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Formulas for the speed of Rayleigh waves in orthotropic compressible elastic
materials are obtained in explicit form by using the theory of cubic equations. Dif-
ferent formulas are obtained by using different forms of the (cubic) secular equation.
Each formula is expressed as a continuous function of three dimensionless material
parameters, which are the ratios of certain elastic constants. It is interesting to note
that one of the formulas includes as a special case the formula obtained recently by
Malischewsky for isotropic materials.
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1. Introduction

Rayleigh waves were first studied by Rayleigh [1] for compressible isotropic
elastic materials. It was not until recently, however, that explicit formulas were
obtained for the Rayleigh wave speed. The first such formula was given by Rah-

man and Barber [2] using the theory of cubic equations. The next contribu-
tion was due to Nkemzi [3], who used the theory of the Riemann problem to
derive a formula for the Rayleigh wave speed expressed as a continuous func-
tion of the material parameter ǫ = µ/(λ + 2µ), where λ and µ are the Lamé
moduli. As pointed out by Destrade [4] this formula is rather cumbersome
and, as noted by Malischewsky [5], the final result is also incorrect. How-
ever, it was shown by Romeo [6] that the integral representation of Nkemzi is
indeed correct and he generalized it to the case of a viscoelastic orthorhombic
half-space. Malischewsky [5] obtained a formula for the Rayleigh wave speed
by using Cardan’s formula from the theory of cubic equations together with the
trigonometric formulas for the roots of the cubic equation and MATHEMATICA,
while, using a different method, Royer [7] also obtained explicit Rayleigh wave
speeds for isotropic materials. An alternative formula has been given recently
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by Pham and Ogden [8] together with a detailed derivation of Malischewsky’s
formula, again based on the theory of cubic equations.

Turning now to consideration of Rayleigh waves in anisotropic elastic solids,
we note that for some special cases of compressible monoclinic materials with
symmetry plane x3 = 0, formulas for the squared wave speed were found by
Ting [9] and Destrade [4] as the roots of quadratic equations. For incompress-

ible orthotropic elastic solids an explicit formula for the Rayleigh wave speed
has been obtained by Ogden and Pham [10], and a link can be made to results
for surface waves in certain incompressible anisotropic elastic solids obtained
recently by Destrade et al. [11].

The aim of the present paper is to use the theory of cubic equations to obtain
formulas for the Rayleigh wave speed for compressible orthotropic elastic solids
expressed as continuous functions of three dimensionless material parameters,
which are defined in Sec. 3.

First, in Sec. 2, we obtain the secular equation for an orthotropic elastic
half-space whose boundary is a plane of symmetry of the material. In Sec. 3. the
secular equation is transformed into a cubic equation, which is solved explicitly
to give a formula for the Rayleigh wave speed. Next, in Sec. 4., another cubic
equation representation for the secular equation (with a different variable) is
obtained by transformation, squaring and rearrangement of the original equation.
This cubic equation is then solved explicitly to provide an alternative formula for
the Rayleigh wave speed. In each case it is shown how specialization to isotropy
yields the various formulas obtained previously for this case.

2. Secular equation

Consider a compressible elastic body possessing a stress-free configuration of
semi-infinite extent in which the material exhibits orthotropic symmetry. The
boundary of this configuration is assumed to be parallel to the (001) mirror
plane of the material and, accordingly, rectangular Cartesian axes (x1, x2, x3)
are chosen such that the x3 direction is normal to the boundary and the body
occupies the region x3 ≤ 0.

The equations for time-harmonic waves propagating parallel to the bound-
ary of the half-space in the direction of the x1 (or x2) axis decouple into a plane
motion, in the plane defined by the half-space normal and the direction of prop-
agation, and a motion normal to that plane (see, for example, Chadwick [12]
and Royer and Dieulesaint [13]). It therefore suffices to consider the plane
motion in the (x1, x3) plane with displacement components (u1, u2, u3) such that

(2.1) ui = ui(x1, x3, t), i = 1, 3, u2 ≡ 0,

where t is time.
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For small deformations from the reference configuration, the constitutive
equations relating the stress components σij and the components of displace-
ment gradient ui,j (= ∂ui/∂xj) are (see, for example, Chadwick [12])

(2.2) σ11 = c11u1,1 + c13u3,3, σ33 = c13u1,1 + c33u3,3, σ13 = c55(u1,3 + u3,1),

where the elastic constants c11, c33, c55, c13 satisfy the inequalities

(2.3) cii > 0, i = 1, 3, 5, c11c33 − c213 > 0,

which are necessary and sufficient conditions for the strain energy of the material
to be positive definite. Note that because of the restriction to plane strain and
a plane of symmetry, the usual nine constants of orthotropy reduce to the four
considered here.

