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The problem of oblique wave scattering by cylindrical undulations on the bed of an
ice-covered ocean is investigated by using a simplified perturbation analysis. The first-
order potential function satisfies a boundary value problem (BVP) which is solved
by employing the Green integral theorem after constructing an appropriate Green
function. Analytical expressions for the first-order reflection and transmission coef-
ficients are then obtained from the solution of this BVP, in terms of the integrals
involving the shape function describing undulations. Three particular forms of the
shape function are considered for which the reflection and transmission coefficients
up to the first-order are obtained exactly.

1. Introduction

When a train of surface water waves is incident on an obstacle situated at
the bottom of a laterally unbounded ocean of uniform finite depth, it is par-
tially reflected by and transmitted over the obstacle. For an obstacle of arbitrary
shape, the problem of determining the reflection and transmission coefficients is
in general a difficult task. However, when the obstacle is in the form of a small
deformation of the bottom (long-crested sea-bed undulations), then some ap-
proximate methods can be employed to obtain these coefficients approximately.
For example, for small cylindrical deformation of the bottom, Miles [7] used
a perturbation method followed by the finite cosine transform technique in the
mathematical analysis to obtain the reflection and transmission coefficients up
to the first order, when a train of surface waves is obliquely incident on the bot-
tom deformation. When the obstacle is in the form of bottom undulations, such
as sand ripples, Davies [3] considered normal incidence of a surface water wave
train and treated the problem on the basis of linear perturbation theory. He in-
troduced a linear friction term in the dynamical condition at the free surface so
as to apply the Fourier transform technique in the mathematical analysis. The
coefficient of friction was then made to tend to zero in the asymptotic results
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for the velocity potential far away from the undulations, so as to obtain the
reflection and transmission coefficients up to the first order analytically. Later
Mandal and Basu [6] generalised the problem considered in [7] to include the
effect of surface tension at the free surface. They also employed a simplified per-
turbation analysis followed by an appropriate use of Green’s integral theorem in
the mathematical analysis to obtain a general representation of the first-order
potential function. Its asymptotic forms far away from the deformation at either
side produce the first-order reflection and transmission coefficients in terms of
the integrals involving the shape function describing the deformation.

All the works in [3, 6, 7] involve an ocean with a free surface. However, there
is a considerable interest in recent times to investigate the wave propagation
problems in an ice-covered ocean wherein the ocean is covered by a thin sheet
of ice, modelled as an elastic plate, the ice-cover being virtually weightless. This
has motivated us to consider the problem of oblique wave scattering by small
undulations on the bottom of a laterally unbounded ocean with an ice-cover

instead of a free surface. The ice-cover is modelled as a thin sheet of elastic plate
of infinite extent having a very small thickness h0.

Assuming linear theory and irrotational motion, the velocity potential func-
tion describing the time-harmonic motion of angular frequency σ, in water of
uniform finite depth h and having an ice-cover at the top, can be represented by
Re (φe−iσt), where φ satisfies the equation

(1.1) ∇2φ = 0, 0 ≤ y ≤ h,

the linearised ice-cover condition (Goldshtein and Marchenko [5], Chakra-
barti [1])

(1.2) Kφ+ (D∇4
x,z + 1)φy = 0 on y = 0,

and the bottom condition

(1.3) φy = 0 on y = h.

The time-dependent factor e−iσt will be dropped throughout the paper from
now on. Here the y-axis is directed vertically downwards into the fluid region,
(x, z)-plane is the rest position of the lower part of the ice-cover, ∇2 denotes the
three-dimensional Laplacian operator while ∇4

x,z denotes the two-dimensional
biharmonic operator in the (x, z)-plane, K = σ2/g where g is the gravity, D is
the flexural rigidity of ice-cover and is given by

D =
Eh3

0

12(1 − γ2)ρg
,
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where E is the Young’s modulus, γ is Poisson’s ratio of the elastic material
comprising the ice-cover and ρ is the density of water. In deriving the ice-cover
condition (1.2), waves are assumed to be long compared to the thickness of the
ice-cover. A possible solution for φ representing a train of time-harmonic waves
propagating on the ice-cover and making an angle θ with the positive x-direction,
is given by

(1.4) φ0(x, y, z) = cosh k0(h− y)eik0(x cos θ+z sin θ)

where k0 is the unique real positive root of the transcendental equation

(1.5) ∆(k) ≡ k(Dk4 + 1) sinh kh−K cosh kh = 0.

