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This paper examines the mechanics of wing-cracks that are located at its extremities
of an interface region with Coulomb friction. The region containing the interface and
the wing-cracks is first subjected to an isotropic compression, which induces closure
of the interface region. The region is then subjected to a uniaxial compression in an
incremental fashion. Since the frictional effects are restricted to pre-defined surfaces,
the boundary element technique can be applied quite successfully to determine the
influence of Coulomb friction on the development of stress intensity factors at the
tips of the wing-cracks.

1. Introduction

Classical problems dealing with the modelling of cracks in elastic media in-
variably assume that the faces of the cracks are smooth and that these faces
do not interact during the application of the external loads. These assumptions
have enabled the development of a large body of literature dealing with the
mechanics of elastic bodies containing isolated and non-isolated cracks of gener-
alized shapes that are subjected to generalized loadings (Sih [1], Murakami [2],
Broberg [3]). The extension of these studies to include non-classical phenom-
ena including interactions between the crack faces and closure of the crack tip
becomes important to a number of application areas including materials science
and geomechanics, where either alterations in material properties or dominant
compressive loads can induce interaction between the crack surfaces. Interactions
between crack surfaces are generally nonlinear and the presence of the nonlinear-
ity in the mechanics of the contact zone makes the analytical approach to such
crack problems quite restrictive. The analytical study of crack problems becomes
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intractable when complicated forms of frictional contact phenomena, influence
of separation and slip zones, interaction of regions contacting with neighbouring
cracks, etc., need to be considered. In geomechanics and materials engineering
in particular, interfaces between contacting geomaterial regions can exhibit a
variety of nonlinear phenomena including Coulomb friction, finite friction, inter-
face plasticity, interface damage, asperity degradation, viscoplasticity and creep
(Michałowski and Mróz [4], Selvadurai and Voyiadjis [5], Selvadurai
and Boulon [6], Darve [7], Desai [8]). Numerical approaches are therefore
of particular interest in the study of contact phenomena where interface non-
linearity becomes a dominant feature. Extensive advances have been made in
the application of finite element techniques to the study of contact phenomena
associated with nonlinear interfaces. Detailed accounts of these developments
are given, among others, by Zienkiewicz and Taylor [9], Wriggers and
Wagner [10], Willner [11] and Mayer and Gaul [12].

In this paper the boundary element method is used for the analysis of the
contact problem that deals with nonlinear effects at the contact zone. The ad-
vantage of the boundary element method is self-evident in view of the fact that
the nonlinear contact phenomena are confined to pre-defined contact zones. The
application of boundary element techniques to frictional contact problems can be
traced to the earlier studies by Andersson [13] and Andersson and Allan-
Persson [14] who used the procedure to examine frictional contact problems.
Selvadurai and Au [15–17] and Selvadurai [18] have also investigated the
influence of interface nonlinearity on the behaviour of planar cracks located in
elastic media.

In this paper we apply an incremental boundary element approach for the
modelling of the problem of inclined wing-cracks that extend from an interface
exhibiting Coulomb friction (Fig. 1). It is assumed that the frictional effects arise

Fig. 1. Wing-cracks extending from interface with Coulomb frictional.
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only upon closure of the interface region. The region containing the wing cracks
and the oriented frictional interface is first subjected to an isotropic stress field σ0

and the nonlinear effects come into effect during the application of an incremental
uniaxial stress field σ∗ at an orientation, as shown in Fig. 1. It is further assumed
that the tips of the wing-crack remain open during the application of all external
loads to permit the meaningful evaluation of the stress intensity factors at the
crack tip.

2. The incremental boundary element procedure

The modelling of elastic continua with the aid of the boundary element ap-
proach is now well established (Brebbia et al. [19], Gaul et al. [20]). The
incremental form of the boundary integral equation for a region ρ with volume
V (ρ) with surface Γ (ρ) can be written in the form

(2.1) cij u̇
(ρ)
j +

∫

Γ (ρ)

