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The dynamic behavior of two Griffith cracks in a strip made of piezoelectric mate-
rials under anti-plane shear waves is investigated by means of the non-local theory
for impermeable crack surface conditions. A one-dimensional non-local kernel is used
instead of a two-dimensional one for the anti-plane dynamic problem to obtain the
stress and the electric displacement near the crack tips. By utilizing the Fourier trans-
form, the problem can be solved by means of two pairs of triple integral equations.
These equations are solved using the Schmidt method. Contrary to the classical so-
lution, it is found that no stress and electric displacement singularity are present at
the crack tip. This is shown to be consistent with the physical nature.
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1. Introduction

In the theoretical studies of crack problems in the piezoelectric materials,
numerous researchers have proposed several different electric boundary condi-
tions at the crack surfaces. For example, for the sake of analytical simplification,
the assumption that the crack surfaces are impermeable to electric fields was
adopted by many researchers [1–4]. In this model, the assumption of imperme-
able cracks refers to the fact that the crack surfaces are free of surface charge and
thus the electric displacements vanish inside the crack. In fact, cracks in piezo-
electric materials consist of vacuum, air or some other gases. This requires that
the electric fields can propagate through the crack, so the electric displacement
component perpendicular to the crack surfaces should be continuous across the
crack surfaces. Along this line, the crack problems in piezoelectric materials were
analyzed in [5–7]. Due to a much simpler treatment from the mathematical point
of view, the impermeable crack and the conducting crack are still employed ex-
tensively in the study of the crack problems of piezoelectric materials. However,
these solutions contain the stress and electric displacement singularity. This is
not reasonable according to the physical nature.
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As it is commonly known, one of the principal postulates of the traditional
mechanics of continuous media is the principle of local action. This principle
excludes the action at a distance, and attributes changes occurring at a point
of the medium to thermo-energetic factors acting at the point. Thus the classi-
cal theory, by restricting the response of a continuum to strictly local actions,
constitutes a so-called local theory. A familiar example is provided by the con-
ventional theory of elasticity, in which, when determining the stress at a point,
one disregards the deformation and the temperature fields outside an arbitrarily
small neighborhood of the point. However, the application of classical elasticity
to micro-mechanics leads to some physically unreasonable results. A singularity
appearing in a stress field is a typical one; the existence of stress singularities also
leads to difficulties in development of experiments in micro-mechanics. In fact,
the stress at the crack tip is finite. As a result of this, beginning from Griffith,
all fracture criteria in practice today are based on other considerations, e.g. the
energy, and the J-integral [8]. In contrast to this local approach of zero-range
internal interactions, the modern non-local continuum mechanics, originated and
developed in the last four decades, postulates that the local state at a point is
influenced by the action of all particles of the body. This was done primarily by
Edelen [9], Eringen [10], Green and Rivlin [11]. According to the non-local
theory, the stress at a point X in a body depends not only on the strain at
point X but also on those at all other points of the body. This is different from
the classical theory. In the classical theory, the stress at a point X in a body
depends only on the strain at point X. In the Reference [12], the basic theory
of the non-local elasticity was stated with emphasis on the difference between
the non-local theory and the classical continuum mechanics. The basic idea of
non-local elasticity is to establish a relationship between the macroscopic me-
chanical quantities and the microscopic physical quantities within the framework
of continuum mechanics. The constitutive theory of non-local elasticity has been
developed widely [9], where the microstructures of the material have effect on the
elastic modulus. It has been found that the microstructures of the material have
their effect not only on the constitutive equation but also on the basic balance
laws and boundary conditions [13–14].