This equation has two real roots ±k0, two pairs of complex conjugate roots
±µ,±µ(µ = α+ iβ, µ = α− iβ, α > 0, β > 0 and α > β) and an infinite number
of purely imaginary roots ±ikn(kn > 0, n = 1, 2, . . .) where kn(n = 1, 2, . . .) are
real and satisfy

(1.6) kn(Dk4
n + 1) sin knh+K cos knh = 0,

and kn →
nπ

h
as n→ ∞ (cf. Chung and Fox [2]).

To tackle the problem of oblique wave scattering by small cylindrical undu-
lations of the bottom of an ocean with an ice-cover, here also we apply a pertur-
bation technique directly to the governing partial differential equation and the
boundary and infinity conditions for the potential function, after extracting the
z-dependence by exploiting the geometry of the problem, to obtain a boundary
value problem (BVP). A suitable use of Green’s integral theorem produces the
solution of this BVP, from which the first-order reflection and transmission co-
efficients are obtained in terms of integrals involving the shape function defining
the undulations. For three different forms of the shape functions these coefficients
are obtained in closed forms.

2. Formulation of the problem

The problem of oblique wave scattering by small cylindrical bottom undu-
lations in an ice-covered ocean, assuming linear theory and irrotational motion,
is mathematically equivalent to solving the following BVP. We solve the partial
differential equation (PDE)

(2.1) ∇2φ = 0

in the region 0 ≤ y ≤ h+ ǫc(x), −∞ < x, z <∞, with the boundary conditions

(2.2) Kφ+ (D∇4
x,z + 1)φy = 0 on y = 0,
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(2.3) φn = 0 on y = h+ ǫc(x)

together with suitable conditions as x→ ±∞ which will be stated shortly.
Here c(x) is a continuous and bounded function describing the shape of the

undulations of the ocean bed and c(x) → 0 as |x| → ∞, so that the ocean is of
uniform finite depth far away from the undulations on either side, and ǫ(> 0) is
a small parameter giving a measure of the smallness of the undulations. φn in
(2.3) denotes the normal derivative.

We assume that a water wave train represented by the velocity potential
φ0(x, y, z), given by (1.4), is obliquely incident upon the undulations from a large
distance in the direction of negative x-axis, then it undergoes partial transmission
and reflection by the undulations. Thus the asymptotic behaviour of φ(x, y, z)
is given by

(2.4) φ→

{

Tφ0(x, y, z) as x→ ∞,

φ0(x, y, z) +Rφ0(−x, y, z) as x→ −∞,

where T and R are the transmission and reflection coefficients respectively and
will have to be determined.

As ǫ is very small, we can approximate the bottom condition (2.3) after
neglecting the O(ǫ2) terms as

(2.5) −φy + ǫ
{

c′(x)φx − c(x)φyy

}

= 0 on y = h.

In view of the geometry of the problem, we can assume that

(2.6) φ(x, y, z) = ψ(x, y)eiνz

where ν = k0 sin θ. Thus the z-dependence is extracted, and the function ψ(x, y)
satisfies the BVP described by

(2.7)

ψxx + ψyy − ν2ψ = 0, 0 ≤ y ≤ h, −∞ < x <∞,

Kψ +

{

D

(

∂2

∂x2
− ν2

)2

+ 1

}

ψy = 0 on y = 0,

−ψy + ǫ

{

∂

∂x
(c(x)ψx) − ν2C(x)

}

= 0 on y = h,

ψ(x, y) →

{

Tψ0(x, y) as x→ ∞,

ψ0(x, y) +Rψ0(−x, y) as x→ −∞

where

(2.8) ψ0(x, y) = eik0x cos θ cosh k0(h− y).
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This BVP is solved approximately up to the first order of ψ by using the
perturbation analysis applied to the governing PDE, the boundary conditions
and asymptotic conditions.