The equations governing infinitesimal motion, expressed in terms of the dis-
placement components ui, are

c11u1,11 + c55u1,33 + (c13 + c55)u3,31 = ρü1,

c55u3,11 + c33u3,33 + (c13 + c55)u1,13 = ρü3,
(2.4)

where ρ is the mass density of the material and a superposed dot signifies differ-
entiation with respect to t. These equations are taken together with the boundary
conditions of zero traction, which are expressed as

(2.5) σ3i = 0, i = 1, 3, on x3 = 0.

We also impose the usual requirement that the displacement and stress compo-
nents decay away from the boundary, so that

(2.6) ui → 0 (i = 1, 3), σij → 0 (i, j = 1, 3) as x3 → −∞.

We now consider harmonic waves propagating in the x1 direction, and we
write

(2.7) ui = φi(y) exp [ik(x1 − ct)], i = 1, 3,

where k is the wave number, c is the wave speed, y = kx3 and the functions
φi, i = 1, 3, are to be determined. Substitution of (2.7) into the equations (2.4)
yields

(c11 − ρc2)φ1 − c55φ
′′

1 − i(c13 + c55)φ
′

3 = 0,

(c55 − ρc2)φ3 − c33φ
′′

3 − i(c13 + c55)φ
′

1 = 0,
(2.8)

where, in (2.8) and the following, a prime on φi indicates differentiation with
respect to y.
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In terms of φi, i = 1, 3, after taking account of (2.2) and (2.7), the boundary
conditions (2.5) become

(2.9) ic13φ1 + c33φ
′

3 = 0, φ′1 + iφ3 = 0 on y = 0,

while from (2.6) we obtain

(2.10) φi, φ
′

i → 0 as y → −∞, i = 1, 3.

It is then easy to verify that the solution of (2.8) satisfying (2.10) is

φ1 = A1 exp (s1y) +A2 exp (s2y),

φ3 = A1α1 exp (s1y) +A2α2 exp (s2y),
(2.11)

where s1, s2 are the solutions of the equation

(2.12) c33c55s
4 +

[

(c13 + c55)
2 + c33(ρc

2 − c11) + c55(ρc
2 − c55)

]

s2

+ (c11 − ρc2)(c55 − ρc2) = 0

having positive real parts, αj (j = 1, 2) is determined from

(2.13) i(c13 + c55)αjsj = (c11 − ρc2 − c55s
2
j ),

and Ai, i = 1, 2, are constants to be determined from the boundary condi-
tions (2.9).

From (2.12) we have

(2.14)
s21 + s22 = −

[

(c13 + c55)
2 + c33(ρc

2 − c11) + c55(ρc
2 − c55)

]

/c33c55,

s21s
2
2 =(c11 − ρc2)(c55 − ρc2)/c33c55.

If the roots s21 and s22 of the quadratic equation (2.12) for s2 are real then they
must be positive to ensure that s1 and s2 can have positive real parts. If they
are complex then they are conjugate. In either case the product s21s

2
2 must be

positive. Hence, from (2.3) and (2.14)2 we have

(2.15) (c11 − ρc2)(c55 − ρc2) > 0,

and it follows that either 0 < ρc2 < min{c11, c55} or ρc2 > max{c11, c55}. How-
ever, if the latter inequality holds then it is easy to verify that the discriminant
of Eq. (2.12) is non-negative, and hence, since the right-hand side of (2.14)1 is
negative in this case, equation (2.12) has two negative real roots s21, s

2
2. This
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contradicts the requirement that s1, s2 should have positive real parts. Hence,
the Rayleigh wave speed must satisfy the inequality

(2.16) 0 < ρc2 < min{c11, c55}.

Note that (2.16) is a necessary condition for the existence of a surface wave but
may not be sufficient because of the possible presence of a limiting wave speed
(see, for example, Chadwick and Wilson [14]).

Substitution of (2.11) in (2.9) leads to a homogeneous linear system of al-
gebraic equations for A1, A2. For non-trivial solutions the determinant of coef-
ficients of this system must vanish. This condition yields the secular equation.
After removing the factor (s1−s2) and using the equalities (2.13) and (2.14), the
secular equation of the Rayleigh waves propagating in orthotropic compressible
elastic materials is obtained in the form

(2.17) (c55 −ρc2)[c213 − c33(c11 −ρc2)]+ρc2
√
c33c55

√

(c11 − ρc2)(c55 − ρc2) = 0

(Chadwick [12]).
We note that Chadwick [12] has proved that for c11, c33, c55, c13 satisfying

(2.3), Eq. (2.17) has a unique (real) solution satisfying (2.16) and ensuring that
(2.12) has two distinct roots with positive real part. It was also shown in that
paper that the case s1 = s2 does not yield a surface wave.