Other advances have been made by the application of non-local elasticity to
such fields as the dislocation theory [15–16], solid defects [17–18] and fracture
mechanics [19–20]. While the literature on the fundamental aspects of non-local
continuum mechanics is relatively extensive, applications of the theory are not
too numerous. The results, however, of those concrete problems that were solved
display a rather remarkable agreement with experimental evidence. This can be
used to predict the cohesive stress for various materials close to that obtained
in atomic lattice dynamics [21–22]. Likewise, a non-local study of the secondary
flow of viscous fluid in a pipe furnishes a streamline pattern similar to that
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obtained experimentally by Nikuradze [23]. Other examples of the effectiveness
of the non-local approach are: (i) prediction of the dispersive character of elastic
waves demonstrated experimentally (and lacking in the classical theory) [24] and
(ii) calculation of the velocity of short Love waves whose non-local estimates
agree better with seismological observations than the local ones [25]. Various
non-local theories have been formulated to address the strain-gradient and size
effects (see, for example, Forest [26]).

To avoid the stress singularity in the classical elastic theory, the non-local
theory was used to discuss the state of stress near the tip of a sharp line crack
in an elastic plane subject to uniform tension, shear and anti-plane shear [27–
30]. Recently, the non-local theory was used to analyze the crack problems in
the piezoelectric material [31–32]. These solutions obtained do not contain any
stress singularity, thus resolving a fundamental problem that existed over many
years. This enables us to employ the maximum stress hypothesis to deal with
fracture problems in a natural way. To our knowledge, the dynamic electro-elastic
behavior of the piezoelectric materials strip with two cracks subjected to anti-
plane shear and in-plane electric loading has not been studied by the non-local
theory for impermeable crack surface boundary conditions.

In the present paper, scattering of the harmonic elastic anti-plane shear waves
by two Griffith impermeable cracks in a piezoelectric strip is investigated by use
of the non-local theory. The traditional concept of linear elastic fracture mechan-
ics and the non-local theory are extended to include the piezoelectric effects. To
overcome the mathematical difficulties, one-dimensional non-local kernel func-
tion is used instead of the two-dimensional kernel function for the anti-plane
dynamic problem to obtain the stress and electric displacement occurring at the
crack tips. To obtain the theoretical solution and discuss the probability of using
the non-local theory to solve the dynamic fracture problem in the piezoelectric
materials strip, one has to accept some assumptions, such as in Nowinski’s
works [25, 33]. Certainly, the assumption should be further investigated to sat-
isfy the realistic conditions. Fourier transform is applied and a mixed boundary
value problem is reduced to two pairs of triple integral equations. In solving the
triple integral equations, the crack surface displacement and electric potential
are expanded in a series of Jacobi polynomials. This process is quite different
from that adopted in previous works [1–30]. As expected, the solution in this
paper does not contain the stress and electric displacement singularity at the
crack tip, thus clearly indicating the physical nature of the problem.

2. Basic equations of non-local piezoelectric materials

According to non-local theory, the stress at a point X in a body depends not
only on the strain at point X, but also on those at all other points of the body.



274 Yu-Guo Sun, Zhen-Gong Zhou

This observation is made in accordance with atomic theory of lattice dynamics
and experimental observation of phonon dispersion [34]. For the anti-plane shear
problem, the basic equations of linear, homogeneous, transversely isotropic, non-
local piezoelectric materials, with vanishing body force are [30–32, 35–36]

∂τxz

∂x
+

∂τyz

∂y
= ρ

∂2w

∂t2
,(2.1)

∂Dx

∂x
+

∂Dy

∂y
= 0,(2.2)

(2.3) τkz(X, t) =

∫

V

[

c′44(
∣

∣X ′ − X
∣

∣)w,k(X
′, t),

+ e′15(
∣

∣X ′ − X
∣

∣)φ,k(X
′, t)

]

dV (X ′) (k = x, y),

(2.4) Dk(X, t) =

∫

V

[

e′15(
∣

∣X ′ − X
∣

∣)w,k(X
′, t),

− ε′11(
∣

∣X ′ − X
∣

∣)φ,k(X
′, t)

]

dV (X ′) (k = x, y),

where the only difference with the classical elastic theory and the piezoelectric
theory is in the stress and the electric displacement constitutive equations (2.3)–
(2.4), in which the stress τzk(X, t) and the electric displacement Dk(X, t) at a
point X depends on w,k(X, t) and φ,k(X, t), at all points of the body. w and
φ are the mechanical displacement and the electric potential. For homogeneous
and isotropic piezoelectric materials there exist only three material parameters,
c′44(|X ′ − X|), e′15(|X ′ − X|) and ε′11(|X ′ − X|) which are functions of the dis-
tance |X ′ − X|. ρ is the density of the piezoelectric materials. The integrals in
(2.3)–(2.4) are extended over the volume V of the body enclosed within the
surface ∂V .

