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Transmission conditions for a soft elasto-plastic interphase

between two elastic materials. Plane strain state
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A thin interphase between two different elastic media is under consideration. It is
assumed that the intermediate layer consists of a soft elasto-plastic material whose
Young’s modulus is small enough in comparison with those of the bounding materials.
Using an asymptotic technique, nonlinear transmission conditions for the bimaterial
structure are evaluated. As a numerical example, a FEM analysis of a bimaterial
structure with an interface is performed to investigate the accuracy of the derived
transmission conditions.
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1. Introduction

Thin interphases appearing in dissimilar bodies such as composite structures
with adhesively bonded materials may influence significantly the whole spectrum
of structural parameters: strength, dynamics, fracture, long lifetime and so on.
Recently, significant efforts have been done to clarify various phenomena con-
nected with the so-called imperfect interface approach. It consists in replacing
the real thin interphase between two different materials by an infinitesimal layer
of zero thickness. This layer is then modeled by special transmission conditions
which incorporate information about geometrical and mechanical properties of
the thin interphase. At first, such proposed conditions were based on phenom-
enological arguments and have been sufficiently exploited (see [3, 6, 7] among
others and the respective references). Later, various imperfect transmission con-
ditions have been evaluated by asymptotic methods in [2, 4, 8, 13] for different
types of interfaces and materials. Accurate asymptotic behaviour of solutions of
interface crack problems in the imperfect interface formulation have been done
in [1, 14, 15] where it has been shown that the behaviour may be very compli-
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cated and essentially depends on the material and geometrical properties of the
imperfect interfaces. Possible error estimates and ranges of the edge zone effects
connected with utilisation of the imperfect interface models have been discussed
in [16, 17] by the FEM analysis. This short overview shows that elastic imperfect
interfaces have been intensively investigated in different directions.

However, thin elasto-plastic interfaces appear very often in real applications
and the respective plastic properties may even have a greater influence than
the elastic ones [11]. On the other hand, the numerical FEM simulation of the
thin elasto-plastic interphase is more complicated than a pure elastic simulation.
Unfortunately, results which have been obtained up to now have been absolutely
insufficient and are mainly concentrated on problems of thin plastic interphases
between rigid adherends [10, 12].

In the present work, imperfect transmission conditions for a soft elasto-plastic
interphase are evaluated by asymptotic methods. The interface is described by
the simple Hencky’s deformation theory model. Only the main terms, i.e. zero-
order expressions, of the asymptotic analysis are considered. Respective trans-
mission conditions are naturally nonlinear. Higher-order expressions can be much
easier to construct continuing the asymptotic procedure from the respective lin-
ear boundary problems. A numerical example based on an accurate finite element
simulation shows a high efficiency of the approach, in spite of the fact that the
deformation theory has its strong restrictions.

2. Basic interphase equations

In this section, only the interphase is considered. It is assumed that the
material behaviour can be modeled by the elasto-plastic Hencky law [5, 12]:

(2.1) ε =
1 − 2ν

E
σ, Dε =

(
φ+

1

2µ

)
Dσ,

where ν is Poisson’s ratio, µ and E are the shear and Young’s moduli of the
material in the elastic regime (E = 2µ(1 + ν)). Here, Dε and Dσ denote the
deviatoric parts of the strain and stress tensors:

(2.2) Dε = ε − 1

3
εI, Dσ = σ − 1

3
σI,

while

(2.3) ε = I1(ε) =
3∑

i=1

εii, σ = I1(σ) =
3∑

i=1

σii

are the first invariants of the tensors.
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Function φ is assumed to be known in Eq. (2.1) and depends only on the
second invariant of the strain deviator [12]:

(2.4) φ = φ (J2(ε)) , φ(0) = 0.

Here, as usually,

(2.5) J2(ε) = I2(Dε) =
1

2

3∑

i,j=1

eijeij

and eij are components of the deviator Dε. It is well known that such a model
describes appropriately only monotonic or near-monotonic loading and, in fact,
comprises one of the nonlinear elasticity models [9, 12].

After some standard transformations, Eq. (2.1) can be rewritten in a form of
nonlinear elasticity as:

(2.6) σij = 2µ̃εij + λ̃εδij , i, j = 1, 2, 3,

where the generalised Lamé’s coefficients have been introduced:

(2.7)

µ̃(φ) =
1

2

(
φ+

1 + ν

E

)−1

,

λ̃(φ) =
1

3

(
φ+

1 + ν

E

)−1( 3ν

1 − 2ν
+ φ

E

1 − 2ν

)
.