On use of (2.16), Eq. (2.17) can be transformed into

(2.18)

√

1 − ρc2

c55

(

1 − c213
c11c33

− ρc2

c11

)

=

√

c11
c33

ρc2

c11

√

1 − ρc2

c11
,

as obtained by Stoneley [15], or

(2.19) ψ(ζ) ≡ ζ −
√

c33
c55

c55 − ζ

c11 − ζ
(c∗ − ζ) = 0,

as given by Royer and Dieulesaint [13], where

(2.20) ζ ≡ ρc2, 0 < c∗ ≡ c11 − c213/c33 < c11.

In [13], with the assumption c55 < c11, the authors used Eq. (2.19) to deduce
that ρc2 = ζ does not belong to the interval (c11,∞) by showing that ψ(ζ) > 0
for all ζ ∈ (c11,∞). Unfortunately, when ζ ∈ (c11,∞) the relevant rearrangement
of (2.17) is not (2.19) but

(2.21) ψ(ζ) ≡ ζ +

√

c33
c55

c55 − ζ

c11 − ζ
(c∗ − ζ) = 0

since c55 − ρc2 = −
√

(c55 − ρc2)2 when c55 < ρc2.
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3. Formulas for the Rayleigh wave speed

In order to proceed it is convenient to introduce three dimensionless material
parameters defined by

(3.1) γ = c55/c11, α = c33/c11, δ = 1 − c213/c11c33,

such that

(3.2) γ > 0, α > 0, 0 < δ < 1.

We also define the variable x by

(3.3) x = ρc2/c55.

From (2.16) we then have

(3.4) 0 < x < 1 ≤ 1

γ
if 0 < c55 ≤ c11, 0 < x <

1

γ
< 1 if 0 < c11 < c55.

Equation (2.17) may now be written

(3.5)
√
α (1 − x)(x− σδ) + x

√
1 − x

√

1 − γx = 0,

where σ ≡ 1/γ and x satisfies (3.4). Since 1−x 6= 0 equation (3.5) is equivalent to

(3.6)
√
α (x− σδ) + x

√

1 − γx

1 − x
= 0.

Case 1. γ 6= 1
On introducing the variable t defined by

(3.7) t =

√

1 − γx

1 − x
, x =

1 − t2

γ − t2

Eq. (3.6) becomes

(3.8) f(t) ≡ t3 + a2t
2 − t+ a0 = 0,

where

(3.9) a0 = −
√
α (1 − δ), a2 =

√
α (1 − σδ)

and

(3.10) 1 < t <∞ if 0 < γ < 1, 0 < t < 1 if γ > 1.

We remark that for γ = 1 the transformation (3.7) is not one-to-one. This case
will be considered separately below.
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If 0 < γ < 1 (σ > 1) then, from (3.8) and (3.9) we have

(3.11) f(1) = −
√
α (σ − 1)δ < 0

and f(t) → ∞ as t→ ∞. The existence of a solution of Eq. (3.8) in the interval
(1,∞) is therefore assured.

If γ > 1 (0 < σ < 1) we obtain

(3.12) f(0) = −
√
α (1 − δ) < 0, f(1) =

√
α (1 − σ)δ > 0,

and the existence of a solution of (3.8) in the interval (0, 1) follows from these
inequalities.

From (3.8) we obtain

(3.13) f ′(t) = 3t2 + 2a2t− 1.

Since the discriminant of the equation f ′(t) = 0 is 4(a2
2 + 3) > 0, it has two

distinct real roots, which we denote by tmin and tmax. It follows from (3.13)
that tmintmax < 0 and hence that tmax < 0 < tmin. It is now easy to verify
that Eq. (3.8) has a unique real solution in the interval for t defined by (3.10).
Note that if Eq. (3.8) has two or three distinct real roots, then the largest one
corresponds to the Rayleigh wave and is the only solution in the required range
of values of t.

We now introduce the variable z defined by

(3.14) z = t+
1

3
a2,

so that Eq. (3.8) becomes

(3.15) z3 − 3q2z + r = 0,

where

(3.16)

q ≡ 1

3

√

a2
2 + 3 =

1

2
(tmin − tmax),

r =
1

27
(2a3

2 + 9a2 + 27a0).

We note in passing the geometrical point that if tN is the value of t at the point
of inflexion of the curve y = f(t) then r = f(tN).