As discussed in the papers [23, 29–30], it can be assumed in the form of
c′44(|X ′ − X|), e′15(|X ′ − X|) and ε′11(|X ′ − X|) for which the dispersion curves
of plane elastic waves coincide with those known in lattice dynamics. Among
several possible curves, the following one has been found to be very useful

(2.5) (c′44, e
′

15, ε
′

11) = (c44, e15, ε11)α(
∣

∣X ′ − X
∣

∣).

α(|X ′ − X|) is known as the influence function, and is a function of the dis-
tance |X ′ − X|. c44, e15, ε11 are the shear modulus, piezoelectric coefficient and
dielectric parameter, respectively.
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Substitution of Eq. (2.5) into Eqs. (2.3)–(2.4) yields

τkz(X, t) =

∫

V

α(
∣

∣X ′ − X
∣

∣)σkz(X
′, t)dV (X ′) (k = x, y),(2.6)

Dk(X, t) =

∫

V

α(
∣

∣X ′ − X
∣

∣)Dc
k(X

′, t)dV (X ′) (k = x, y),(2.7)

where

σkz = c44w,k + e15φ,k,(2.8)

Dc
k = e15w,k − ε11φ,k.(2.9)

The expressions (2.8)–(2.9) are the classical constitutive equations of piezo-
electric materials.

3. The crack model

Consider an infinitely long piezoelectric strip of width 2h, containing two
collinear Griffith cracks parallel to the edges of the strip. Cracks occupy the
region b ≤ |x| ≤ 1, y = 0.2b is the distance between two cracks. The geometry of
the problem is shown in Fig. 1. Let ω be the circular frequency of the incident
wave. −τ0 is the magnitude of the incident wave. In what follows, the time-
dependence of all field quantities is assumed to be of the form e−iωt. It was
further supposed that the two faces of the crack do not come in contact during
vibrations. The piezoelectric boundary-value problem for anti-plane shear will be
considerably simplified if we consider only the out-of-plane displacement and the
in-plane electric fields. When the crack is subjected to harmonic elastic waves
and a constant electric displacement Dy = −D0, as discussed in [30, 38], the
boundary conditions on the crack faces at y = 0 are

τyz(x, 0, t) = −τ0, Dy(x, 0, t) = −D0, b ≤ |x| ≤ 1,(3.1)

τyz(x,±h) = Dy(x,±h) = 0, |x| ≤ ∞,(3.2)

w(x, 0, t) = φ(x, 0, t) = 0, |x| < b, 1 < |x| ,(3.3)

w(x, y, t) = φ(x, y, t) = 0, for (x2 + y2)1/2 → ∞.(3.4)
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Fig. 1. Cracks in a piezoelectric strip.

Substituting Eqs. (2.6)–(2.7) into Eqs. (2.1)–(2.2), respectively, using Green–
Gauss theorem, it can be obtained [30]:

(3.5)

∫∫

V

α(
∣

∣x′ − x
∣

∣ ,
∣

∣y′ − y
∣

∣)
[

c44∇2w(x′, y′, t) + e15∇2φ(x′, y′, t)
]

dx′dy′

−
l

∫

−l

α(
∣

∣x′ − x
∣

∣ , 0)
[[[[

σyz(x
′, 0, t)

]]]]

dx′ = ρ
∂2w

∂t2
,

(3.6)

∫∫

V

α(
∣

∣x′ − x
∣

∣ ,
∣

∣y′ − y
∣

∣)
[

e15∇2w(x′, y′, t) − ε11∇2φ(x′, y′, t)
]

dx′dy′

−
l

∫

−l

α(
∣

∣x′ − x
∣

∣ , 0)
[[[[

Dc
y(x

′, 0, t)
]]]]

dx′ = 0,

where the boldface bracket indicates a jump at the crack line. ∇2 = ∂2/∂x2

+ ∂2/∂y2 is the two-dimensional Laplace operator. Because of the assumed
symmetry in geometry and loading, it is sufficient to consider the problem for
0 ≤ x ≤ ∞, 0 ≤ y ≤ h only. Under the applied anti-plane shear load on the
closed surfaces of the crack, the displacement field and the electric potential
possess the following symmetry regulations

(3.7) w(x,−y, t) = −w(x, y, t), φ(x,−y, t) = −φ(x, y, t).