It should be noted here that these new coefficients coincide in the pure elastic
regime (φ = 0) with the elastic Lamé’s parameters:

(2.8) µ̃(0) = µ =
E

2(1 + ν)
, λ̃(0) = λ =

νE

(1 + ν)(1 − 2ν)
.

Also the generalised Poisson’s ratio can be introduced in the model:

(2.9) ν̃(φ) =
λ̃(φ)

2
(
λ̃(φ) + µ̃(φ)

) =
3ν + φE

3 + 2φE
.

It is easy to show from Eqs. (2.7) and (2.9) that for 0 < ν < 0.5

(2.10) 0 < µ̃(φ) ≤ µ, ν ≤ ν̃(φ) <
1

2
, λ ≤ λ̃(φ) <

1 + ν

3ν
λ,

where the function µ̃(φ) monotonically decreases, while functions ν̃(φ) and λ̃(φ)
monotonically increase.
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Remark 1. If the initial elastic parameters of the intermediate layer are
essentially smaller than those corresponding to the bonded materials, i.e.

(2.11) µ̃(0) ≪ µ±, λ̃(0) ≪ λ±,

then one can immediately conclude from (2.10) the same properties of the gen-
eralised parameters for any φ ≥ 0 provided ν is not too close to zero:

(2.12) µ̃(φ) ≪ µ±, λ̃(φ) ≪ λ±.

Remark 2. It follows from (2.9) and (2.10) that ν̃(φ) → 1/2 as φ→ ∞.

Remark 3. Function φ = φ(J2(ε)) can not behave arbitrarily. In fact, it
should be determined from the yield criterion [12]. On the other hand, one can
deduce from the monotonicity of the true stress-strain curve behaviour that the
function µ̃(φ(t))

√
t has to be non-decreasing. Moreover, in the case of hardening

materials without saturation, J2(σ) → ∞ as J2(ε) → ∞, or

(2.13) µ̃(φ(J2(ε)))
√
J2(ε) → ∞, as J2(ε) → ∞.

Taking into account Eq. (2.7), it is clear that condition (2.13) holds always in
the case when φ(t) is a bounded function. In the oposite case, if φ(t) → ∞ as
t→ ∞, the following estimate for the function φ has to be satisfied:

(2.14)
√
t/φ(t) → ∞, as t→ ∞.

If one additionally assumes that there exists some parameter α > 0 such that

(2.15) φ(t) = O(tα), as t→ ∞,

then it is easy to see that estimate (2.14) is satisfied only under the condition
0 < α < 1/2.

On the other hand, in the case of ideal plastic materials or plastic hardening
laws with saturation:

(2.16) µ̃(φ(J2(ε)))
√
J2(ε) → const, as J2(ε) → ∞.

This leads to:

(2.17)
√
t/φ(t) → const, as t→ ∞,

or, under assumption (3.2), it is equivalent to α = 1/2.
To finish the preliminary part of the paper, equations for the plane strain

state are presented below. Thus, if ux = ux(x, y), uy = uy(x, y), uz = 0 then

(2.18) εz = εxz = εyz = 0, σxz = σyz = 0, σzz = λ̃(φ) ε,
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and for the remaining displacement and strain components, the following 2D
relationships hold:

(2.19) εx =
∂ux

∂x
, εy =

∂uy

∂y
, εxy =

1

2

(
∂uy

∂x
+
∂ux

∂y

)

and the stress components are defined by generalised Hooke’s law (2.6):

(2.20) σij = 2µ̃εij + λ̃εδij , i, j = 1, 2, ε = εx + εy.

Finally, the second invariant of the strain deviator can be calculated in this
case as:

(2.21) J2(ε) = ε2xy +
1

3

(
ε2x + ε2y − εxεy

)
.