Our task is now to find the largest real root, which we denote by z0, of
Eq. (3.15). By the theory of cubic equation, the three roots of Eq. (3.15) are
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given by Cardan’s formula (see Cowles and Thompson [16], for example).
Accordingly, we may write

z1 = S + T,

z2 = −1

2
(S + T ) +

1

2
i
√

3(S − T ),

z3 = −1

2
(S + T ) − 1

2
i
√

3(S − T ),

(3.17)

where

S =
3

√

R+
√
D, T =

3

√

R−
√
D,

D = R2 +Q3, R = −1

2
r, Q = −q2.

(3.18)

In relation to these formulas we emphasize two points: (i) the cubic root of a
negative real number is taken as the negative real root; (ii) if the argument in S
is complex then we take the phase angle in T as the negative of the phase angle
in S such that T = S∗, where S∗ is the complex conjugate of S.

The nature of the roots of Eq. (3.15) depends on the sign of its discrimi-
nant D. In particular, if D > 0 then (3.15) has one real root and two complex
conjugate roots; if D = 0 the equation has three real roots, at least two of which
are equal; if D < 0 then it has three distinct real roots.

We now show that in each case the largest real root z0 of Eq. (3.15) is given by

(3.19) z0 =
3

√

R+
√
D +

3

√

R−
√
D,

within which each radical is understood as the complex root taking its principal
value.

First, we consider D > 0. In this case it is clear that Eq. (3.15) has only
one real root that, namely z0 = z1, given by the first Eq. in (3.17), in which the
radicals must be understood as real roots. From the geometrical point, it is easy
to show that in this case f(tmin) < 0, f(tmax) < 0, and hence f(tN) < 0. This
leads to r < 0 and hence R > 0. Since the value of a real root of a positive real
number coincides with the principal value of its corresponding complex root and
since R > 0 and Q < 0, z0 is clearly given by (3.19).

If D = 0 then r = −2q3 and Eq. (3.15) reduces to

(3.20) (z + q)2(z − 2q) = 0.

Equation (3.20) has two distinct real roots, z = −q (double root) and z = 2q.
Hence, in this case z0 = 2q and from (3.18) we have R = q3, and therefore (3.19)
is valid.
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Finally, for D < 0 equation (3.15) has three distinct real roots given by
(3.17) and (3.18) in which complex cubic (square) roots can take one of three
(two) possible values such that T = S∗. Here, we take their principal values and
indicate that z1 expressed by (3.17)1 is the largest real root of (3.15), so that
again (3.19) is valid. Throughout the remainder of this section, for simplicity, we
take complex roots as their principal values.

From (3.18) we have

(3.21) S =
3

√

R+ i
√

−R2 −Q3, T = S∗.

The phase angle of the complex number R + i
√
−D belongs to the interval

(0, π), so that the phase angle θ corresponding to the principal value of S in
(3.21) belongs to the interval (0, π/3). By (3.21) this implies that |S| = q, and
hence S and T can be expressed in the forms

(3.22) S = qeiθ, T = qe−iθ, 0 < θ < π/3,

where θ ∈ (0, π/3) satisfies the equation

(3.23) cos 3θ = − r

2q3
,

which is obtained by substituting

(3.24) z = S + T = 2q cos θ

into Eq. (3.15).
Note that D < 0 implies | − r/2q3| < 1, which ensures that Eq. (3.23) has a

unique solution in the interval (0, π/3).
From (3.17) and (3.22) it is easy to verify that

(3.25) z1 = 2q cos θ, z2 = 2q cos(θ + 2π/3), z3 = 2q cos(θ + 4π/3).

Then, from (3.25), since θ ∈ (0, π/3), it is clear that z1 > z3 > z2, i.e. z1 is the
largest real root of (3.15) and (3.19) is valid.

After some manipulations we obtain, on use of (3.9), (3.16) and (3.18),

(3.26)

R = − 1

54
h(α, σ, δ),

D = − 1

108

[

2
√
α(1 − δ)h(α, σ, δ) + 27α(1 − δ)2 + α(1 − σδ)2 + 4

]

,

where

(3.27) h(α, σ, δ) ≡
√
α [2α(1 − σδ)3 + 9(3δ − σδ − 2)].



256 Pham Chi Vinh, R.W. Ogden

Finally, on using (3.6), (3.7), (3.9), (3.14) and (3.19), we obtain

(3.28) ρc2/c55 =
√
ασδ

[√
α(σδ + 2)/3 +

3

√

R+
√
D +

3

√

R−
√
D

]

−1

,

where R and D are given by (3.26) and (3.27) and the roots take their principal
values. It is clear that the speed of Rayleigh waves is a continuous function of
the three parameters α, γ, δ in the region α > 0, γ > 0, 0 < δ < 1 with γ 6= 1.

