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The present paper is the second of a series of three papers devoted to the micro-
mechanical conditions which render possible the appearance of shear bands in crys-
talline materials. It focuses on the deformation at the vertices of the Bishop and Hill
polyhedron, which are important because most of the shear bands originate at the
grain boundaries where many slip systems are active. The conditions of bifurcation
are analysed on the scale of the slip systems by crystallographic class of vertices. An
application is given in the case of channel-die compression and it shows that the tex-
ture components are unequally liable to shear banding, the Copper one, for example,
being more sensitive than Goss, as known experimentally. There is also a good agree-
ment of the predictions with the geometry of the bands, especially the characteristic
feature of the inclination at 35◦ with respect to the rolling axis. Considerations fol-
low on the actual implementation, by micro-structural phenomena, of the localization
whose mechanical possibility has been discussed in the article.
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Notations

h, k, l, u, v, w Miller–Bravais indices,

a, b, c, l,m, l specific Miller–Bravais indices,

θ1, θ2 angles determining the normal to a shear plane in the axes of the crystal,

φ1, Φ, φ2 Bungle angles,

σ uniaxial Cauchy stress component,

<M> average Taylor factor,

Ha macroscopic strain hardening modulus,

ε Mises-type equivalent strain,

ε̇ uniaxial strain rate,

γ accumulated plastic strain,
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ψ1, ψ2 angles made by the normal to a shear plane with the axes of the channel die,
RD rolling direction,
TD transverse direction,
ND normal direction.

1. Introduction

A general theory of the bifurcation into shear bands of rate-insensitive,
ductile f.c.c. single crystals with uniform strain hardening obeying the Schmid
law has been proposed in a previous article [1]. It was shown that the conditions
which determine the possibility of the bifurcation form a system (S) of nine equa-
tions, labelled Eqs. (3.9)1 to (3.9)9 in [1]. They take different forms according to
the variety activated on the Bishop and Hill polyhedron. The present paper deals
with the case of the vertices, which form five crystallographic classes labelled 4A
to 4E. Their importance in localization phenomena has been pointed out by var-
ious authors [2] who showed, for example, that necking in biaxial stretching can
be predicted when the vertices are present on the yield locus, whereas it cannot
be done in the case of a smooth flow surface. This phenomenon is called ‘vertex
softening’.

The vertices of the Bishop and Hill polyhedron are particularly relevant for
the study of intragranular shear banding in polycrystals since:

i) Electron microscopy investigations show that shear bands often originate
at the grain boundaries [3] where the flow is highly constrained and at least
five slip systems are required to accommodate the deformation.

ii) The question: how many slip systems are active at the centre of the grains?
– has no unique answer [4], but if the Taylor hypothesis [5] is used to
calculate the mechanical behaviour of a polycrystal, all the grains deform
with the same completely imposed strain tensor and their deviatoric stress
states correspond to the vertices of the Bishop and Hill polyhedron.

Six or eight slip systems are available according to the class of vertices, and
no unique combination of glide rates produces the required strain. Nevertheless,
as seen below, the onset of shear banding is uniquely determined by the present
theory in terms of the ratio R = ha/τc (microscopic work hardening modulus
versus critical resolved shear stress), while uncertainty remains on which systems
are active in the shear band. Table 1 gives five examples of the vertices S υ

υ = 1..56 of the polyhedron, one in each crystallographic class [6].
The second section of the present paper develops the bifurcation criterion

for the system (S) specified to the vertices. The task is here easier than on
the edges, since here (S) is linear with respect to all its nine unknowns. The
third section contains calculations in the case of the channel-die compression, as
an illustration of the previous one. The fourth one discusses the physics which
supports the mechanical analysis.
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Table 1. States of deviatoric stress at various vertices of the Bishop and Hill

polyhedron.