3. Method of solution

Because of the approximate boundary condition (2.7)3 and the fact that a
wave train propagating in an ocean of uniform finite depth h experiences no
reflection, we may assume that ψ, T and R in (2.7) can be expanded in terms of
the small parameter ǫ as

(3.1)

ψ(x, y) = ψ0(x, y) + ǫψ1(x, y) +O(ǫ2),

T = 1 + ǫT1 +O(ǫ2),

R = ǫR1 +O(ǫ2).

Using the expansions (3.1) in Eqs. (2.7), we find that ψ1(x, y) satisfies the BVP
described by

(3.2)

ψ1xx + ψ1yy − ν2ψ1 = 0, 0 ≤ y ≤ h, −∞ < x <∞,

Kψ1 +

{

D

(

∂2

∂x2
− ν2

)2

+ 1

}

ψ1y = 0 on y = 0,

ψ1y = ik0 cos θ
∂

∂x

(

c(x)eik0x cos θ
)

− ν2c(x)

≡ q(x) on y = h,

ψ1(x, y) →

{

T1ψ0(x, y) as x→ ∞,

R1ψ0(−x, y) as x→ −∞.

We note that ψ1(x, y) behaves as an outgoing wave as |x| → ∞.
By an appropriate use of Green’s integral theorem, the solution of the BVP

is obtained as

(3.3) ψ1(ξ, η) =
1

2π

∞
∫

−∞

G(x, h; ξ, η)q(x)dx,

where G(x, h; ξ, η) is the corresponding Green’s function and is given by (cf.
Evans and Porter [4])
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(3.4) G(x, y; ξ, η)

= −4π
∞

∑

n=1

kn(Dk4
n + 1) cos kn(h− y) cos kn(h− η)

2knh(Dk4
n + 1) + (5Dk4

n + 1) sin 2knh

e−(K2
n+ν2)1/2|x−ξ|

(k2
n + ν2)1/2

− 4πi

[

k0(Dk
4
0 + 1) cosh k0(h− y) cosh k0(h− η)

2k0h(Dk4
0 + 1) + (5Dk4

0 + 1) sinh 2k0h

ei(k
2

0
−ν2)1/2|x−ξ|

(k2
0 − ν2)1/2

+
µ(Dµ4 + 1) coshµ(h− y) coshµ(h− η)

2µh(1 +Dµ4) + (5Dµ4 + 1) sinh 2µh

eiµ
′|x−ξ|

µ′

−
µ(Dµ4 + 1)(coshµ(h− y) coshµ(h− η)

2µh(Dµ4 + 1) + (5Dµ4 + 1) sinh 2µh

e−iµ′|x−ξ|

µ′

]

,

where µ′ = (µ2 − ν2)1/2 and −µ′ = {(−µ)2 − ν2}1/2, and that branch of the
square root has been chosen such that µ′ = µ,−µ′ = −µ when ν = 0.

Since µ′ and −µ′ have positive imaginary parts, we find that, as |x−ξ| → ∞,

(3.5) G(x, y; ξ, η) → −4πi
k0(Dk

4
0 + 1) cosh k0(h− y) cosh k0(h− η)