For isotropic materials we have c11 = c33 = λ+ 2µ, c55 = µ, c13 = λ, so that
α = 1, δ = 4γ(1 − γ), with γ = µ/(λ+ 2µ). In this case (3.28) reduces to

(3.29) ρc2/µ = 4(1 − γ)

[

2 − 4

3
γ +

3

√

R+
√
D +

3

√

R−
√
D

]

−1

,

where R and D are given by

(3.30)
R = 2(27 − 90γ + 99γ2 − 32γ3)/27,

D = 4(1 − γ)2(11 − 62γ + 107γ2 − 64γ3)/27

and the roots in (3.29) are understood as complex roots taking their principal
values. The formula (3.29) with (3.30) was given by Pham and Ogden [8].

Case 2. γ = 1
For the value γ = 1 we obtain directly from equation (3.5) the formula

(3.31) ρc2/c55 =

√
αδ

1 +
√
α

for the Rayleigh wave speed. This formula may also be obtained from (3.28) on
specialization to γ = 1, which requires some manipulation of the formulas (3.26)
and (3.27). The formula (3.28) is therefore valid for all γ > 0.

4. Alternative formulas

In this section some other formulas for the speed of Rayleigh waves in com-
pressible orthotropic elastic materials are derived that are different from (3.28)
in form. In order to obtain these formulas we start from the secular equation
rewritten as

(4.1) F (x) ≡ (γ − α)x3 + (α+ 2ασδ − 1)x2 − ασδ(σδ + 2)x+ ασ2δ2 = 0,

which comes from Eq. (3.5) expressed in the form

(4.2)
√
a
√

1 − x(σδ − x) = x
√

1 − γx

on squaring and rearranging. Since x 6= 1, Eq. (4.2) is equivalent to Eq. (3.5).
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From (4.2) it may be deduced that if x is its (real) solution, corresponding
to the Rayleigh wave speed satisfying (3.4), then

(4.3) 0 < x < σδ.

Since 0 < δ < 1 and Eq. (4.2) is equivalent to (3.5), it is easy to see that for
the values x such that

(4.4) 0 < x < 1 and 0 < x < σδ

Eq. (4.1) is equivalent to Eq. (3.5).
It should be noted that, as shown in the previous section, Eq. (3.5) has

a unique (real) solution corresponding to the Rayleigh wave, which we denote
by x0. This satisfies the condition (3.4) and hence (4.3), for any values of the
parameters α, σ(= 1/γ), δ subject to (3.2). Equation (4.1) therefore also has
a unique solution, and we have the following proposition.

Proposition. For any values of the parameters α, σ, δ subject to (3.2),
in the interval (0, σm), where σm = min{1, σδ}, Eq. (4.1) has a unique (real)
solution (x0), which corresponds to the Rayleigh wave speed.

We shall now indicate which real root of (4.1) is identified as x0 in the situ-
ation when it has two or three distinct real roots so we can obtain formulas for
the Rayleigh wave speed.

4.1. Case 1. γ = α

When γ = α, (4.1) reduces to the quadratic equation

(4.5) (γ + 2δ − 1)x2 − δ(σδ + 2)x+ σδ2 = 0.

Keeping (3.2) in mind and taking into account the Proposition, it is not difficult
to verify that Eq. (4.5) has two distinct real roots, x0 being the smaller root
when γ+2δ−1 > 0 and the larger one when γ+2δ−1 < 0. Thus, for the values
of γ, δ such that γ + 2δ − 1 6= 0, the Rayleigh wave speed is given by

(4.6) ρc2/c55 =
δ(σδ + 2) − δ

√

σ(σδ2 + 4 − 4δ)

2(γ + 2δ − 1)
.

For the case γ+2δ−1 = 0 (δ > 0 ⇒ σ > 1), the Rayleigh wave speed is given by

(4.7) ρc2/c55 = (σ − 1)/(σ + 3).

This special case has been examined by Mozhaev [17], who also gave exam-
ples of materials for which γ = α (c55 = c33).
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4.2. Case 2. γ > α

In this case Eq. (4.1) is equivalent to

(4.8) F1(x) ≡ x3 + a2x
2 + a1x+ a0 = 0,

where ai, i = 0, 1, 2, are given by

(4.9) a0 =
ασ2δ2

γ − α
, a1 =

ασδ(σδ + 2)

α− γ
, a2 =

α+ 2ασδ − 1

γ − α
.