Class 4A, vertex 1 (8 slip systems): Class 4D, vertex 21 (6 slip systems):�
s1ij

�
=

2
√

6

3

24 1/2 0 0
0 1/2 0
0 0 −1

35 �
s21ij

�
=

√
6

3

24 −1/2 0 3/2
0 −1/2 3/2

3/2 3/2 1

35
Class 4B, vertex 28 (6 slip systems): Class 4E, vertex 7 (8 slip systems):�

s28ij

�
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√
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24 0 1 1
1 0 1
1 1 0

35 �
s7ij

�
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√
6
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24 1 0 1
0 0 0
1 0 −1
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Class 4C, vertex 6 (8 slip systems):�

s6ij
�

=
√

6

24 0 1 0
1 0 0
0 0 0

35
2. Analysis of the bifurcation at the vertices

2.1. Resolution of the system S

As seen previously, the rate constitutive relation at the vertex Sυ takes the

form
∨

S
∗ =

ha

τ2
c

(Sυ ⊗ Sυ) : D =

(

ha

τ2
c

Sυ
ijDij

)

S
υ. Under the effect of continuous

flow, the yield locus deforms homothetically and the deviatoric stress increment
∨

S
∗ is proportional to the applied deviatoric stress Sυ. The bifurcation criterion

is written with the help of the quantities Cij which intervene in the equilibrium
equations (Eqs. (3.9)1 to (3.9)3 of the above quoted paper):

(2.1) Cij = R Sυ
ik Sυ

jl νk νl +
1

2

[

Sυ
ik νj νk + δij Sυ

kl νk νl − Sυ
jkνi νk − Sυ

ij

]

with R = ha/τc. Bifurcation occurs if:

(2.2) ∆υ =

∣
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∣

∣
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∣
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C11 C12 C13 ν1

C21 C22 C23 ν2

C31 C32 C33 ν3
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∣

∣

∣

∣

∣

∣

∣

∣

= 0.

The resolution of the system (S) is split into two steps:
i) determination of the velocity field ηi i = 1..3 in the shear band with

Eqs. (3.9)1 to (3.9)4 of the previous paper. Due to the linearity of (S), there
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is only one possible shear direction for a given ν. From the expression for
∆υ, the bifurcation condition should a priori take the form of a polynomial
of degree two for the unknown R. In fact, due to the particular values of
the Sυ

ij , it is always linear in R, and this quantity can be calculated on all
the planes of the Euclidian space except in rare cases when it is infinite or
undetermined. The analytical expressions of R as a function of the νi vary
for each vertex; e.g., if υ = 1:

(2.3) R =

√
6

12

(

1 − 2ν2
3

)

ν2
3

(

1 − ν2
3

) .

On this specific example, it can be seen that equilibrium and normality can
be satisfied by R taking any real value (the second step will put bounds
on it), and that a variety of planes are possible for a given R, that is, a
given state of work hardening.

ii) the velocity field ηi i = 1..3 calculated by Eqs. (3.9)1 to (3.9)4 provides
an admissible shear band only if it belongs to the cone of the normals of
the considered vertex, that is, if the shear results of a combination of the
available slip systems (plane and direction working in the required sense).
For the five crystallographic classes, this implies Rmin ≤ R ≤ Rmax with
Rmin = −Rmax as shown below.

The algorithm giving R is the following. At the vertex Sυ:
• All the planes of the Euclidian space are successively tested for bifurcation:

(2.4)

ν1 = cos θ1 cos θ2, 0 ≤ θ1 < 2π, 0 ≤ θ2 ≤ π/2,

ν2 = sin θ1 cos θ2,

ν3 = sin θ2.

ν3 is taken positive to draw the stereographic projections. θ1 and sin θ2 are
varied with equal steps on the intervals [0, 2π] and [0, 1] respectively, to obtain
an isochoric repartition [7].