2k0h(Dk4
0 + 1) + (5Dk4

0 + 1) sinh 2k0h

×
ei(k

2

0
−ν2)1/2|x−ξ|

(k2
0 − ν2)1/2

so that G behaves as an outgoing wave for |x− ξ| → ∞.
To obtain the first-order transmission and reflection coefficients T1 and R1

respectively, we note from (3.2)4 and (3.5) that

(3.6) ψ1(ξ, η) →

{

T1ψ0(ξ, η) as ξ → ∞,

R1ψ0(−ξ, η) as ξ → −∞

and

(3.7) G(x, 0; ξ, η) → −4πi
e∓ik0x cos θ

k0 cos θ
Aψ0(±ξ, η) as ξ → ±∞ ,

where

(3.8) A =
1

h+
(1 + 5Dk4

0) sinh2 k0h

K

.
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Using the asymptotic results (3.6) and (3.7) in the representation (3.3), we
find that

(3.9)

T1 = −
i

k0 cos θ
A

∞
∫

−∞

e−ik0x cos θq(x)dx

= ik0 sec θA

∞
∫

−∞

c(x)dx,

(3.10)

R1 = −
i

k0 cos θ
A

∞
∫

−∞

eik0x cos θq(x)dx

= − ik0 sec θ cos 2θA

∞
∫

−∞

e2ik0x cos θq(x)dx.

The results for an ocean with a free surface are recovered by putting D = 0
in (3.9) and (3.10 ) where then, however, k0 denotes the unique real positive zero
of the transcendental equation

(3.11) k sinh kh−K cosh kh = 0.

It is also interesting to note that R1 vanishes identically for θ = π/4, indepen-
dently of the shape function c(x). This was also observed in [6, 7] in the case of
an ocean with a free surface with or without surface tension.

We now consider three special types of undulations.
(i) c(x) = ae−λ|x|(λ > 0). Here the bottom undulation reaches maximum at
(0, h) and decreases exponentially on either side of (0, h). In this case

T1 =
2iak0A

λ
sec θ ,

R1 = −
2iak0Aλ

λ2 + 4k2
0 cos2 θ

sec θ cos 2θ.

(ii) c(x) = ae−λx2

(λ > 0). Here the undulation is of Gaussian type and has the
maximum value at (0, h). In this case

T1 = i
(π

λ

)1/2
k0aA sec θ ,

R1 = i
(π

λ

)1/2
k0aA sec θ cos 2θ e−

k2
0

cos
2 θ

λ .

(iii) c(x) =

{

a sinλx, −
mπ

λ
≤ x ≤

mπ

λ
,

0, otherwise.
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This represents sinusoidal undulations of the bottom, having number m of
patches and is of considerable physical interest. Davies [3] earlier made a some-
what elaborate study on the effect of sinusoidal undulations on the bottom of
an ocean with a free surface, upon an incident surface water wave train. In this
case

T1 ≡ 0,

R1 = sec2 θ cos 2θB(−1)m α

α2 − 1
sin(αmπ)

where B = aA, α =
2k0

λ
cos θ. It is interesting to note that when α ≈ 1, i.e.

λ ≈ 2k0 cos θ,

(3.12) R1 ≈
π

2
sec2 θ cos 2θBm.

The result (3.11) has the implication that a somewhat large reflection of the inci-
dent wave energy occurs when the bed wave number λ is twice the wave number
component of the incident wave field along the x-direction, if the integer m de-
noting the number of patches is made large. This phenomenon has a practical
application in the construction of an efficient reflector of incident wave energy.

4. Discussion

A simplified perturbation analysis is employed to obtain the first-order trans-
mission and reflection coefficients for the problem of oblique wave scattering
by small cylindrical undulations on the bottom of an ocean with an ice-cover

modelled as a thin elastic plate. The first-order reflection coefficient vanishes

independently of the shape of the undulations if the angle of incidence is
π

4
.

By making D equal zero, the results for an ocean with a free surface are recov-
ered. For sinusoidal undulations having m patches, the first-order transmission
coefficient vanishes identically, and the reflection coefficient becomes a constant
multiple of the number of patches when the ocean-bed wave number is twice
the x-component of the incident field wave number, what suggests that com-
paratively large reflection of the incident wave energy is possible by making the
number of patches somewhat larger.
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