Using the Eq. (3.7), we find that
[[[[[

σyz(x, 0, t)
]]]]]

= 0,(3.8)

[[[[[

Dc
y(x, 0, t)

]]]]]

= 0.(3.9)
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Hence the line integrals in (3.5)–(3.6) vanish. By taking the Fourier transform
of (3.5)–(3.6) with respect to x′, it can be shown that

(3.10)

∞
∫

0

ᾱ(|s| ,
∣

∣y′ − y
∣

∣)

{

c44

[

d2w̄(s, y′, t)

dy2
− s2w̄(s, y′, t)

]

+e15

[

d2φ̄(s, y′, t)

dy2
− s2φ̄(s, y′, t)

]}

dy′ = −ρω2w̄,

(3.11)

∞
∫

0

ᾱ(|s| ,
∣

∣y′ − y
∣

∣)

{

e15

[

d2w̄(s, y′, t)

dy2
− s2w̄(s, y′, t)

]

−ε11

[

d2φ̄(s, y′, t)

dy2
− s2φ̄(s, y′, t)

]}

dy′ = 0.

Here a superposed bar indicates the Fourier transform, e.g.

f̄(s, y) =

∞
∫

0

f(x, y) exp(isx) dx.

What now remains is to solve the integrodifferential Eqs. (3.10)–(3.11) for the
functions w and φ. It seems to be obvious that a rigorous solution of such a prob-
lem encounters serious but not unsurmountable mathematical difficulties, and
one has to resort to an approximate procedure. In the given problem, according to
the assumptions shown in (3.11)–(3.12), the non-local interaction in y-direction
can be ignored. It can be assumed that

(3.12) ᾱ(|s| , |y − y|) = ᾱ0(s)δ(y − y).

From Eqs.(3.10)–(3.11), it can be shown that

(3.13) ᾱ0(s)

{

c44

[

d2w̄(s, y, t)

dy2
− s2w̄(s, y, t)

]

+e15

[

d2φ̄(s, y, t)

dy2
− s2φ̄(s, y, t)

]}

= −ρω2w̄,

(3.14) e15

[

d2w̄(s, y, t)

dy2
− s2w̄(s, y, t)

]

− ε11

[

d2φ̄(s, y, t)

dy2
− s2φ̄(s, y, t)

]

= 0.
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The solution of the Eqs. (3.13)–(3.14) does not present any difficulties, it can be
written for y ≥ 0 as follows:

(3.15)

w(x, y, t) =
2

π

∞
∫

0

[

A1(s)e
−γy + A2(s)e

γy
]

cos(xs) ds,

φ(x, y, t) =
e15

ε11
w(x, y, t) +

2

π

∞
∫

0

[

B1(s)e
−γy + B2(s)e

γy
]

cos(xs) ds,

where γ2 = s2 − ω2/c2ᾱ0(s), c2 = µ/ρ, µ = c44 + e2
15/ε11. A1(s), A2(s), B1(s)

and B2(s) are to be determined from the boundary conditions.
Because of the symmetry, it suffices to consider the problem in the first

quadrant only. According to the boundary conditions (3.1)–(3.3), it can be ob-
tained that

(3.16)
2

π

∞
∫

0

ᾱ0(s)γ
1 − exp(−2γh)

1 + exp(−2γh)
A(s) cos(sx) ds =

1

µ

(

τ0 +
e15D0

ε11

)

b ≤ |x| ≤ 1,

(3.17)
2

π

∞
∫

0

A(s) cos(sx) ds = 0, |x| > 1, |x| < b

and

(3.18)
2

π

∞
∫

0

ᾱ0(s)s
1 − exp(−2sh)