• The shear flow is calculated as D =
1

2
(η ⊗ ν + ν ⊗ η). η is only known

within a scaling factor, so that it can be taken such as ηi, ηi = 1. Its sign is
determined by the inequality Sυ:D > 0. Following Bishop and Hill, D belongs
to the cone of the normals to the vertex S

υ0 if ∀υ 6= υ0 S
υ : D ≤ S

υ0 : D.
In the conditions on the flow cone, ν and η play a symmetric role. It is not

so with the equilibrium equations, which involve the spin rate Ω. These can be
written with the help of the gradient L = η⊗ ν of the velocity field and the rate
of isostatic pressure ṗ:

(2.5) div

(

ha

τ2
c

(Sυ ⊗ S
υ) : L + L · Sυ − S

υ · L
)

− grad (ṗ) = 0.
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In this form, the effect of changing L into LT , that is (hkl)[uvw] into (uvw)[hkl],
becomes clear. Using the properties of symmetry of the deviatoric stress tensors
(Sυ ·L = L

T ·Sυ) and the fact that the sign of ṗ is unimportant, it appears that:
• at one vertex Sυ, L and LT are obtained for opposite values of R,
• at the vertices Sυ and Sυ+28 = – Sυ, identical values of R correspond to

transposed shear flows L and LT . Hence Rmin = −Rmax. Sυ and Sυ+28

have common R extrema which exchange the shear plane and the shear
direction.

Figure 1 shows the stereographic projections of the admissible normals ν,
the (001) pole being in the centre of the projection. They have been regrouped
according to the crystallographic class of the vertices. They form continuous
cones, with rounded frontiers except for a few apices. The directions of the
latter have been shown in the figure. Some have simple Miller indices (e.g.
{112} for the classes 4A and 4B), some have more complex values which have
been given approximately (e.g. ∼ {113} for the class 4D). The l = 0.100 and
m = 0.258 which, as seen below, correspond to extreme values, are found for
the class 4C. Many planes can be activated from vertices of different classes,
especially in the stereographic triangle delimited by {101}, {112} and {111};
but a number is unfit for all vertices, forming a cone which appears in Fig. 1f,
approximately centred around the direction {631}.

[Fig. 1]
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Fig. 1. (a) Class 4A; (b) Class 4B; (c) Class 4C; (d) Class 4D; (e) Class 4E; (f) planes unfit
for bifurcation · extremum for R + remarkable, non extreme value for R.

The fact that the plane {111} is a possible shear plane for the classes 4A
to 4D is especially important because, as will be discussed later, many authors
think that shear bands have their origin in the coarse slip which occurs on the
octahedral planes [8]. This mechanism is not possible in the class 4E.

The characteristic values of R have been regrouped in Table 2: 4B and 4D are
the most favoured classes from the point of view of strain hardening. The average
Rav is zero in the classes 4A and 4C, and has opposite values for opposite vertices
in the other classes. The values R > 0 correspond to positive work hardening,
which means that the bifurcation is possible without detrimental effects in the
material. The largely negative values of R are of no interest, since they cannot
be reached without ruining the material.

Table 2. Characteristic values of bifurcation according to the class

of the vertices.

Class 4A 4B 4C 4D 4E

Rmax

√
6/8 = 0.306 7

√
6/16 = 1.071 0.620 7

√
6/16 = 1.071

√
6/3 = 0.816

Rav 0 ±0.0679 0 ±0.1605 ±0.0426

Percentage of 5.9 15.3 26.1 4.0 3.1
bifurcating planes

Occurrence 4.1 18.1 40.9 20.1 16.8

The percentage of planes suitable for bifurcation has also been noted; its
total hardly exceeds one half of all suitable planes, a fact consistent with the
existence of a no shear banding spot around {631}. These figures have been put
in relation with the results by Fortunier and Linhart [9], who have considered
the possible plastic flow and calculated the frequency with which they activate
the various vertices (line: ‘Occurrence’ in the Table 2).
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In Figure 2, the stereographic projections of ν and of the corresponding η
have been represented facing each other for one vertex taken in each of the
five crystallographic classes. The isovalues of R have also been reported. Such
a particular shear system appears in two sub-figures, with the same graphic
symbol. In the case of the classes 4A and 4C, because of the symmetry, it was
only necessary to represent one quadrant of the projections of ν. The Miller–
Bravais indices and the corresponding R values of a few remarkable points are
presented in Table 3.

Table 3. Remarkable points in Fig. 2.