P
∗(ρ)
ij u̇

(ρ)
j dΓ =

∫

Γ (ρ)

u
∗(ρ)
ij Ṗ

(ρ)
j dΓ,

where i, j = 1, 2, 3 (or x, y, z); u̇(ρ)
j and Ṗ

(ρ)
j are, respectively, the incremental

values of the boundary displacements and boundary tractions; u∗(ρ)
ij and P

∗(ρ)
ij

are the corresponding fundamental solutions, given by

(2.2) u
∗(ρ)
ij =

1

16πGρ(1 − νρ)r
[(3 − 4νρ)δij + r, i r, j ]

and

(2.3) P
∗(ρ)
ij = − 1

8π(1 − νρ) r2
{[(1 − 2νρ)δij + 3r, ir, j ] r, n

− (1 − 2νρ)[r, inj − r, jni]}

respectively, where r is the distance between the source and field points; ni are
the components of the outward unit normal vector to Γ (ρ); δij is Kronecker’s
delta function; Gρ and νρ are the linear elastic shear modulus and Poisson’s
ratio respectively. In (2.1), cij = δij/2 if the boundary is smooth. The boundary
integral equation (2.1) is applicable to any region V consisting of sub-regions
V (ρ), separated by nonlinear interfaces. The regions in contact can be subjected
to the conventional displacement and traction boundary conditions as well as
interface conditions. For example, on a boundary Γ1 where displacements are
prescribed,

(2.4) u̇i = u̇0
i ,
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where u̇0
i is a prescribed increment of displacement. On a boundary Γ2 where

tractions are prescribed, similarly,

(2.5) Ṗi = Ṗ 0
i ,

where Ṗ 0
i is a prescribed increment of traction. On an interface region Γ3 with

nonlinear constraints we have

(2.6) Ṗi = Ṙi +K∗
ij u̇j ,

where Ṙi are increments of a residual traction and K∗
ij are stiffness coefficients

derived through considerations of the non-linear constraints. Considering a dis-
cretization of the domain boundary by boundary elements, the integral equation
can be converted to its matrix equivalent, which can be written in the form

(2.7) [H] {u̇} = [G]
{
Ṗ
}
,

where [H] and [G] are the boundary element influence coefficients matrices and

{u̇} and
{
Ṗ
}

are the displacement and traction vectors and sub-sets of which

together will form the appropriate set of unknowns. When the configuration of
the boundary and the interface conditions are defined at any level of deformation,
we obtain a final system equation of the form

(2.8) [A]
{
U̇
}

=
{
Ḃ
}

from which, either the boundary or the interface unknowns can be determined.

3. Interface responses

The modelling of interface responses can be approached at a variety of levels
ranging from the local-scale models to phenomenological approaches. The advan-
tage of the former is that it considers a level of refinement that is not accounted
for a in a phenomenological approach (Belak [21], Bushan [22]). A limitation
of the local-scale modelling is that it introduces a degree of refinement requir-
ing sophisticated constitutive parameter identification through experimentation
and the interpretation of such experiments through phenomenological models
themselves. In computational modelling, however, it is desirable to adopt a phe-
nomenological approach to the formulation of an interface constitutive response.
The classical models of either completely smooth or bonded conditions represent
extremes of the phenomenological approach; other nonlinear forms are derived
from considerations of conventional models of Coulomb friction, plasticity, dila-
tant phenomena that account for a local scale structure, and the incorporation
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of damage and degradation to account for deterioration of the interface with
progressive wear. In this paper we shall present a treatment of the interface
response, which can be used to model Coulomb friction, dilatant friction and
interface degradation resulting from damage to asperities at contact zones. In
view of the nonlinear nature of the interface response, it is necessary to adopt
an incremental approach to the formulation of the constitutive responses. Since
the interface is regarded as a distinct two-dimensional surface that is void of a
dimension normal to the plane, its response must be formulated in relation to
the incremental relative displacements ∆̇i at the contacting plane. We assume
that these incremental relative displacements consist of an elastic or recoverable
component ∆̇

(e)
i and an irrecoverable or plastic component ∆̇

(p)
i : i.e.

(3.1) ∆̇i = ∆̇
(e)
i + ∆̇

(p)
i ,

where for an interface, the subscripts i (or j) can be assigned notations applicable
to the local interface coordinates. For purposes of the presentation, we shall
denote the values applicable to i and j applicable to an interface by x, y, z with
the assumption that the direction z corresponds to the normal to the Euclidean
plane at a point on the interface. The elastic component of the incremental
displacement ∆̇

(e)
i is related to the component of the corresponding increment

of traction ṫi through the linear constitutive response

(3.2) ṫi = k̃ij∆̇
(e)
j ,

where k̃ij are the linear stiffness coefficients of the interface and summation over
the repeated indices is implied. This linear elastic response will persist until
failure is induced at the interface. In order to assess this limiting condition it is
necessary to postulate a failure criterion for the interface. These are varied and
the applicability of any phenomenological relationship to actual interfaces must
be verified by recourse to experiment.