It is easy to verify from (4.8) and (4.9) that

(4.10) F1(0) =
ασ2δ2

γ − α
, F1(1) =

γ − 1

γ − α
, F1(σδ) =

σ2δ2(δ − 1)

γ − α
.

On using (4.10) and taking into account the Proposition, we can show that, for
values of γ and α such that γ−α > 0, Eq. (4.8) has three distinct real roots and
x0 is the intermediate one.

Analogously to the analysis in Sec. 3, in terms of the variable z given by

(4.11) z = x+ a2/3,

equation (4.8) may be expressed in the form

(4.12) z3 − 3q2z + r = 0,

where, in this case, q and r are given by

(4.13) q2 = (a2
2 − 3a1)/9, r = (2a3

2 − 9a1a2 + 27a0)/27,

with ai, i = 0, 1, 2 defined by (4.9). Note that q and r differ from the values
defined in Sec. 3; in particular, here q2 can be negative.

Our task is now to find the intermediate real root of Eq. (4.12), which we
denote by z0. Using the theory presented in Sec. 3, it is clear that the root z0 is

(4.14) z0 = e4πi/3 3

√

R+
√
D + e−4πi/3 3

√

R−
√
D,

where each radical is understood as the complex root taking its principal value
and R and D (< 0) are given by (3.18), (4.9) and (4.13). Using (3.18) and (4.13),
after some manipulations we have

(4.15)
R =

(

9a1a2 − 27a0 − 2a3
2

)

/54,

D =
(

4a0a
3
2 − a2

1a
2
2 − 18a0a1a2 + 27a2

0 + 4a3
1

)

/108,

where ai, i = 0, 1, 2 are expressible in terms of α, γ, δ through (4.9).
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Taking into account (4.9)3, (4.11) and (4.14), we see that the root x0, and
hence the speed of the Rayleigh wave, is given by the formula

(4.16) ρc2/c55 =
α+ 2ασδ − 1

3(α− γ)
+ e4πi/3 3

√

R+
√
D + e−4πi/3 3

√

R−
√
D,

in which the radicals are understood as complex roots taking their principal
values, R and D being given by (4.9) and (4.15). This formula shows the con-
tinuous dependence of the speed c on the parameters α, γ, δ in the region
0 < δ < 1, γ > α > 0.

4.3. Case 3. 0 < γ < 1 = α

For this case we obtain another formula for the speed of Rayleigh waves. As
we shall see, the formula for the speed of Rayleigh wave which was obtained
recently by Malischewsky [5] for an isotropic material is a special case of this
formula.

Equation (4.1) is equivalent to Eq. (4.8) with 0 < x < σm, where the coeffi-
cients ai, i = 0, 1, 2 become

(4.17) a0 =
σ2δ2

γ − 1
, a1 =

σδ(σδ + 2)

1 − γ
, a2 =

2σδ

γ − 1
.

From (4.8) and (4.17) we have

(4.18) F1(0) < 0, F1(1) > 0, F1(σd) > 0.

Consider the equation

(4.19) F ′

1(x) = 3x2 + 2a2x+ a1 = 0.

If its discriminant ∆ ≤ 0 then F ′

1(x) ≥ 0 for all x, and hence Eq. (4.8)
has a unique real solution in the interval (0, σm) (according to the Proposition),
namely x0. If ∆ > 0, Eq. (4.19) has two distinct real roots, denoted by xmin and
xmax, such that

(4.20)

xminxmax =
a1

3
=
σδ(σδ + 2)

3(1 − γ)
> 0,

xmin + xmax = −2a2

3
=

4ασδ

3(1 − γ)
> 0.

Hence, 0 < xmax < xmin.
Bearing in mind that Eq. (4.8) has a unique (real) solution in the interval

(0, σm), it follows from (4.18)1 that x0 is the smallest real root in the case in
which Eq. (4.8) has two or three distinct real roots.
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By using the variable z related to the variable x by (4.11), Eq. (4.8) becomes
(4.12), where q and r are given by (4.13) with (4.17). In order to find the smallest
real root x0 of (4.8) we now determine the smallest root z0 of (4.12). We shall
show that z0 is given by

(4.21) z0 = sign(−d) 3

√

sign(−d)[R+
√
D] − 3

√

−R+
√
D,

where R and D are given by (4.15) and (4.17),

(4.22) d ≡ a2
2 − 3a1 = 9q2,

and the roots are understood as complex roots taking their principal values. In
order to establish (4.21) we need the following two Lemmas.
Lemma 1. In the (γ, δ) plane the set U = {γ, δ : 0 < γ < 1, 0 < δ < 1 :d > 0}
is a connected set.