Class and vertex Point Miller–Bravais indices R = ha/τc

4A S1 1 (112)[1̄1̄1] 0.306

2 (111)[1̄1̄2] –0.306

3 (101)[101̄] 0

4 (011)[011̄] 0

4B S28 1 (100)[011] 0.204

2 (211)[1̄11] –1.071

3 (011)[100] –0.204

4 (1̄11)[211] 1.071

5 (112][1̄1̄1] –1.071

6 (001)[1̄1̄0] 0.204

7 (1̄1̄1)[112] 1.071

8 (1̄1̄0)[001] –0.204

9 (121)[11̄1] –1.071

10 (010)[101] 0.204

11 (101)[010] –0.204

12 (11̄1)[121] 1.071

4C S6 1 (100)[01̄0] –0.106

2 (ml0)[lm̄0] –0.520

3 (mll)[01̄1] –0.317

4 (112)[1̄1̄1] 0.306

5 (111)[1̄1̄2] –0.306

4D S21 1 (111)[1̄1̄2] –1.071

2 (110)[001̄] 0.104

3 (001)[110] –0.204

4 (1̄1̄2)[111] 1.071

4E S7 1 (101)[1̄01] –0.816

2 (1̄01)[101] 0.816
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2.2. Most favoured bifurcation systems

In the results presented above, it has already been referred to the shear sys-
tems corresponding to Rmax which appear in Fig. 2. They are the first which
allow the bifurcation from a homogeneous deformation mode while ha is high and
τc is small. Their list is given in Table 4 for the vertices Sυ υ = 1..28. As it is seen
above, the systems for the vertices υ = 29..56 are obtained by exchanging the in-
dices of the plane and of the direction of shear. The most favoured bifurcation sys-
tems have simple Miller–Bravais indices, except for the {abc} < lm̄l > class 4C in

Table 4. Most favoured bifurcation systems on the vertices υ = 1..28 of the

Bishop and Hill polyhedron a = 0.117, b = 0.399, c = 0.909, l = 0.100 and

m = 0.258. al̄ + bm+ c̄l = 0.

Vertex Normal Glide direction

1 1 1 −1 −2 1 −1 1
2 1 1 −2 1 1 1
3 1 −1 2 −1 1 1
4 1 1 2 −1 −1 1

4A 2 1 1 −1 −1 1 −1 1
2 2 1 −1 1 −1 −1
3 2 −1 1 1 1 −1
4 2 1 1 −1 1 1

3 1 1 −2 −1 1 1 −1
2 1 2 −1 −1 1 1
3 1 −2 1 1 1 1
4 1 2 1 1 −1 1

4 1 a b −c −1 m 1
2 a c −b 1 1 m
3 a −b c −1 m 1
4 a −c b −1 1 m

4C 5 1 b a −c m −1 1
2 c a −b 1 1 m
3 −b a c m 1 1
4 −c a b 1 −1 m

6 1 b −c a m 1 −1
2 c −b a 1 m 1
3 −b c a m 1 1
4 −c b a 1 m −1

Vertex Normal Glide direction

7 1 1 0 −1 1 0 1

8 1 1 0 1 −1 0 1

4E 9 1 0 1 −1 0 1 1

10 1 0 1 1 0 −1 1

11 1 1 −1 0 0 −1 0

12 1 1 1 0 −1 1 0

13 1 1 −2 1 1 1 1

14 1 1 −2 −1 −1 −1 1

15 1 1 2 −1 −1 1 1

16 1 1 2 1 1 −1 1

17 1 2 −1 −1 1 1 1

4D 18 1 2 −1 1 −1 −1 1

19 1 2 1 −1 1 −1 1

20 1 2 1 1 −1 1 1

21 1 1 1 −2 1 1 1

22 1 1 −1 −2 1 −1 1

23 1 1 −1 2 −1 1 1

24 1 1 1 2 −1 −1 1

25 1 1 −2 −1 1 1 1
2 2 −1 1 1 −1 1
3 1 0 1 −1 1 1

26 1 2 −1 1 −1 −1 1
2 1 −2 1 1 1 1

4B 3 1 −1 2 −1 1 1

27 1 1 −1 −2 1 −1 1
2 2 −1 −1 1 1 1
3 1 −2 −1 −1 −1 1

28 1 2 1 1 −1 1 1
2 1 2 1 1 −1 1
3 1 1 2 −1 −1 1
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which the are such that a = 0.117, b = 0.399, c = 0.909, l = 0.100 and m = 0.258.
The number of the most favoured systems is one (classes 4D and 4E), three (class
4B) or four (classes 4A and 4C). A sketch of these systems has been drawn in
Fig. 3. The arrows represent the forces and torques which cause the stress state.