3.1. Coulomb friction

For interfaces with Coulomb friction, the condition F for initiation of failure
is given by

(3.3) F =
√
t2x + t2y + µ tz = 0,

where ti are the value of the total tractions acting at the interface;
(∣∣∣
√
t2x + t2y

∣∣∣
is the tangential traction and tz is the normal traction acting on the interface

)

and µ is the coefficient of Coulomb friction at the interface. We now assume
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that when the interface total tractions satisfy the failure criterion (3.3), it will
experience slip in the form of irreversible displacements. It is assumed that these
irreversible displacements can be determined from knowledge of a plastic poten-
tial in exactly the same way that incremental plastic strains can be determined
in a continuum region (Michałowski and Mróz [4], Desai and Siriwardane
[23], Lubliner [24], Davis and Selvadurai [25]). The incremental plastic dis-
placements at the interface are defined by

(3.4) ∆̇
(p)
i = λ̇

∂Φ

∂ti
,

where λ̇ is a proportionality factor referred to as the plastic/interface slip mul-
tiplier and Φ(ti) is the plastic/interface slip potential. The plastic potential is
a constitutive function as such, it needs to be defined through experimentation.
For the purposes of this paper, and for consistency regarding concerning plastic
strains during contact, we select a plastic potential that relies closely on the
structure of the failure criterion. Here we assume that the plastic potential takes
the form

(3.5) Φ =
√
t2x + t2y.

Using (3.1) and (3.4) we can rewrite (3.2) in the form

(3.6) ṫi = k̃ij

(
∆̇j − λ̇

∂Φ

∂tj

)
.

For Coulomb friction, (where there is no alteration in the failure characteristics
in the form of hardening or softening), we require

(3.7) dF =
∂F

∂ti
dti = 0.

The plastic slip multiplier λ̇ can be determined by considering the result (3.6)
together with (3.7); using the result in (3.6), we obtain

(3.8) ṫi =

[
k̃ij −

1

ψ

∂Φ

∂tl
k̃ilk̃mj

∂F

∂tm

]
∆̇j = k̃

(ep)
ij ∆̇j

where

(3.9) ψ =
∂F

∂tl
k̃lm

∂Φ

∂tm
.

If the failure criterion F (ti) and the plastic potential Φ(ti) are known, then

we can define the elastic-plastic stiffness k̃(ep)
ij . In the specific case of a Coulomb
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frictional material where the failure criterion is defined by (3.3) and the plastic
potential defined by (3.5), and for the special case where

(3.10) k̃xx = k̃yy = k̃s; k̃zz = k̃n

with all other k̃ij ≡ 0, the non-symmetric elastic-plastic stiffness matrix is
given by

(3.11)
[
k̃
](ep)

=
1

(t2x + t2y)




k̃st
2
y −k̃stxty −µ k̃ntx

√
(t2x + t2y)

−k̃stxty k̃st
2
x −µ k̃nty

√
(t2x + t2y)

0 0 k̃n(t2x + t2y)




and k̃s and k̃n can be interpreted as the shear and normal elastic stiffnesses at
the interface. These are the constitutive parameters associated with the phenom-
enological model of the interface response. These need to be determined either
through micromechanical modelling of the local topography of the interface or
through experiment.

3.2. Contact and separation processes

As the incremental analysis of an interface contact problem proceeds, within
an increment of loading, processes such as separation, re-establishment of con-
tact, slip and adhesion can occur in distinct regions of the interface.

Separation: During a loading sequence normal tractions at an interface region
can become tensile. Since the interfaces are considered to be unilateral in their
contact response, for a region undergoing separation, the total tractions resulting
from the summation of the incremental boundary conditions (2.5) should be
homogeneous.

Re-contact : A region of a contact zone that has experienced separation can
also re-establish contact when the relative normal displacement across the sep-
arated interface region is greater than or equal to the initial gap. Then the
boundary conditions change from the type given by (2.4) to the type given by
(2.5).

Slip: Slip will occur when the tractions satisfy the failure condition (3.3). The
interface condition (2.6) can be applied with the stiffness coefficients defined by
(3.11).

