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The paper deals with the flow induced by a constantly accelerating edge in a Maxwell
fluid. The solutions obtained satisfy both the associate partial differential equations
and all imposed initial and boundary conditions. For λ → 0 they reduce to those
corresponding to a Navier–Stokes fluid.

1. Introduction

The Raileigh–Stokes problem for an edge has attracted much attention
due to its practical importance and to its fundamental value for the theory.
An elegant solution, in the context of the Navier–Stokes theory, was given by
Zierep [1]. Its extension to second grade fluids was established by Fetecau and
Zierep [2] for a time-dependent boundary condition. Their solution contains, as
special cases, both the flow due to an impulsively accelerated edge and the flow
induced by a constantly accelerating edge. Similar solutions for the flat plate were
obtained by Bandelli et. al. [3] and Erdogan [4] using the Laplace and Fourier
sine transforms. It can be easily observed that the corresponding solutions given
in [4] are special cases of the solution (2.5) of [2]. For some extensions of the flow
due to an impulsively accelerated edge see also Fetecau and Zierep [5] and
Fetecau [6].

The purpose of this work is to present the exact solutions corresponding
to the flow induced by a constantly accelerating edge in a Maxwell fluid. These
solutions satisfy both the associated partial differential equations and all imposed
initial and boundary conditions. Moreover, similar solutions corresponding to
a Navier–Stokes fluid appear as limiting cases of our solutions.
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2. Governing equations

The incompressible Maxwell fluid of B type is characterized by the constitu-
tive equations [7] (see also [8])

(2.1) T = −pI + S, S + λ(Ṡ − LS − SLT ) = µA,

where T is the Cauchy stress tensor, −pI denotes the indeterminate spherical
stress, S is the extra stress tensor, L is the velocity gradient, A = L + LT is the
first Rivlin–Ericksen tensor, λ is the relaxation time, µ is the dynamic viscosity
and superposed dot denotes the material time derivative.

The flows to be considered here have the velocity field [1, 2]

(2.2) v = v(y, z, t)i,

where i denotes the unit vector along the x-direction of the Cartesian coordinate
system x, y and z. Since the velocity field is independent of x, we expect that
the extra stress field will be also independent of x.

Equations (2.1)2 and (2.2) together with the natural condition [5–7]

(2.3) S(y, z, 0) = 0,

(the fluid being at rest up to the moment t = 0) lead to Syy = Syz = Szz = 0
and

(2.4) (1 + λ∂t)τ1 = µ∂yv, (1 + λ∂t)τ2 = µ∂zv,

(2.5) (1 + λ∂t)σ = 2λ(τ1∂yv + τ2∂zv),

where τ1 = Sxy, τ2 = Sxz are tangential tensions and σ = Sxx is the normal
stress.

For the flows given by (2.2), the constraint of incompressibility is automati-
cally satisfied and the balance of linear momentum, in absence of the body forces
and of a pressure gradient in the x-coordinate direction, reduces to

(2.6) ∂yτ1 + ∂zτ2 = ρ∂tv,

where ρ is the constant density of the fluid.
Eliminating τ1 and τ2 between Eqs. (2.4) and (2.6) we attain to the following

second-order linear partial differential equation

(2.7) λ∂2
t v(y, z, t) + ∂tv(y, z, t) = ν(∂2

y + ∂2
z )v(y, z, t); y, z, t > 0,

where ν = µ/ρ is the kinematic viscosity of the fluid.
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Let us now consider an incompressible Maxwell fluid, at rest, occupying the
quarter-space (−∞ < x < ∞; y, z > 0). Suppose that the infinitely extended
edge is subject, after time zero, to a constant acceleration A. Owing to the shear
the fluid is gradually moved. Its velocity field is of the form (2.2), the governing
equation is given by (2.7) and the boundary and initial conditions are

(2.8)
v(0, z, t) = v(y, 0, t) = At, t > 0;

v(y, z, 0) = 0, y > 0, z > 0.

The equation (2.7) being of a higher order in t than the similar equation for a
Navier–Stokes fluid, the additional condition

(2.9) ∂tv(y, z, t) = 0 when t = 0,

has to be also satisfied (see also [8]). Furthermore, the natural condition [1]

(2.10) v(y, z, t) → 0 as y2 + z2 → ∞, t > 0,

assures the fact that the fluid is quiescent far away from the edge.