Fig. 2. Representation of the shear systems by the stereographic projections of ν and η and
iso-values of R (a) Class 4A; (b) Class 4B; (c) Class 4C; (d) Class 4D; (e) Class 4E.
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[Fig. 3]
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Fig. 3. Sketch of the most favoured shear systems for one vertex of each class.

The shear systems {111}<112> and {110}<110> deserve a special interest
since they appear often as the most favoured slip systems and since they can be
produced by the combination of two coplanar (CP) or codirectional (CD) slip
systems in f.c.c. crystals. For example:

υ = 53 (Class 4B) (111)[01̄1] + (111)[1̄01] → (111)[1̄1̄2],

υ = 12 (Class 4E) (111̄)[1̄10] + (111)[1̄10] → (110)[1̄10].

Some of these combinations (but not all) correspond to the most favoured bifur-
cation systems (Rmax). They are by no means the only combinations of active
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slip systems able to determine the flow in the shear band, but special attention
is given to them because of the simplicity of the mechanism of bifurcation: the
glide stops on all the slip systems except two which go on sliding with equal
glide rates. Such an event may occur because, under the effect of the crystalline
rotation, they become symmetrical with respect to the applied stress.

There are {111}<112> shear systems in the flow cones of all the vertices,
except in the class 4E:

• For the classes 4A, 4B and 4D, they are most favoured systems at the
vertices Sυυ = 29 to 31 and 41 to 56. For the class 4A, they are not
obtained as a combination of (CP) acting at the vertices. But for the class
4B (υ = 53 to 56), each of the three pairs of active (CP) combine with
equal glide rates to give one of the most favoured slip systems. For the
class 4D (υ = 41 to 52), one pair out of the three available ones produces
a most favoured slip system.

• For the class 4C, the {111}<112> are not extreme but correspond to
R = 0.306 or R = −0.306.
The class 4C is especially important because of the large solid angles formed
by their cones [9]. Thus, the combination of two (CP) with equal glide rates
can explain 60% of the cases of the most favoured bifurcation.

3. The case of the channel-die compression

Shear bands form along all sorts of deformation paths, but the largest num-
ber of experimental results has been collected in rolling or by compression in a
channel die, which simulates rolling [10]. A synthesis of the observations has been
given by Harren et al. [11]. Compared to tension, strains are much larger, the
work hardening rate is always positive and there is no influence of a macroscopic
localization. A distinctive feature is that the macroscopic shear bands are in-
clined at 35◦(±10%) with respect to the compression plane, as in pointed out as
early as in the 1910s by Grogan, Adcock, Elam and others (see Mokhtary–

Dolui [12]).

3.1. Micro-mechanical analysis

The aim of the present section is to study shear banding in channel die
compression, supposing that the latter activates the vertices of the Bishop and
Hill polyhedron. The axes of the appliance are labelled 1 (RD, rolling or extension
direction), 2 (TD, transverse direction) and 3 (ND normal direction). When are
such conditions most likely to be fulfilled?

i) Numerous experiments have been done with single crystals. If special pre-
cautions are taken, friction is restricted [13] and the deformation can be
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considered as homogeneous, at least in the bulk of the sample. The channel-
die constrains three degrees of freedom (the imposed deformation rate D33,
and D22 = D23 = 0). D12 and D13 are free, and can take large values [14].
Hence, the working point on the Bishop and Hill polyhedron is the edge
d = 2 or sometimes d = 1 because of the symmetry considerations (see the
third paper of the present series) rather than a vertex.

ii) In polycrystals, especially if the texture is not strong, D12 and D13 are
small, and vary in the height and the width of the sample if there is a
barrelling effect. A simplified macroscopic strain rate tensor averaging these
variations is:

(3.1) D = ε̇





1 0 0
0 0 0
0 0 −1



 .