Adhesion: When the conditions do not violate the failure condition (3.3),
the boundary conditions at the interface can be interpreted through (3.2) with
the stiffness coefficients interpreted appropriately. In a solution scheme, with all
increments, all of the above four conditions must be checked in order to obtain
a stable condition at the interface.
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4. Localized iterative solution procedures

We shall formulate the iterative analysis in relation to the incremental relative
displacement components ∆̇i that consists of the difference between ui on either
side of an interface. Considering the boundary conditions given by (2.4) to (2.6),
we can rewrite the matrix equation (2.7) in terms of ∆̇i and denote by ∆̇(i) where
the superscripts (i) (i = 1, 2, 3) indicate the vectors of incremental differential
displacements resulting from boundary conditions of the type (2.4), (2.5) and
(2.6) respectively. The resulting equation can be written in the form

(4.1)
[
−G(1), H(2),

{
H(3) − G(3)K(ep)

}]




ṫ(1)

∆̇(2)

∆̇(3)





=
[
−H(1), G(2), G(3)

]




∆̇0(1)

ṫ0(2)

Ṙ(3)



 .

For a nonlinear interface problem it becomes necessary to apply an efficient
solution scheme to analyse the incremental and iterative matrix equation (4.1).
Since the complete boundary consists of linear and nonlinear constraints, we can
use an elimination procedure to the set of linear boundary constraints; this will
reduce (4.1) to the form

(4.2)
[
Ā ,

{
−H̄(3) − Ḡ(3)K(ep)

}]




ṫ(1)

∆̇(2)

∆̇(3)



 =

{
B̄
}

+
[
Ḡ(3)

] {
Ṙ(3)

}
,

where [Ā] is the hyper-matrix or reduced version of [−G(1),−H(2)] with proper-
ties consistent with an upper triangle-type of matrix; [B̄] is the reduced form of
the right-hand side vector consisting of known boundary values and [H̄(3)] and
[Ḡ(3)] are their corresponding reduced forms. The result (4.2) can be represented
by two relations; the first one corresponds to the boundary conditions associated
with surfaces Γ (1) and Γ (2), which can be written as

(4.3)

(
Ā11 Ā12

0 Ā22

) (
ṫ(1)

∆̇(2)

)
=

(
B̄1

B̄2

)
+

(
Ḡ

(3)
1

Ḡ
(3)
2

) {
Ṙ(3)

}

−
(
H̄

(3)
1 −Ḡ(3)

1 K(ep)

H̄
(3)
2 −Ḡ(3)

2 K(ep)

) {
∆̇(3)

}

which is essentially a back-substitution form of the solution of { ṫ(1)} and { ∆̇(2)}
if { ∆̇(3)} is known. This equation can be used at any increment when the bound-
ary condition on Γ (3) is determined. The second result is an uncoupled equation
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for { ∆̇(3)}, which takes the form

(4.4) [
H̄

(3)
3 − Ḡ

(3)
3 K(ep)

] {
∆̇(3)

}
=
{
B̄3

}
+
[
Ḡ

(3)
3

]{
Ṙ(3)

}
.

This equation has unknowns only on the boundary Γ (3). Hence, at any increment
level, (4.4) can be applied in an incremental manner in order to determine the
configuration of the boundary Γ (3). Using this procedure, the nonlinear bound-
ary element problem is solved by a localized iteration procedure and the overall
boundary element system matrix is factorised only once for any number of in-
crements.

5. The wing-crack problem

The application of boundary element methods to the elasto-static analysis of
planar crack problems is relatively well established. A comprehensive account of
developments in this area is given by Aliabadi [26]. In the boundary element
procedure, the exact stress singularity at the tip of a planar crack located in
an elastic medium can be incorporated within the computational scheme. This
enables the calculation of stress intensity factors for various modes of deformation
of the crack tip, which in turn can be used to establish the conditions necessary
for studies that investigate further extension of the crack tip [27, 28]. We shall
restrict attention to the in-plane deformations of the cracks, the faces of which
can interact in a nonlinear fashion, through the application of generalized far-field
stress states. When modelling the discretized boundary of a domain, quadratic
elements with isoparametric variations of displacements and tractions of the form

(5.1)
ui

Pi

}
= a0 + a1ζ + a2ζ

2

within the element can be used, where ζ is the local coordinate of the element
and ar (r = 0, 1, 2) are arbitrary constants of interpolation. For modelling cracks
that occur either at the boundaries or at the interior of the elastic medium, it is
necessary to modify (5.1) to account for the 1/

