

λI

− 1

η

)
ω

(kk)
I ωI + . . . +

(
1

λV I

− 1

η

)
ω

(kk)
V I ωV I = 0,

where ω
(kk)
J = k ·ωJ ·k. Contracting further this equation with subsequent ωJ ,

the following six scalar equations are derived
(

1

λJ

− 1

η

)
ω

(kk)
J = 0, J = I, . . . , V I

that could be fulfilled if

(4.5) ω
(kk)
J = 0 or

1

λJ

=
1

η
.

Similarly to the identity (2.14), from (2.6) it follows that

(k ⊗ k) · IS · (k ⊗ k) = (ω
(kk)
I )2 + . . . + (ω

(kk)
V I )2 = 1.

Therefore at most 5 out of 6 ω
(kk)
J parameters can be equal to zero. Conditions

(4.5)1 reduce the number of independent components of eigen-states ωJ .
Let us look at the influence of restrictions (4.4) on the number of indepen-

dent distributors for subsequent symmetry groups starting from the material of
monoclinic symmetry. In each analyzed case it is assumed that the direction k

is coaxial with e1 (see Table 1), and then ω
(kk)
J = ωJ

11. In such a case, the diad
k ⊗ k is not projected onto the subspaces PI and PII of pure shears. Therefore
one obtains four equations of the form (4.5) for J = III, IV, V, V I. Stiffening of
the material is minimized if it is assumed that

(4.6) ωIII
11 = ωIV

11 = ωV
11 = 0 and

1

λV I

=
1

η
.

Because for this type of material symmetry eigen-states ωJ have one common
principal direction coaxial with e1 (ωK

11 is therefore the corresponding eigen-
value, [2]) Eqs. (4.6) cause that eigen-states ωJ are plane states (detωJ = 0)
and ωV I = ±k ⊗ k, so that trωV I = ±1. Using identity (2.14) one obtains

(trωIII)
2 + (trωIV )2 + (trωV )2 = 2.

It may be shown that in such a case only three independent distributors are left.
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One can follow similar reasoning for orthotropic materials as well as materials of
trigonal, tetragonal and transversal symmetry. In all these cases diad k ⊗ k =
e1⊗e1 is projected only onto one-dimensional eigen-subspaces. Structural indices
for the analyzed symmetry groups have the same form as those for Burzyński’s
restrictions.

4.3. Cubic material with the prescribed restrictions (3.3)

To illustrate restrictions of the type (3.3) let us consider the material of cubic
symmetry for which the following relation between some strains and stresses is
imposed:

(4.7) C · (k ⊗ k) = (a − b)(k ⊗ k) + b1.

The above relation ensures that an axi-symmetric cross-section of a strip sub-
jected to tension or compression in k direction remains axi-symmetric for the
elastic regime. The ratio between the elongation εkk in k-direction and the change
of cross-sectional diameter εrr is given by

εrr

εkk

=
b

a
.

Note that if b = 0, the relation of the form (4.4) is obtained (in such a case
εrr = 0).

If direction k is coaxial with one of the edges of a cubic cell, e.g. e1, then
diad 4)

k ⊗ k = e1 ⊗ e1 ∼




1 0 0
0 0 0
0 0 0


 in {ek}

is projected only onto the subspaces PI and PII (see spectral decomposition of
tensor C for material of cubic symmetry in [9]). From spectral decomposition
(2.11) and Eq. (4.7) it is obtained that

(4.8)

(
1

λI

− (a − b)

)
PI · (k ⊗ k) − bPI · 1

+

(
1

λII

− (a − b)

)
PII · (k ⊗ k) = 0.

Because

PI · (k ⊗ k) =
1

3
1, PI · 1 = 1,

4)Symbol ∼ denotes that the given matrix is a representation of the considered tensor in the
given basis.
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Eq. (4.8) takes the form

1

3

(
1

λI

− (a + 2b)

)
1 +

(
1

λII

− (a − b)

)
PII · (k ⊗ k) = 0.

Projectors PI and PII are independent of distributors, so one of the possible
solutions is to assume that

(4.9)
1

λI

= a + 2b,
1

λII

= a − b.

Such a solution does not change the material symmetry, therefore condition (4.7)
is also fulfilled for k = e2 and k = e3.

Subspace PII is two-dimensional, while diad k ⊗ k is one-dimensional. Con-
sequently, there exists a possibility to separate from PII some subspace P⊥

II onto
which this diad is not projected. One obtains

P⊥
II = PII −

1

|PII · (k ⊗ k)|2 (PII · (k ⊗ k)) ⊗ (PII · (k ⊗ k)) = PII −P⋆
II

where

PII · (k ⊗ k) = P⋆
II · (k ⊗ k) = k ⊗ k − 1

3
1.

Equation (4.8) can be rewritten in the form

(4.10)

(
1

λI

− (a − b)

)
PI · (k ⊗ k) − bPI · 1

+

(
1

λ⋆
II

− (a − b)

)
P⋆

II · (k ⊗ k) = 0.