1 + exp(−2sh)
B(s) cos(sx) ds = −D0

ε11
, b ≤ |x| ≤ 1,

(3.19)
2

π

∞
∫

0

B(s) cos(sx) ds = 0, |x| > 1, |x| < b,

where ᾱ0(s) = 1 for the limit a → 0. The relationships between the functions
A(s), B(s), A1(s), A2(s), B1(s) and B2(s) are obtained by applying a Fourier
sine transform [39] to Eq. (3.2):

A(s) =
[

1 + e−2γh
]

A1(s), A2(s) = e−2γhA1(s),

B(s) =
[

1 + e−2sh
]

B1(s), B2(s) = e−2shB1(s).

To determine the unknown functions A(s) and B(s), the above two pairs of
triple-integral equations (3.16)–(3.19) must be solved.
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4. Solution of the triple integral equation

The triple integral equations (3.16)–(3.19) can not be transformed into the
Fredholm integral equation of the second kind because the kernel of the second-
kind Fredholm integral equation in the paper [30] is divergent. The kernel of the
second-kind Fredholm integral equation in [30] can be written as follows:

L(x, u) = (xu)1/2

∞
∫

0

tk(ε′t)J0(xt)J0(ut) dt, 0 ≤ x, u ≤ 1,

where Jn(x) is the Bessel function of order n.

k(εt) = −Φ(ε′t), lim
t→∞

k(ε′t) 6= 0 for ε′ =
a

2βl
6= 0,

(l is the length of the crack),

J0(x) ≈
√

2

πx
cos

(

x − 1

4
π

)

for x ≫ 0.

The limit of tk(ε′t)J0(xt)J0(ut) is not equal to zero for t → ∞. So the ker-
nel L(x, u) in Eringen’s paper [30] is divergent. Of course, the triple integral
Eqs. (3.16)–(3.19) can be considered to be a single integral equation of the first
kind with a discontinuous kernel [28]. It is well known in the literature that inte-
gral equations of the first kind are generally ill-posed in the sense of Hadamard,
e.g. small perturbations of the data can yield arbitrarily large changes in the
solution. This makes the numerical solution of such equations quite difficult. In
this paper, The Schmidt method [40] was used to overcome the difficulty. As
discussed in [25, 27–32], it was taken

α0 = χ0 exp
[

− (β/a)2(x′ − x)2
]

,(4.1)

χ0 =
β

a
√

π
,(4.2)

where β is a constant (here β is a constant appropriate to each material). a is
the lattice parameter. So it can be obtained that:

(4.3) ᾱ0(s) = exp(−(sa)2/(2β)2)

and ᾱ0(s) = 1 for the limit a → 0, so that Eqs. (2.5)–(2.8) reduces to the well-
known equation of the classical theory. Here the Schmidt method can be used
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to solve the triple integral Eqs.(2.5)–(2.8). The displacement w and the electric
potential φ can be represented by the following series:

(4.4) w(x, 0, t) =
∞

∑

n=0

anP

(

1

2
, 1
2

)

n







x − 1 + b

2
1 − b

2

















1 −

(

x − 1 + b

2

)2

(

1 − b

2

)2











1/2

,

for b ≤ x ≤ 1, y = 0,

(4.5) w(x, 0, t) = 0, for x > 1, x < b, y = 0,

(4.6) φ(x, 0, t) =
∞

∑

n=0

bnP

(

1

2
, 1
2

)

n







x − 1 + b

2
1 − b

2

















1 −

(

x − 1 + b

2

)2

(

1 − b

2

)2











1/2

,

for b ≤ x ≤ 1, y = 0,

(4.7) φ(x, 0, t) = 0, for x > 1, x < b, y = 0,

where an and bn are unknown coefficients to be determined and P
(1/2, 1/2)
n (x) is

a Jacobi polynomial [39]. The Fourier transformations of Eqs. (4.4)–(4.7) and
(34) are