3. Problem formulation and its asymptotic analysis

A bi-material domain with a thin elasto-plastic layer between two different
elastic materials with Lamé’s parameters µ±, λ±, respectively, is considered in
the following (Fig. 1). It is assumed that conditions (2.11) and, hence, (2.12)
are satisfied. The intermediate layer is thin and soft so that simultaneously the
conditions

(3.1) 2h = 2ǫh0, µ̃ = ǫµ̃0, λ̃ = ǫλ̃0,

hold where ǫ≪ 1 is a small parameter, and

(3.2) h0 ∼ L, µ̃0 ∼ µ±, λ̃0 ∼ λ±,

while L is a characteristic size of the body.

Fig. 1. Bimaterial structure under consideration.
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The stresses satisfy within the interface, together with Eqs. (2.19) and (2.20),
the equilibrium conditions:

(3.3)
∂σx

∂x
+
∂σxy

∂y
= 0,

∂σxy

∂x
+
∂σy

∂y
= 0, y ∈ (−ǫh0, ǫh0) .

Along two bimaterial interfaces where y = ±ǫh0 holds, the perfect transmission
conditions are assumed to be true:

ux(x,±ǫh0) = u±x (x,±ǫh0), uy(x,±ǫh0) = u±y (x,±ǫh0),(3.4)

σxy(x,±ǫh0) = σ±xy(x,±ǫh0), σy(x,±ǫh0) = σ±y (x,±ǫh0).(3.5)

Let us intentionally assume that the solution of the problem is known. Then,
the nonlinear material parameters µ̃ and λ̃ depend, generally speaking, on the
geometrical position of the point under consideration:

(3.6) µ̃ = µ̃(x, y), λ̃ = λ̃(x, y),

via the known strain εij(x, y) and, hence, the second invariant J2(ε) = J2(x, y)
of the strain deviator. During the evaluation of the transmission conditions it
was assumed that functions (3.6) are known. As a result, this interphase can be
analysed as an inhomogeneous elastic interphase [16] and only in the last stage,
an additional equation to determine the second invariant of the strain deviator
will be extracted.

Here, the standard asymptotic procedure, explained in detail in [19], is ap-
plied. Namely, rescaling one of the space variables by the formula:

(3.7) y = ǫξ, ξ ∈ (−h0, h0),

and seeking for the solution of the problem in the form of asymptotic series:

(3.8) u(x, y) =

∞∑

j=0

ǫjuj(x, ξ), σ(x, ξ) =

∞∑

j=0

ǫjσj(x, ξ),

one should collect the terms of the same order with respect to the small parameter
ǫ in Eqs. (2.20), (2.21) and (3.3) and in the transmission conditions (3.4)–(3.5)
and then to solve step by step the corresponding boundary value problems. Thus,
repeating the line of reasoning applied in [16], one can find the solution for the
zero-order approximation within the interface in the following form as [16]:

(3.9) σxy(x, y) = σ±xy(x, 0), σy(x, y) = σ±y (x, 0),
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(3.10)

ux(x, y) = u−x (x, 0) + σxy(x, 0)

y∫

−h

dt

µ̃(x, t)
,

uy(x, y) = u−y (x, 0) + σy(x, 0)

y∫

−h

dt

λ̃(x, t) + 2µ̃(x, t)
,

whereas the imperfect transmission conditions along the soft inhomogeneous
elastic interface with known distribution of the elastic parameters λ̃(x, y) and
µ̃(x, y) are:

(3.11) [σxy]y=0 = 0, [σy]y=0 = 0,

(3.12) [ux]y=0 = σxy(x)

h∫

−h

dt

µ̃(x, t)
, [uy]y=0 = σy(x)

h∫

−h

dt

λ̃(x, t) + 2µ̃(x, t)
.

Here, the symbol [f ]Γ denotes as usually the jump of the function f across the
surface Γ . Let us underline here that integrals in (3.12) are estimated like O(1)
in view of the assumptions (3.1). On the other hand, one can conclude from
(3.10) and (2.19) that:

(3.13) εy, εxy = O(ǫ−1), εx = O(1), ǫ→ 0.

Taking these estimates into account, one can rewrite Eq. (2.21) in the following
manner:

(3.14) J2(ε) =

(
ε2xy +

1

3
ε2y

)
(1 +O(ǫ)), ǫ→ 0,

and utilising the generalised Hooke’s law (2.20) and neglecting the terms of
higher orders, one can deduce that the second invariant of the strain deviator
can be calculated in the following manner:

(3.15) J2(ε) =
σ2

xy

4µ̃2
+

σ2
y

3(2µ̃+ λ̃)2
.