After contracting the above equation subsequently with PI · (k ⊗ k) and P⋆
II ·

(k ⊗ k), it is obtained

(4.11)

(
1

λI

− (a − b)

)
1

3
− b = 0,

(
1

λ⋆
II

− (a − b)

)
2

3
= 0.

As a solution one obtains

1

λI

= a + 2b,
1

λ⋆
II

= a − b.

Consequently, spectral decomposition of C for the material of cubic symmetry
with the analyzed restrictions has the form

(4.12) C⋆ = (a + 2b)PI + (a − b)P⋆
II +

1

λII

P⊥
II +

1

λIII

PIII ,
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where dimPI = dimP⋆
II = dimP⊥

II = 1 and dimPIII = 3. Elements of one-
dimensional space P⊥

II are as follows:

ω
⊥
II ∼




0 0 0
0 ω 0
0 0 −ω


 in {ek}.

It should be stressed that symmetry group of the material is not longer a cubic
symmetry group, because due to condition (2.16)

Qmat = QPI
∩ QP⋆

II
∩QP⊥

II
∩ QPIII

= Q ∩Qti
e1

∩Q4t
e1

∩ Qc
ei

= Q4t
e1

and the material possesses only tetragonal symmetry where the privileged di-
rection is e1 = k. The independent distributor ℵ1 distinctive for tetragonal
symmetry [8] is in this case equal to zero. This type of material symmetry is
determined by the least symmetric projector P⊥

II . From Eq. (4.12) it can be
concluded that if b = 0, subspaces PI and P⋆

II sum up, while if a = b, subspace
P⋆

II becomes the subspace of passive stress states.
An interesting solution is also obtained if one assumes that direction k is

coaxial with one of the main diagonals of a cubic cell, for example

k =
1√
3
(e1 + e2 + e3) ⇒ k ⊗ k ∼ 1

3




1 1 1
1 1 1
1 1 1


 in {ek}.

This is, as well as the direction e1, a direction of extremal Young modulus [9]. In
this case diad k ⊗ k is projected only onto subspaces PI and PIII . For restrictions
(4.7) from spectral decomposition of C one obtains that

(4.13)

(
1

λI

− (a − b)

)
PI · (k ⊗ k) − bPI · 1

+

(
1

λIII

− (a − b)

)
PIII · (k ⊗ k) = 0.

One of the possible solutions of this equation is obtained, similarly to (4.9),
by assuming that

1

λI

= a + 2b,
1

λIII

= a − b.

Such a solution does not change material symmetry, therefore conditions (4.7)
are fulfilled also for k coaxial with any main diagonal of a cubic cell.

Another solution is obtained by decomposition of the three-dimensional sub-
space PIII . Diad k ⊗ k is not projected onto a two-dimensional subspace defined
by the projector

P⊥
III = PIII −

1

|PIII · (k ⊗ k)|2 (PIII · (k ⊗ k))⊗ (PIII · (k ⊗ k)) = PIII −P⋆
III
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where

PIII · (k ⊗ k) = P⋆
III · (k ⊗ k) = k ⊗ k − 1

3
1.

Equation (4.13) can be written in the form

(
1

λI

− (a − b)

)
PI · (k ⊗ k) − bPI · 1 +

(
1

λ⋆
III

− (a − b)

)
P⋆

III · (k ⊗ k) = 0.

By finding a solution in the same way as for (4.10), it is obtained

1

λI

= a + 2b,
1

λ⋆
III

= a − b.

Spectral decomposition of the tensor C with the analyzed restrictions takes the
form

C⋆ = (a + 2b)PI +
1

λII

PII + (a − b)P⋆
III +

1

λIII

P⊥
III ,

where dimPI = dimP⋆
III = 1 and dimPII = dimP⊥

III = 2. Elements of the
subspace P⊥

III are as follows:

ω
⊥
III ∼




0 u v
u 0 −(u + v)
v −(u + v) 0


 in {ek}.

Also in this case, the material symmetry group has changed. Note that

Qmat = QPI
∩QPII

∩ QP⋆
III

∩QP⊥
III

= Q ∩Qei

k ∩Qk
t ∩ Qk

3t = Qk
3t,

so the material has trigonal symmetry and the symmetry axis is coaxial with
k. Here, two independent distributors ℵ1 and ℵ2 distinctive for this type of
symmetry take the values specified by (compare page 157 in [12])

tan κ =
√

2, tan ρ =
√

2.

Again, the type of material symmetry is determined by the least symmetric
projector P⊥

III .
When k will be coaxial with any other direction in a cubic cell, the diad k ⊗ k

will be projected on all subspaces PK and it may further change the material
symmetry.
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5. Summary

Thorough analysis conducted in the paper allows to conclude about the
important role played by the theorem on spectral decomposition of elasticity
tensors. Especially, it is visible during examining the influence of internal re-
strictions on the properties of anisotropic linear elastic bodies. Prescribing some
deformation modes imposes additional conditions on the values of the stiffness
distributors and the form of eigen-subspaces.