(4.8) A(s) = w(s, 0, t) =
∞

∑

n=0

anQnGn(s)
1

s
Jn+1

(

s
1 − b

2

)

,

(4.9) B(s) = φ(s, 0, t) − e15

ε11
w̄(s, 0, t)

=
∞

∑

n=0

(

bn − e15

ε11
an

)

QnGn(s)
1

s
Jn+1

(

s
1 − b

2

)

,

(4.10)

Qn = 2
√

π

Γ

(

n + 1 +
1

2

)

n!
,

Gn(s) =











(−1)n/2 cos
(

s
1 + b

2

)

, n = 0, 2, 4, 6, ...

(−1)(n+1)/2 sin
(

s
1 + b

2

)

, n = 1, 3, 5, 7, ...

where Γ (x) and Jn(x) are the Gamma and Bessel functions, respectively.
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Substituting Eqs. (4.8) and (4.9) into Eqs. (3.16)–(3.19), respectively, the
Eqs. (3.17) and (3.19) can be automatically satisfied. Then the remaining equa-
tions (3.16) and (3.18) reduce to the form:

(4.11)
∞

∑

n=0

anQn

∞
∫

0

ᾱ0(s)Gn(s)
γ[1 − e−2γh]

s[1 + e−2γh]
Jn+1(sl) cos(sx) ds =

π

2µ
τ0(1 + λ),

(4.12)
∞

∑

n=0

(

bn − e15

ε11
an

)

Qn

∞
∫

0

ᾱ0(s)Gn(s)
1 − e−2sh

1 + e−2sh
Jn+1(sl) cos(sx) ds

= −πD0

2ε11
,

where λ =
e15D0

ε11τ0
.

The semi-infinite integral in Eq. (4.11) can be evaluated numerically, except
for the singularities in the integrands of the integrals in Eq. (4.11). These sin-
gularities are poles that occur in the complex plane at the zero of the function
1 + exp(−2γh), such as 2γh = iπ, 3iπ, 5iπ,... . All poles depend on the material,
the incident wave frequency ω and the lattice parameter. It may be noted that
the integral of Eq. (4.11) is not convergent at these poles. However, there is no
pole for ω/c < π/2h. So the integral of Eq. (4.11) is convergent at these poles for
ω/c < π/2h. In this paper, we have only discussed the case of ω/c < π/2h. From
the reference [38], this case may be consistent with the statement that only the
shear waves with ω/c < π/2h can be propagated in an elastic strip of width 2h.
This fact is in agreement with the well-known results that the waves can not
propagate with frequencies less than a parameter depending on the width of the
strip. For ω/c > π/2h, it should be further investigated. For larges, the inte-
grands of Eqs. (4.11) and (4.12) decrease almost exponentially. So, they can be
evaluated numerically by Filon’s method. Equations (4.11) and (4.12) can now
be solved for the coefficients an and bn by means of the Schmidt method [40]
for ω/c < π/2h. For brevity, the Eq. (4.11) can be rewritten (Eq. (4.12) can be
solved using a similar method) as follows:

(4.13)
∞

∑

n=0

anEn(x) = U(x), b < x < 1,

where En(x) and U(x) are known functions and coefficients an are to be deter-
mined. A set of functions Pn(x) which satisfy the orthogonality condition



282 Yu-Guo Sun, Zhen-Gong Zhou

(4.14)

1
∫

b

Pm(x)Pn(x)dx = Nnδmn, Nn =

1
∫

b

P 2
n(x) dx

can be constructed from the function En(x) such that

(4.15) Pn(x) =
n

∑

i=0

Min

Mnn
Ei(x),

where Mij is the cofactor of the element dij of Dn, which is defined as

(4.16) Dn =



























d00, d01, d02, ..., d0n

d10, d11, d12, ..., d1n

d20, d21, d22, ..., d2n

..........................

..........................

..........................

dn0, dn1, dn2, ..., dnn



























, dij =

1
∫

b

Ei(x)Ej(x) dx.

Using Eq. (4.13)–(4.16), we obtain

(4.17) an =
∞

∑

j=n

qj
Mnj

Mjj
with qj =

1

Nj

1
∫

b

U(x)Pj(x)dx.