This can be seen immediately by reference to Fig. 1, in which the curve d = 0
based on (4.22) with (4.17), on recalling the definition σ = 1/γ, is plotted in the
positive quadrant of the (γ, δ) plane. This yields the equation δ = 6γ(1 − γ)/
(3γ + 1).

Fig. 1. Plot of the curve d = 0 in (γ, δ) plane for α = 1. In the region enclosed by the curve
and the γ axis d < 0. The maximum on the curve has coordinates (1/3, 2/3).

Lemma 2. R < 0 for the values of γ, δ such that 0 < γ < 1, 0 < δ < 1,
d > 0, D ≥ 0.

The proof of Lemma 2, in which the result of Lemma 1 is employed, is given
in the Appendix.
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We now examine the distinct cases dependent on the values of d in order to
prove (4.21).

If d < 0 it follows from (3.18)3,5 and (4.22) that D > 0 and

(4.23) R+
√
D > 0, −R+

√
D > 0.

Since D > 0 Eq. (4.12) has a unique real solution given by (3.17)1 and (3.18)
in which the radicals are understood as real roots. It is clear that the inequalities
(4.23) ensure that (4.21) is valid.

If d = 0, then R ≤ 0 (as shown below). If R < 0, then, by (3.18)3,5 and
(4.22), D > 0, so that equation (4.12) has a unique real solution and (4.21) is
valid. If R = 0 then D = 0 and it is clear from (3.17) and (3.18) that Eq. (4.12)
has a (triple) unique real root z0 = 0 and in this case (4.21) is also valid.

Suppose that M0 is a point with coordinates (γ0, δ0) in the considered region.
We now show that if d(M0) = 0, then R(M0) ≤ 0, M0 is a point on the curve
OAB, where d = 0 (see Fig. 1), excluding the endpoints O,B (since 0 < γ < 1).
Indeed, if we suppose to the contrary that R(M0) > 0, then D(M0) > 0 by
(3.18)3 and (4.22). It is clear that D(M) is a continuous function in the open
set Ū = {γ, δ : 0 < γ < 1, 0 < δ < 1}, where M denotes a general point
with coordinates (γ, δ), and M0 ∈ Ū . Hence, there exists a sufficiently small
neighborhood U0 = {γ, δ : (γ − γ0)

2 + (δ − δ0)
2 < κ2} of the point M0, where κ

is a sufficiently small positive number, such that U0 ⊂ Ū and D(M) > 0 for all
M ∈ U0. Defining Ω = U ∩ U0, we have d(M) > 0, D(M) > 0 for all M ∈ Ω.
Hence R(M) < 0 for all M ∈ Ω by Lemma 2. Since R is also continuous on
the set Ū ⊃ Ω and M0 is a boundary point of Ω, we conclude that R(M0) ≤ 0.
This leads to contradiction of our assumption that R(M0) > 0 and the proof is
complete.

If d > 0 and D > 0, Eq. (4.12) again has a unique real solution (since D > 0),
namely z0, which is given by (3.17)1 and (3.18). Since R < 0 by Lemma 2 and
d > 0 it follows from (3.18)3,5 and (4.22) that

(4.24) −(R+
√
D) > 0, −R+

√
D > 0,

from which it is easy to see that (4.21) is valid.
If d > 0 and D = 0 then, by Lemma 2, R < 0. Hence, by using (3.18)3−5 and

(4.22), we have R = −q3 (q > 0), r = 2q3, and Eq. (4.12) becomes

(4.25) (z − q)2(z + 2q) = 0.

Its solutions are q (double root) and −2q. Hence, in this case z0 = −2q and
(4.21) is applicable.
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If d > 0 and D < 0 then Eq. (4.12) has three distinct real roots and z0 is
the smallest root. Following the theory presented in the Sec. 3, the smallest real
root is 2q cos(θ + 2π/3), where θ ∈ (0, π/3) is defined by (3.23).

To ensure that (4.21) is valid we must show that

(4.26) − 3

√

−R+
√
D − 3

√

−(R+
√
D) = 2d cos(θ + 2π/3),

where the roots are complex roots taking their principal values.
Indeed, following the theory of Sec. 3, we have Arg(R +

√
D) = 3θ,

Arg(R −
√
D) = −3θ with 3θ ∈ (0, π) the solution of (3.23). Therefore,

Arg[−(R+
√
D)] = 3θ−π, Arg[−(R−

√
D)] = −3θ+π. Since |− (R+

√
D| = d

it follows that

(4.27)
3

√

−(R+
√
D) = dei(θ−π/3),

3

√

−(R−
√
D) = dei(−θ+π/3).