√
ζ-type stress singularity at the

crack tip. In the finite element method, the quarter-point elements of the type
proposed by Henshell and Shaw [29] and Barsoum [30] can be used to model
the required variation in the displacement, which is of the

√
ζ-type. If the same

type of element is implemented in the boundary element scheme, we have

(5.2)
ui

Pi

}
= b0 + b1

√
ζ + b2ζ

where bi (i = 0, 1, 2) are constants, the required stress singularity cannot be du-
plicated. Cruse and Wilson [31] introduced what is now known as the singular
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traction quarter-point boundary element where the variations in the tractions are
expressed in the form

(5.3) Pi =
c0√
ζ

+ c1 + c2
√
ζ

where ci (i = 0, 1, 2) are constants. Singular traction quarter-point boundary
elements have been extensively applied in the modelling of both plane and ax-
isymmetric crack problems in elasticity theory and the accuracy of the modelling
is well documented ([26, 32–34]). The provision of the special singularity element
permits the evaluation of the stress intensity factors at the crack tip. For the
problems with in-plane deformations discussed here only the Mode I and Mode II
stress intensity factors are relevant. The increments in these stress intensity fac-
tors can be determined by applying a displacement correlation method, which
makes use of the increments of the nodal displacements at four locations A, B,
E and D and the crack tip C (Fig. 2). The incremental estimates for the stress
intensity factor are given by

K̇I =
2G

(k + 1)

√
2π

l

[
4{∆̇y(B) − ∆̇y(D)} + ∆̇y(E) − ∆̇y(A)

]
,(5.4)

K̇II =
2G

(k + 1)

√
2π

l

[
4{∆̇x(B) − ∆̇x(D)} + ∆̇x(E) − ∆̇x(A)

]
,(5.5)

where, for plane strain problems, k = (3 − 4ν) and for plane stress problems
k = (3 − ν)/(1 + ν). The calculation of the stress intensity factors through the
displacement correlation technique is sensitive to the choice of the nodal points
used in the computations. It is found that consistent evaluation of the stress
intensity factors is ensured provided the nodal points A, B, E and D and the
crack tip C are located within the wing crack section. The mesh discretizations
can be structured to achieve consistent evaluation of the stress intensity factors.

Fig. 2. Node arrangement for calculation of stress intensity factors at the crack tip.
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In this paper we combine the nonlinear incremental boundary element tech-
nique described in the previous section and the modelling of the crack tip be-
haviour described above to examine the problem of two asymmetrically placed
inclined wing-cracks that are located at the extremities of a frictional contact
region in an elastic region (Fig. 1). The frictional contact region is inclined at
an angle β to the axis of uniaxial incremental stress σ∗, and the entire plane
region is first subjected to an isotropic stress state σ0. We assume that during
the application of this isotropic state of stress, the frictional interface region
establishes contact and that the tips of the wing cracks will remain in an open
condition both during the application of the isotropic stress and the incremen-
tal uniaxial stress σ∗. This is an assumption inherent in all classical models of
the crack responses. To prevent closure or inter-penetration in the open crack
regions, without the frictional constraint, an initial gap (approximately 0.01 l) is
provided and during the computations, the closure between the crack surfaces is
monitored to ensure that the requirement for non-inter-penetration of the crack
surfaces is satisfied.

The parameters required for the computational modelling include the nor-
malized magnitude of the isotropic stress (σ0/G); the coefficient of friction at
the interface region (µ); the length of the wing cracks relative to the half-length
of the frictional interface (l/c); the orientation of the wing crack in relation
to the alignment of the Coulomb friction interface region (θ), and the relative
magnitudes of the shear and normal stiffnesses ks/G and kn/G.

[Note that as per (3.2) and (3.10), the stiffnesses k̃s and k̃n are expressed in
units of force/(length)3 to provide tractions with units of stress. In the normal-
ization of these stiffnesses we can define non-dimensional parameters ks/G and
kn/G, where ks = k̃s × 1 and where kn = k̃n × 1, where unity represents the
thickness over which the plane problem is being analysed].

The following specific values of the interface stiffness parameters and the
initial stress state are used in the computations:

(5.6)
kn

G
= 103;

ks

G
= 0.5 × 103;

σ0

G
= 0.1.