Three types of internal restrictions imposed on the form of deformation of the
body were considered. Algorithms, that optimize the influence of these restric-
tions on the elastic properties of the material for calculating the Kelvin moduli,
stiffness distributors and eigen-subspaces, were proposed.

It was shown that equations of restrictions could be also fulfilled by impos-
ing the conditions on Kelvin moduli only. These solutions were called trivial,
because they lead to over-stiffening of the body. Therefore, one should look for
the solutions by imposing conditions on the stiffness distributors and the form
of eigen-subspaces, sometimes by decomposing some subspaces.

Bounds imposed on the deformation modes may not change the material
symmetry (then they are only imposed on the material constants) or they may
make it higher or lower.

The proposed algorithms were applied to analyze the influence of Burzyński’s
restriction (volumetric deformation is then enforced only by hydrostatic pressure
– volume isotropic materials notation may be used in this case) on the elastic
properties of the material and to describe the behaviour of fiber-reinforced ma-
terials.

Appendix A

The space S of symmetric second order tensors possesses all the properties of
the six-dimensional Euclidean space with the scalar product defined as follows:

∧

a,b∈S

a · b = tr(ab) = aijbij ,

where aij , bij , i, j = 1, 2, 3 are components of tensors a and b in some or-
thonormal basis {ei} in the three-dimensional physical space. Therefore, any
second-order tensor has all the properties of the vector in the six-dimensional
Euclidean space.

Due to this property of S it is possible to select in S a subset of six mutually
orthogonal and normalized tensors {aK}, K = I, . . . , V I which constitute the
basis. One of the possible bases is the following orthonormal subset of basis diads
{ei ⊗ ej} of the form:



230 K. Kowalczyk-Gajewska, J. Ostrowska-Maciejewska

aI = e1 ⊗ e1 aIV =
1√
2
(e2 ⊗ e3 + e3 ⊗ e2),

aII = e2 ⊗ e2, aV =
1√
2
(e1 ⊗ e3 + e3 ⊗ e1),

aIII = e3 ⊗ e3, aV I =
1√
2
(e2 ⊗ e1 + e1 ⊗ e2).

A basis in the six-dimensional space is called a polybasis. In the above polybasis,
any symmetrical tensor of the second order is described in the following way

a = aijei ⊗ ej = aKaK , K = I, . . . , V I, where a · b = aKbK

and interdependence between representations aij and aK is given by

(A.1)
aI = a11, aII = a22, aIII = a33,

aIV =
√

2a23, aV =
√

2a13, aV I =
√

2a12.

Consequently, linear projection from the space S onto S treated as the six-
dimensional Euclidean space will be described by the second-order tensor be-
longing to tensorial product S ⊗ S. This reasoning brings us to the conclu-
sion that the fourth-order tensor A that describes projection from the space of
second-order symmetric tensors to the space of the second-order symmetric ten-
sors in the three-dimensional physical space possesses all the properties of the
second-order tensor in the six-dimensional Euclidean space. One may therefore
write

A = Aijklei ⊗ ej ⊗ ek ⊗ el = AKLaK ⊗ aL.

The set of all basis diads {aI ⊗ aJ} is the basis in the space S ⊗S. Components
AKL depend on components Aijkl of the fourth order tensor A in the basis {ei}
in the physical space, in the following way:

(A.2) [AKL] =




A1111 A1122 A1133

√
2A1123

√
2A1113

√
2A1112

A2211 A2222 A2233

√
2A2223

√
2A2213

√
2A2212

A3311 A3322 A3333

√
2A3323

√
2A3313

√
2A3312

√
2A2311

√
2A2322

√
2A2333 2A2323 2A2313 2A2312

√
2A1311

√
2A1322

√
2A1333 2A1323 2A1313 2A1312

√
2A1211

√
2A1222

√
2A1233 2A1223 2A1213 2A1212




.
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The following products can be obtained in two alternative but fully corre-
sponding ways (a,b ∈ S; A,B,C ∈ S ⊗ S):

a · b = aijbij = aKbK ,

b = A · a ⇔ bij = Aijklakl or bK = AKLaL,

D = A ◦ B ⇔ Dijkl = AijmnBmnkl or DKL = AKMBML,

where aij , bij , Aijkl, Bijkl, Dijlk and aK , bK , AKL, BKL, DKL are related by
Eqs. (A.1) and (A.2).

It should be stressed that, due to the fact that the tensor A describes linear
projection between spaces of the symmetric second-order tensors, one obtains
Aijkl = Ajikl = Aijlk. Note that in the case of the stiffness tensor S and the
compliance tensor C, additionally one has to do with the situation when AKL =
ALK (Aijkl = Aklij). Matrix of the components [AKL]6×6 is then symmetric.
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