This equation should be considered as an additional relationship to the trans-
mission conditions (3.11), (3.12) connecting stress and strain quantities within
the thin soft elasto-plastic layer.

Note that the stress components σy and σxy do not depend on the variable
y (compare it with (3.9)). As a result, it is natural to assume that

(3.16) J2(ε) = J2(x) and φ = φ(x).
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Taking this fact into account, one can simplify the transmission conditions (3.12)
to obtain:

(3.17) [ux] =
2h

µ̃(x)
σxy(x), [uy] =

2h

λ̃(x) + 2µ̃(x)
σy(x).

The system of five equations (3.11), (3.17) and (3.15) establish the sought for
transmission conditions for the soft elasto-plastic interface. Three of the equa-
tions in the transmission conditions are nonlinear (cf. (3.17) and (3.15)). For-
tunately, it is possible to reduce the number of equations. Namely, to stay only
with two nonlinear transmission conditions, equations (3.17) are substituted into
equation (3.15) to obtain:

(3.18) J2(ε) =
[ux]2

16h2
+

[uy]
2

12h2
.

As a result, one can receive two nonlinear equations

(3.19)
1

2h
µ̃(φ(J2(ε))) · [ux] = σxy,

1

2h
(λ̃+ 2µ̃)(φ(J2(ε))) · [uy] = σy,

which constitute together with (3.11) the complete set of the transmission con-
ditions. Here, J2(ε) is calculated only basing on the displacement jumps [ux] and
[uy] in (3.18). It should be noted that the transmission conditions (3.19) can be
written in abstract form as:

(3.20) Fx([ux], [uy]) = σxy, Fy([ux], [uy]) = σy,

where functions Fx(t, ·) and Fy(·, t) monotonically increase with respect to the
variable t (cf. equations (2.4), (2.7) and (3.18)). Moreover, one can conclude from
(2.7) and (3.1) that the left-hand sides of equations (3.20) are of the order O(1).

Equations (3.11) and (3.20) substitute the complete system of nonlinear
transmission conditions for the soft elasto-plastic interface in the bimaterial
structure under consideration. Another peculiarity of the conditions obtained
in comparison with the imperfect elastic interface [16] is that the displacement
jumps in different directions are not separated for the soft elasto-plastic inter-
face, but both participate in each transmission condition from (3.20). However,
in a particular case, when only the elastic regime appears in the elasto-plastic
layer, conditions (3.20) degenerate to the imperfect elastic interface [16]:

(3.21)
µ̃(0)

2h
· [ux] = σxy,

λ̃(0) + 2µ̃(0)

2h
· [uy] = σy.

Another possibility to separate the displacement jumps from each other, even
under plastic regime, can appear for some special loading conditions (e.g. simple
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tensile or simple shear load), where one of the nonlinear transmission conditions
(3.20) is satisfied identically whereas the other contains at the left-hand side the
remaining non-zero jump (generally speaking in a nonlinear form).

Remark 4. Transmission conditions (3.11) and (3.20) are valid, generally
speaking, at some distance at the interaction of the interface with the external
boundary. The range of the distance cannot be exactly predicted but can be
estimated numerically, what will be done in the next section.

4. Numerical example and discussions

First of all, it is important to note that only terms of zero order have been
evaluated by means of the asymptotic procedure. However, next terms can be
found also in the same manner. Moreover, the boundary value problems which
appear for the next terms will be linear, in contradiction to the zero-order term.
However, as it has been demonstrated earlier in the case of the purely elastic
interface [16], it will be shown for the elasto-plastic case that it is also sufficient
to restrict the analysis to the zero-order approximation.

To show this, a numerical simulation of a bimaterial interface problem has
been done. The geometry of the sample and respective loading conditions are
shown in Fig. 2. The elastic materials which are glued by the interphase are
assumed to be identical with Young’s moduli E± = 72700 MPa and Poisson’s
ratio ν± = 0.34. The geometrical dimensions are L = 10 mm, H = 1 mm and
2h = 0.01 mm. As a result, the value of ǫ = 2h/H = 0.01 can be considered
as the small parameter. The elasto-plastic interface is represented by a linear
hardening model whose parameters are described in Fig. 3. Namely, the elastic
parameters: E = 813 MPa, ν = 0.3. In the plastic region which is appearing after
reaching the Huber–Mises stress of value kt,0 = 50 MPa, the constant hardening
modulus Ep = 81.3 MPa is prescribed. Let us underline that all commercial