Note that the roots in (4.27) are complex roots taking their principal values. It
follows that

(4.28) − 3

√

−R+
√
D− 3

√

−(R+
√
D) = −2d cos (θ − π/3) = 2d cos (θ + 2π/3)

and (4.26) is established.
From (4.11), (4.17), (4.21) and (4.22) the root x0 is given by the formula

(4.29) ρc2/c55 =
2σδ

3(1 − γ)
+ sign(−d̄) 3

√

sign(−d̄)[R+
√
D] − 3

√

−R+
√
D,

where each radical is understood as a complex root taking its principal value,
and the function d is now replaced by the function d̄ given by

(4.30) d̄ =
δ(1 + 3γ)

12γ(1 − γ)
− 1

2
.

It is noted that d̄ differs from d by a positive factor. From (4.15) and (4.17),
after some manipulations, we obtain

R =
σ2δ2

54(1 − γ)3

[

16σδ + 36(γ − 1) + 18σδ(γ − 1) + 27(γ − 1)2
]

,

(4.31) D =
σ3δ3

108(γ − 1)4

[

27σδ(γ − 1)2 − 4(γ − 1)(σ3δ3 − 3σ2δ2 − 6σδ + 8)

− 4σδ(σδ − 2)2
]

.
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For isotropic materials δ = 4γ(1 − γ), and hence from (4.30) and (4.31) we
have

(4.32)
d̄ = γ − 1/6, R = 8(45γ − 17)/27,

D = 64(11 − 62γ + 107γ2 − 64γ3)/27.

We observe that the formula (4.29) reduces to a formula which was given
recently by Malischewsky [5], for further discussion of which we refer to Pham

and Ogden [8].
The situation for which 0 < γ < α 6= 1 has not been considered here, and it

is natural to ask whether the formula (4.29) also holds in this case. The analysis
required is more complicated than for the other cases and will be discussed
separately elsewhere.

In conclusion, we remark that the results obtained in this paper can be
extended to other types of anisotropy. Indeed, Royer and Dieulesaint [13]
have shown that for surface (Rayleigh) waves, the results established for the
orthotropic case may be applied to 16 different material symmetry classes, in-
cluding cubic, tetragonal and hexagonal anisotropy.

Appendix: proof of Lemma 2

First we mention some facts required in the proof.
(i) The quantity r determined by (4.13)2 is F1(xN), where xN is the point of

inflexion of the cubic curve y = F1(x) in the (x, y) plane.
(ii) If d > 0 then the function F1(x) has maximum and minimum stationary

points.
(iii) By the Proposition, Eq. (4.8) has a unique real solution in the interval

(0, σδ) for the values of γ, δ belonging to the set Ū .
(iv) The quantities r, R, D are continuous functions of the independent vari-

ables γ, δ in the (open) set Ū .
(v) It is not difficult to show that the point M2(3/4, 3/4) of the (γ, δ) plane

has the properties M2 ∈ U andD(M2) < 0.
Suppose that there exists a point M1 in the (γ, δ) plane such that 0 < γ < 1,

0 < δ < 1 and d(M1) > 0, D(M1) ≥ 0, butR(M1) ≥ 0. If R(M1) = 0 then
r(M1) = 0. Since d(M1) > 0, by (i) and (ii) equation (4.8) has three distinct
real roots at M1. This contradicts the assumption D(M1) ≥ 0. Next, consider
R(M1) > 0, so that r(M1) < 0. If D(M1) = 0 then, from d(M1) > 0, (4.18),
(i) and r(M1) < 0, since 0 < xmax < xmin, it follows that equation (4.8) has
two distinct real roots in the interval (0, σm), but this contradicts (iii). Thus,
D(M1) > 0.
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Since, by (v), M1 and M2 ∈ U , we can, by Lemma 1, connect the two points
M1 and M2 by a simple continuous curve, which we denote by L12 ∈ U . By
(iv), D is a continuous function on L12. Since D(M1) > 0, D(M2) < 0 (by (v)),
there must exist a point M0 ∈ L12,M0 6= M1,M2 such that D(M0) = 0 and
D(M) > 0 for all M ∈ L10 (except M0), where L10 is the part of L12 that
connects M1 and M0. Analogously to the above arguments, it can be seen that
R must not vanish at any point M ∈ L10. Since R is a continuous function on
L10 and R(M1) > 0, then R(M) > 0 for all M ∈ L10, and hence R(M0) > 0,
i.e. r(M0) < 0. This, together with d(M0) > 0, D(M0) = 0, (4.18), (i), (ii) and
the ordering 0 < xmax < xmin, shows that Eq. (4.8) has two distinct real roots
in the interval (0, σm), but this contradicts (iii), and the proof is complete.
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