In this case, the test in the channel-die is a plane strain compression. Assuming
the Taylor hypothesis, it is the strain rate tensor which will be used below for
the individual grains.

If such assumptions are made, one question arises: are all the vertices Sυ

activated in channel-die compression when all the possible crystallographic ori-
entations are considered, and with what frequency? A test was done, varying the
orientations through their Bunge angles with: 0 ≤ φ1 ≤ π, −π/2 ≤ Φ ≤ π/2,
0 ≤ φ2 ≤ π. All the 56 vertices are activated, in proportions: 3.2% (4A), 12.8%
(4B), 40.5% (4C), 23.1% (4D), 20.4% (4E). They do not differ much from those
already referred to as the ‘Occurrence’, found in the case of the most general
mechanical solicitation by Fortunier and Linhart [9].

3.2. Comparison with experimental results

The predictions of the above model can be assessed from the point of view
of i) the geometry it predicts for the shear bands and ii) the deformation ε̄
at which the bands appear. Although the grains are anisotropic, the formula

ε̄ =

∫
(

2

3
ε̇ij ε̇ij

)1/2

dt, used by many referenced authors, is also employed in

the present paper, all the more because more pertinent formulations necessitate
an analytical expression for the yield surface.

There are numerous results on these two points in the literature [15, 16]. In
channel die, the shear bands revealed at the surface are also found at the core
of the sample, parallel to the TD axis. They form at a range of values of ε̄ upon
which it can be commented that:

• Spotting the early bands is not easy. Decorating with Lloyds’ method or
depositing fiducial grids [17] show that they form earlier what was ordinary
noted from scanning electron microscopy observations,
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• The chemical composition of the alloy, which determines the stacking fault

energy, plays a decisive role. In light alloys for example, shear bands are

observed as soon as ε̄ = 0.2 in Al-Mg systems [18]; Al-Cu offers a range of

values according to the state of precipitation, solid solution or θ′ precipi-

tates [11]; the phenomenon is postponed to large deformations in Al-Mn

[14]. The present analysis discusses only the mechanical possibility of shear

banding, in the case when no previous heterogeneity exists in the material.
i) Test on the geometry of shear banding.

In the present calculation, it was assumed that the bifurcation occurs on

the most favoured shear plane. Let Ψ1 be the angle (ND, ν) measuring the

inclination of the normal to the band with respect to the compression plane

and Ψ2 – the angle (RD, projection of ν on the compression plane) giving

the tilt to the plane of symmetry of the channel-die. By considering all

the possible crystallographic orientations, it is possible to draw their his-

togram, presented by the class of vertices in Fig. 4. The three classes 4A,

4D and 4E clearly show a peak around Ψ1 = 35◦, the others have a smooth

maximum for this value. Such a geometry has extensively been mentioned

in the literature. All the histograms in Ψ2 show a maximum around 0,

which corresponds to the case when the plane of bifurcation contains

the transverse direction. The number of the most favoured planes (one,

three or four, according to the type of the vertices) has also been reported

in Fig. 4.

[Fig. 4]
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Fig. 4. Histograms of the tilts Ψ1 and Ψ2 of the most favoured shear bands Plane strain
compression. nb: number of most favoured shear systems.

It is noteworthy that the position predicted for the most favoured bands
within the grains is the position of the macroscopic shear bands. As doc-
umented by many authors, the macroscopic bands are produced by clus-
tering of the bands formed in the individual grains. The above mechanical
consideration cast a light on this phenomenon, as it shows that the most
probable geometry of shear banding lies in the same range of Ψ1 and Ψ2

for all the grains.
ii) Test on the level of strain hardening at the onset of shear banding.