5. Numerical calculations and discussion

The aim of the present paper is to study the application of the non-local
theory in fracture mechanics. The other aim of the present paper is to show that
the Schmidt method can be used to solve such kind of the triple (dual) integral
equation in which the limit of the kernel does not tend to a constant. This method
is more exact and more appropriate than Eringen’s method for solving this kind
of problem. In this paper, we just give an attempt to refer our formulation to a
problem of a lattice structure. However, there are many problems that should be
investigated in the future work of non-local theory. For example, the choice of the
influence function α should be further studied to satisfy the realistic condition,
the practical value of the maximum stress near the crack tips should be measured
by experiments, and so on. From the references [40–42], it can be seen that the
Schmidt method leads to satisfactory results if the first ten terms of infinite series
to Eq. (4.13) are retained. The behavior of the maximum dynamic stress remains
steady with the increasing number of terms in (4.13). Although we can determine



Nonlocal theoretical analysis... 283

the entire dynamic stress field and the electric displacement from coefficients an

and bn, it is of importance in fracture mechanics to determine the stress τyz and
the electric displacement Dy in the vicinity of the crack tips. τyz and Dy along
the crack line can be expressed respectively as

(5.1) τyz(x, 0, t)=− 2

π

∞
∑

n=0



µanQn

∞
∫

0

ᾱ0(s)Gn(s)
γ[1−e−2γh]

s[1+e−2γh]
Jn+1(sl) cos(xs)ds

+ e15

(

bn − e15

ε11
an

)

Qn

∞
∫

0

ᾱ0(s)Gn(s)
1 − e−2sh

1 + e−2sh
Jn+1(sl) cos(xs)ds



,

(5.2) Dy(x, 0, t)

= − 2

π

∞
∑

n=0

(e15an − ε11bn)Qn

∞
∫

0

ᾱ0(s)Gn(s)
1 − e−2sh

1 + e−2sh
Jn+1(sl) cos(xs)ds.

For a = 0 at x = b, 1, we have the classical stress and electric displacement
singularity. However, as long as a 6= 0, the semi-infinite integration and the series
in the Eqs. (5.1) and (5.2) are convergent for any value of variable x. Equations
(5.1) and (5.2) give a finite stress along y = 0, so there is no stress and electric
displacement singularity at the crack tips. At b < x < 1, τyz/τ0 is very close to
unity, and for x > 1, τyz/τ0 and Dy/D0 possess finite values decreasing from a
finite value at x = 1 to zero at x → ∞. Since a/[2β(1− b)] > 1/100 represents a
crack length of less than 100 atomic distances as stated in [30], and other serious
questions arise regarding the interatomic arrangements and force laws, we do
not pursue solutions valid at such small crack sizes. The semi-infinite numerical
integrals, which occur, are evaluated easily by Filon’s method because of the
rapid decrease of the integrands. In all computations, the material constants are
not considered, we considers the incident wave frequency, the wave velocity, the
crack length, the distance between two cracks, the thickness of the strip, the
distance between two cracks and the lattice parameter in this paper, because
the stress fields do not depend on the material constants. Since the integrands
of Eqs. (5.1) and (5.2) are complex, the stress along the crack face exhibits a
slight variation. The results are plotted in Figs. 2–11.

The following observations are very important:
(i) The dynamic stress and the electric displacement at the crack tip become

infinite as the atomic distance a → 0 (ᾱ0(s) = 1 for the limit a → 0). This is
the classical continuum limit of square root singularity. This can be obtained
from two pairs of triple-integral equations (3.16)– (3.19). For the local theory,
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we can only obtain the stress and electric displacement intensity factors for the
variation of ωl/c.

(ii) For the a/β = constant, the atomic distance does not change, the value of
the stress and the electric displacement concentrations (at the crack tip) become
higher with the increase of the crack length as shown in Figs. 2 to 3. Not this fact,
the experiments indicate that the piezoelectric materials with smaller cracks are
more resistant to fracture than those with larger cracks [30]. The stress and the
electric displacement fields near the left-hand tip are greater than the ones near
the right-hand tip for the crack, as shown in Figs. 2, 3.