3. The solutions of the problem

3.1. Calculation of the velocity field

Multiplying Eq. (2.7) by (2/π) sin(ξy) sin(ηz), integrating then with respect
to y and z from 0 to ∞ and having in mind the boundary and initial conditions
(2.8)–(2.10), we attain to

(3.1) λ∂2
t vs(ξ, η, t) + ∂tvs(ξ, η, t) + ν(ξ2 + η2)vs(ξ, η, t) =

2

π
νA

ξ2 + η2

ξη
t;

ξ, η, t > 0,

where vs(ξ, η, t), the double Fourier sine transform of v(y, z, t), has to satisfy the
initial conditions

(3.2) vs(ξ, η, 0) = ∂tvs(ξ, η, 0) = 0, ξ, η > 0.
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The solution of the ordinary differential equation (3.1) with the initial conditions
(3.2) is given by

(3.3) vs(ξ, η, t) =
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Inverting (3.3) by means of the Fourier sine formula, we get the next expres-
sion for the velocity field (see also the entry 1 of Table 5 of [9])

(3.4) v(y, z, t) = At−
4A

νπ2

∞
∫

0

∞
∫

0
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dξ dη
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4λA

νπ2

∫∫

D 1

r21 exp(r2t) − r22 exp(r1t)

r2 − r1

sin(yξ) sin(zη)

ξη (ξ2 + η2)
dξ dη

+
4A

νπ2
exp

(

−
t

2λ

)
∫∫

D 2

[

cos

(

βt

2λ

)

+
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By letting now λ→ 0 in the above relation, we get

(3.5) v(y, z, t) = At−
4A

νπ2

∞
∫

0

∞
∫

0

[

1 − exp[−ν(ξ2 + η2)t]
]

·
sin(yξ) sin(zη)

ξη (ξ2 + η2)
dξ dη ,

that represents the velocity field corresponding to a Navier–Stokes fluid.

3.2. Calculation of the tangential tensions

The solutions of the ordinary differential equations (2.4) with the initial con-
ditions (2.3) are

(3.6)

τ1(y, z, t) =
µ

λ

t
∫

0

exp

(

τ − t

λ

)

(1 + λr∂τ )∂yv(y, z, τ) dτ ,

τ2(y, z, t) =
µ

λ

t
∫

0

exp

(

τ − t

λ

)

(1 + λr∂τ )∂zv(y, z, τ) dτ .

Introducing (3.4) in (3.6) we obtain

(3.7) τ1(y, z, t) = −
4ρA

π2

∞
∫

0

∞
∫

0

cos(yξ) sin(zη)

η (ξ2 + η2)
dξ dη

+
4ρA

π2

∫∫

D 1

r2 exp(r1t) − r1 exp(r2t)

r2 − r1

cos(yξ) sin(zη)

η (ξ2 + η2)
dξ dη

+
4ρA

π2
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(

−
t

2λ

)
∫∫

D 2

[

cos

(

βt

2λ

)

+
1

β
sin

(

βt

2λ

)]

cos(yξ) sin(zη)

η (ξ2 + η2)
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and

(3.8) τ2(y, z, t) = −
4ρA

π2

∞
∫

0

∞
∫

0

sin(yξ) cos(zη)

ξ (ξ2 + η2)
dξ dη

+
4ρA

π2

∫∫

D 1

r2 exp(r1t) − r1 exp(r2t)

r2 − r1

sin(yξ) cos(zη)

ξ (ξ2 + η2)
dξ dη

+
4ρA

π2
exp

(

−
t

2λ

)
∫∫

D 2

[

cos

(

βt

2λ

)

+
1

β
sin

(

βt

2λ

)]

sin(yξ) cos(zη)

ξ (ξ2 + η2)
dξ dη .

The tangential stresses

(3.9) τ1(y, z, t) = −
4ρA

π2

∞
∫

0

∞
∫

0

[

1 − exp[−ν(ξ2 + η2)t]

]

cos(yξ) sin(zη)

η (ξ2 + η2)
dξ dη

and

(3.10) τ2(y, z, t) = −
4ρA

π2

∞
∫

0

∞
∫

0

[

1 − exp[−ν(ξ2 + η2)t]

]

·
sin(yξ) cos(zη)

ξ (ξ2 + η2)
dξ dη ,

corresponding to the velocity field (3.5), can be also obtained as a limiting case
of (3.7) and (3.8) for λ→ 0.

Finally, having τ1, τ2 and v, we can use (2.3) and (2.5) in order to determine
the normal stress σ. The hydrostatic pressure p, as it results from the equations
of motion, can be determined with the accuracy up to an arbitrary function of t.

4. Conclusions

In this paper we have determined the velocity field and the associated tan-
gential tensions corresponding to the flow induced by a constantly accelerating
edge in a Maxwell fluid. Direct computations show that v(y, z, t), τ1(y, z, t) and
τ2(y, z, t), given by (3.4), (3.7) and (3.8), satisfy both the associate partial dif-
ferential equations (2.4), (2.6) and (2.7) and all the imposed initial and boundary
conditions, the differentiation term by term in x, y and t being clearly permissi-
ble. Furthermore, the similar solutions (3.5), (3.9) and (3.10), for a Navier–Stokes
fluid, appear as limiting cases of our solutions.
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The solutions (3.4), (3.7) and (3.8), corresponding to a Maxwell fluid, contain
sine and cosine terms. This indicates that in contrast with the Newtonian fluids,
whose solutions (3.5), (3.9) and (3.10) do not contain such terms, the oscillations
are set up in the fluid. The amplitudes of these oscillations decay exponentially
in time, the damping being proportional to exp(−t/2λ).
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