There is no simple transposition between R = ha/τc and the ratio Ha/σ
which can be measured on experimental curves σ (ε̄). Ha is the macroscopic
strain hardening modulus (Ha = dσ/dε̄). If <M> is the mean Taylor factor
of the grains, σ =< M > τc and a classical calculation gives:

(3.2) Ha =
dσ

dε̄
= < M > 2 dτc

dγ
+ τc

d < M >

dε̄
= < M > 2ha + τc

d < M >

dε̄
.
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An evaluation of Eq. (3.2) has been done on a millimetre scale {123}<634>
grain observed in the Al–4.5%Mg system [18]. Shear bands, which cannot be
spotted at ε̄= 0.1, are clearly visible at ε̄= 0.24. The Taylor factor is 2.55, the
applied macroscopic stress about 250 MPa, Ha is about 500 MPa, hence R is of
the order of unity. This is coherent with the mechanical analysis, which predicts
the activation of S49 (class 4D), for which the above calculations give R = 1.071.
Similar conclusions can be drawn from [19].

On the contrary, the data collected for 99.99% aluminium show that the shear
bands appear in the range 0.2 < ε̄ <0.6, where Ha is low (about 30 MPa) and
R ∼ 1/M2, M being the Taylor factor, that is about six times less than in the
previous case. And some results in the literature are still lower: R ∼ 0.1 in [16].

The above calculations have been done at the grain level but, as already com-
mented upon, full grown bands retain much of the geometry of the micro shear
bands. Hence it is interesting to calculate the parameter Rmax for some usual
rolling texture components. The latter are sets of crystallographic orientations
around ideal directions which have been rendered symmetric with respect to the
three planes of orthotropy of the rolled sheets. Here they have been represented
by spreads of a certain angle ω0, so that several vertices can be activated and
an average value has been taken. The spread chosen was 5◦ (the results are
quite similar with 2◦ and 10◦). The results are regrouped by class of vertices in
Table 5. The components which are the most sensitive to shear banding are T
(Taylor) and Copper; then come Brass and Strange, and after them Cube; the
most resistant is Goss. All this is supported by experimental results in rolling.

Table 5. Main texture components and their most favoured bifurcation ratios.

Percentage of activation
Average (ha/τc) max

4A 4B 4C 4D 4E

Cube {100}<001> 14.4 0.0 0.0 0.0 85.6 0.74

Brass {011}<211> 0.0 49.0 50.2 0.8 0.0 0.84

Copper {112}<111> 0.0 37.5 11.0 51.5 0.0 1.02

Strange {123}<634> 0.0 8.4 53.2 38.4 0.0 0.83

Goss {011}<100> 61.2 0.0 38.8 0.0 0.0 0.43

I {112}<110> 0.0 49.0 50.2 0.8 0.0 0.84

L {110}<110> 0.0 0.0 100.0 0.0 0.0 0.62

CL {120}<210> 2.8 0.0 78.7 0.0 18.5 0.65

CH {100}<120> 60.9 0.0 0.0 0.0 39.1 0.51

CG {210}<100> 60.9 0.0 0.0 0.0 39.1 0.51

T {4 4 11}<11 11 8> 0.0 35.5 1.4 63.1 0.0 1.06

E {111}<110> 0.0 0.0 100.0 0.0 0.0 0.62
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4. Main results and discussion

The bifurcation into shear bands at the vertices of the Bishop and Hill poly-
hedron has been studied with the help of a piecewise linear (i.e. specialized to
each vertex) rate constitutive law. It shows that, when all the mechanical solici-
tations are considered, the shear bands can form on about one half of the planes
of the Euclidean space, but not around {631}. For each bifurcating plane there
is one shear direction and one value of the ratio R. The latter is directly linked
to the deformation ε̄ and to the work hardening.

The vertices correspond to the cases where the strain is highly constrained,
a number of slip systems being required to accommodate the deformation. But
both the continuity of the equilibrium and of the velocity field can be satisfied
alternatively by a flow in the form of a simple shear. Since the latter occupies
only a tiny volume of the sample (typically 1/10 µm in width), it is unimportant
if it does not fulfil all the boundary conditions of the problem, but only the
strain compatibility across the shear plane. At the beginning of a test, provided
that there is no prestrain of the material, R is high and the bifurcation is not
possible; but with the ongoing deformation, R drops below a threshold under
which the mechanical conditions for the appearance of shear bands are met. For
all the vertices, this threshold is positive, that is, shear banding is possible while
the material is still work-hardening.