Fig. 2. The stress at the crack tip versus b for h = 1.0,
a/(2β) = 0.0005, ω/c = 0.4, λ = 0.4. (PZT-5H).

Fig. 3. The electric displacement at the crack tip versus b for h = 1.0,
a/(2β) = 0.0005, ω/c = 0.4, λ = 0.4. (PZT-5H).
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(iii) The significance of this result is that the fracture criteria are unified at
both the macroscopic and microscopic scales, and we can solve the problem of
any crack scales.

(iv) The present results will change to the classical ones when we introduce
the function α(|X ′ − X|) = δ(|X ′ − X|).

(v) The dynamic stress concentration occurs at the crack tip as defined in
[29–30], and this is given by

τyz(b, 0, t)/τ0 = c1/
√

a/[2β(1 − b)],(5.3)

τyz(1, 0, t)/τ0 = c2/
√

a/[2β(1 − b)],(5.4)

where c1 and c2 represent the stress concentration value at the tip of the crack.
c1 is almost equal to c1 ≈ 0.533. c2 is almost equal to c2 ≈ 0.533. It is larger
than the static stress concentration of the static non-local problem [30].

(vi) The dimensionless stress is found to be independent of the electric loads

and the material parameters. It just depends on the length of the crack, the

lattice parameter, the thickness of the strip, the circular frequency of the incident

wave and the wave velocity. However, the electric field is found to be independent

of the material parameters and the circular frequency of the incident wave and

the wave velocity. It just depends on the length of the crack, the thickness of

the strip and the lattice parameter. The dynamic stress at the crack tips tends

to increase with the frequency for ω/c < 1.2 as shown in Figs. 4, 5.

Fig. 4. The stress at the crack tip versus ω for h = 1.0, a/(2β) = 0.0005, b = 0.1, λ = 0.4
(PZT-5H).
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Fig. 5. The stress at the crack tip versus ω for h = 1.0, a/(2β) = 0.0005, b = 0.1, λ = 0.4.
(PZT-4).

(vii) The dynamic stress and the dynamic electric displacement at the crack

tips tend to decrease with the thickness of the strip, they reach a minimum and

then they increase in magnitude, as shown in Figs. 6, 7.

Fig. 6. The stress at the crack tip versus h for b = 0.1, a/(2β) = 0.0005, ω/c = 0.4, λ = 0.4.
(PZT-5H).

(viii) The maximum stress does not occur at the crack tip, but slightly away

from it, as shown in Figs. 8, 9. This phenomenon has been thoroughly analysed
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Fig. 7. The electric displacement at the crack tip versus h
for b = 0.1, a/(2β) = 0.0005, ω/c = 0.4, λ = 0.4. (PZT-5H).

Fig. 8. The stress along crack line versus x
for h = 0.3, b = 0.1, a/(2β) = 0.0001, ω/c = 0.4, λ = 0.4. (PZT-4).

in [43]. The maximum stress is finite. The distance between the crack tip and

the maximum stress point is very small, and it depends on the crack length and

the lattice parameter. Contrary to the classical piezoelectric theory solution, it is

found that no stress and electric displacement singularity is present at the crack

tip, and also the present results converge to the classical ones far away from the

crack tip.
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Fig. 9. The electric displacement along crack line versus x
for b = 0.1, h = 0.3, a/(2β) = 0.0001, ω/c = 0.4, λ = 0.4. (PZT-4).

(ix) The dynamic stress and the dynamic electric displacement at the crack

tips tend to decrease with increasing lattice parameter a/(2β) as shown in

Figs. 10, 11.

Fig. 10. The stress at the crack tip versus a/(2β)
for h = 1.0, b = 0.1, ω/c = 0.4, λ = 0.4. (PZT-5H).
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Fig. 11. The electric displacement at the crack tip versus a/(2β)
for h = 1.0, b = 0.1, ω/c = 0.4, λ = 0.4. (PZT-5H).
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