L

H
2hl i n e  A

l i n e  B
i n t e r p h a s e x

y

E - ,  n -

E + ,  n +

 E ,  n ,  k  

l

z o n e  o f  e d g e  e f f e c t

Fig. 2. Geometry and loading conditions of the bimaterial sample with a thin soft
elasto-plastic interface for FEM simulation.
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FEM codes are based on the more general theory of plastic flow [5, 9, 12]. As
it has been mentioned above, the results with these models, i.e. deformation
and plastic flow theories, coincide only under monotonic or nearly monotonic
loading. Because of this, only monotonic external loading is applied (Dirichlet’s
boundary condition at the top of the sample).

The function φ from the deformation theory equations (2.1)–(2.4) was calcu-
lated by the given interphase properties of the flow theory [5, 12] and is shown
in Fig 3b). Furthermore, it has been assumed that the material is obeying the
Huber–Mises yield criterion.

a)

b)

Fig. 3. Evaluation of the function φ from plastic flow parameters.

A simple tensile monotonic loading (ux(x,H/2) = 0, uy(x,H/2) = vy) is ap-
plied at the top of the bimaterial sample in the range from 0% to 0.6% of vy/H in
100 incremental steps. Due to the symmetry of the loading and the sample geome-
try, two of the transmission conditions, i.e. [σxy] = 0 and Fx([ux], [uy]) = σxy,
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are satisfied identically because of [ux] = 0 and σxy = 0 holds in this case. The
two remaining conditions [uy] = 0 and Fy(0, [uy]) = σy have to be verified. The
first one is the same as in the case of the pure elastic imperfect interface [16] and
is of less interest in comparison with the second one.

In Fig. 4a), a comparison of the left and right-hand side of the condition
Fy(0, [uy]) = σy is presented. The traction is represented by the solid line while
the values of the left-hand side function are depicted by circles in several points.
The visible plastic zone appears in the middle of the interface after 30 incre-
ments. The accuracy of the evaluated transmission condition is in the same
range as it has been checked for the pure elastic interface [17]. Moreover, the
region where the transmission conditions are valid does not change practically,
regardless whether the interphase material is in the elastic or plastic region. To
illustrate this fact, a magnification of the same functions as in Fig. 4a) is pre-
sented in Fig. 4b). The 1% accuracy criterion has been chosen to indicate the
validity regions. It is also important to note that the plastic zones which appear

a)

b)

Fig. 4. Validity of the transmission conditions for thin elasto-plastic interface.
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near the free edges are very small and therefore invisible in the scale of Fig. 4a).
The range of the plastic zone coincides more or less with the range of singularity
dominated domains for the elastic interface [17] and starts to be smaller during
the plastic deformation.

Additionally to the presented analysis, investigations of possible singularity
of the solution for a bimaterial body with a soft imperfect elasto-plastic interface
model near the interface crack tip or near free edges should be done. Respective
results concerning the pure elastic imperfect interface have been obtained in
[1, 14, 15].

One of the crucial points to underline is the fact that the stress-strain state of
the 2D bimaterial structure under consideration is not purely monotonic due to
definition in [12]. Thus, it would be natural to expect a more significant difference
between the numerically and analytically predicted interfacial conditions than
it was clarified for the pure elastic interface in [16]. However, as it follows from
the results presented in Fig. 4, the accuracy of the transmission conditions for
the elasto-plastic interface is much better than one could expect due to the
limitations of the deformation theory.

Another important fact which should be mentioned here concerns Remark 2.
It may happen for very large plastic deformations that the generalised Poisson’s
ratio will approach its maximal value of 0.5 and, as a result, the transmission
conditions evaluated here should be used with a reservation, as it follows from the
results obtained in [18] for the soft, weakly compressible elastic interface. Nev-
ertheless, if Poisson’s ratio of the elasto-plastic interphase is sufficiently smaller
than 0.5 in the elastic regime, then the transmission conditions evaluated in the
paper can be applied in the range of usual plastic deformations. For example,
the maximum value of the generalised Poisson’s ratio takes in the numerical
simulation the value of ν̃ = 0.42 after 100 increments, while ν̃(0) = 0.3.
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