The boundary element discretization of the domain is shown in Fig. 3. The
computational approach considers two separate domains of the region containing
the cracks and the nonlinear interface and enforces either complete continuity
or frictional constraints or crack boundaries depending on the location of the
boundary or interface nodal location. In order to keep the presentation of nu-
merical results to a minimum, we will restrict attention to only the illustration
of results applicable to the Mode I stress intensity factor (KI) and for a specific
orientation of the frictional interface to the direction of the incremental loading.
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Fig. 3. Boundary element discretizations of the domain.

The emphasis on the illustration of the results applicable to (KI) is justified
in view of the fact that the further extension of the crack under the application
of the axial loading is largely governed by the attainment of a critical value
of KI . Figures 4 to 6 illustrate the variation in KI at the crack tip for various
values of the normalized compressive incremental stresses σ∗/G, the coefficient of
Coulomb friction µ, the length ratio l/c, when the crack is inclined at β = 60◦ to
the direction of application of the axial stress and for the wing-crack orientation
at a deviation of θ = 15◦.

Computations have been carried out for range of plausible values of the
Coulomb friction value; µ ∈ (0.1 , 1). Figures 7 to 9 present analogous results ap-
plicable to the case where only the wing-crack orientation is altered to θ = 30◦.
These are effectively wing cracks that are aligned with the direction of applica-
tion of σ∗. The computational results indicate that KI is highly sensitive to the
value of the coefficient of friction and the inclination θ. It must be emphasized
that the range of the stresses σ∗ used in the computations are purely for pur-
poses of illustration of the computational methodology only. At high values of
σ∗/σ0, the applied stress approaches the value of the shear modulus, which may
not be indicative of the stress states that can be sustained by commonly occur-
ring brittle solids, without the development of further cracking or the nucleation
of secondary cracking. The computations, however, indicate that for moderate
values of σ∗/σ0, the influence of the frictional constraint can be appreciable,
depending on the orientation of the wing cracks.
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Fig. 4. Boundary element discretizations of the domain.

Fig. 5. Mode I stress intensity factor at the crack tip [β = 60◦].
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Fig. 6. Mode I stress intensity factor at the crack tip [β = 60◦].

Fig. 7. Mode I stress intensity factor at the crack tip [β = 60◦].
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Fig. 8. Mode I stress intensity factor at the crack tip [β = 60◦].

Fig. 9. Mode I stress intensity factor at the crack tip [β = 60◦].



204 A.P. S. Selvadurai, K. Willner, L. Gaul

6. Concluding remarks

In classical treatments of planar crack problems it is implicitly assumed that
the faces of the crack do not interact during the application of external loads.
This assumption will be accurate in a majority of situations where the mode of
loading is tensile and the crack is oriented normal to the direction of loading.
In many other instances, particularly in the context of materials engineering
and geomechanics, segments of cracks can exist in a closed condition both prior
to and during the application of external stresses. In these circumstances, the
interface behaviour can influence the mechanics of the crack both in terms of
the crack growth and the orientation of crack growth, which are influenced by
the stress intensity factors at the crack tip. The types of mechanical phenomena
that can be encountered at a closed crack surface can be highly varied, with
completely smooth and bonded segments constituting the extreme limits. While
these extreme limits can be examined through conventional analytical and com-
putational means, the treatment of non-classical effects including friction, slip,
dilatancy and other nonlinear constraints at the crack surfaces require nonlinear
computational schemes. The boundary element approach is a particularly at-
tractive computational scheme in situations where the non-linear processes are
confined only to the surfaces of the crack. It is shown that the class of plane
crack problems that exhibit interactions regions that exhibit Coulomb friction
can be examined through an interface plasticity formulation, which can be incor-
porated into an incremental boundary element formulation. The computational
scheme is applied to examine the mechanics of wing-cracks that are located at
the extremities of a Coulomb friction zone. The complete region is subjected
to an isotropic compression followed by uniaxial loading. The computations, for
the crack length ratios and the crack alignment angles considered, indicate that
the general influence of frictional effects at the discontinuity is to decrease the
magnitude of KI at the tip of the wing-crack. Furthermore, the values of KI for
θ = 15◦ are generally lower in magnitude than those for θ = 30◦, and this is
particularly so when Coulomb friction comes into effect. This observation sug-
gests that if the wing-crack were to extend, the path of extension would deviate
to align with the direction of the incremental uniaxial loading. This conclusion
is in keeping with the experimental observations of Bieniawski [34] and Horii
and Nemat-Nasser [35] conducted on brittle materials. The interface friction
at the discontinuity generally acts as a reinforcing effect in altering the crack
orientation during its quasi-static extension.
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