The planes most favoured from the point of view of R (hence, the first to al-
low bifurcation) have been analysed in detail. According to the crystallographic
class of the vertices, they correspond to values of R ranging from 1.071 to 0.306.
Although they are by no means the sole possibility of bifurcation, their geometry
and the small strains at which they appear correspond to shear bands actually
observed, in aluminium [20] or austenitic steel [21] for example. Nevertheless,
the present theory only predicts the mechanical possibility of their onset. Hence
the necessity appears to discuss the relation between the microstructural phe-
nomena which are frequently quoted to cause shear banding and the mechanical
description given above.

In the present theory, the bifurcation is seen as an abrupt change in the glide
rates of the activated slip systems, without softening via damage or other alter-
ation in the properties of the material. It is a well-established fact that even if
the systems are equally favoured from the point of view of the applied stress,
gliding on some of them is much more intense than on others, and that this dom-
inance changes with the ongoing deformation [10]. This ambiguity problem has
been extensively studied by Taylor from a mechanical point of view. As for met-
allurgical studies, they show the mechanisms through which the substructure of
dislocations affects the distribution of the glide on the slip systems. For example,
the Lomer dislocations, produced by the interaction of dislocations on two active
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slip planes, act as an effective barrier to the dislocation movement on other (e.g.
codirectional) slip systems. Such substructures are essentially instable, because
of the crystalline rotations which accompany mechanical processing. Hence the
changes in the distribution of the activity of the different systems.

In particular, some of them may come to a standstill while others bear the
brunt of the deformation. This seems particularly important for shear banding
since shear bands preferentially originate from the coarse slip due to the exten-
sive glide on a few {111} planes. The combination of two coplanar or codirec-
tional slip systems has often been observed to be the origin of shear bands [22].
What phenomena preclude other systems from working? Transmission electron
microscopy puts in evidence that as deformation goes on, dislocations arrange
in arrays and sometimes build up dense walls which are difficult to penetrate
by the slip systems. Sometimes, this phenomenon is not directional, as in the
substructure of equiaxial cells often observed in high stacking fault energy met-
als. But when it is, this explains that ill-oriented slip systems cannot channel
through the obstacles. Two cases have been extensively documented:

• The lamellar substructures frequent in low stacking fault energy alloys.
Layered dislocation walls form a periodical array of elongated subgrains.
This is quite a frequent case, and it was even thought at some time to be
the prerequisite to shear banding [23]. Later it was found that shear bands
can superimpose on other types of dislocation arrangements.

• Similar substructures can be found in metals prone to mechanical twinning.
Such is the case of copper deformed at 77K. Systematic advantage has been
taken of this to provoke shear bands in order to study them [24].

All these events explain that systems may be prevented to work, while others
take charge in their place, a typical pattern of bifurcation from a homogeneous,
multiple slip mode of deformation.

According to Korbel and co-workers [10], when shear bands are trigged
off, they can be analysed as an ‘avalanche’ glide of dislocations, explained by
the breakdown of obstacle networks. The above theory says nothing about the
resistance or the collapse of such blockades, which may be, for example, the
pinning of dislocations by solute atoms known as Cottrell’s atmospheres. But
it shows that, for a given state of work hardening, strain and stress continuity
are possible for a large range of bifurcation planes on what amounts to new,
non-octahedral slip systems. It has been found that the resolved shear stress on
them is somewhat higher that on the previously activated {111}<110> systems.
Since the resolved critical shear stress that can be attributed to them is low, this
accounts for the catastrophic character of the glide, and the almost instantaneous
propagation of the shear bands.

Besides, no light is cast on the distinctive width of the localization, for which
an explanation must be sought in the characteristic distance at which two dislo-
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cation walls (the outer planes of the band) can attract the dislocations to leave
a free channel for intense shear. Nevertheless, the above results encourage the
investigation on the edges d = 1, for which experimental data are also available,
as developed in the third paper of this series.
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