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In this study we investigate the stability of two-dimensional disturbances imposed
on a boundary layer flow over a semi-infinite flat plate in the presence of a reacting
chemical species. Species concentration levels are assumed to be small, what is typical
for many processes in water and in atmospheric air. We exploit the multi-deck struc-
ture of the flow in the limit of large Reynolds numbers to analyze asymptotically the
perturbed flow. The neutral eigenrelations are obtained implicitly and limiting cases
for large buoyancy and reaction kinematics are investigated. The results show some
interesting effects of the Damkohler number on the wave number and wave speed of
the disturbed flow.
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1. Introduction

Most recent studies on forced and free convection flows have used numer-
ical approaches to investigate the influence of fluid buoyancy and other trans-
port parameters on boundary layer flows. In most cases (see for instance, Selim

et al. [13]), the governing equations have been reduced to local non-similarity
boundary layer equations using suitable transformation variables and then in-
tegrated, using a finite difference scheme and/or a Keller-box technique. The
present work is motivated by the need to consider the convection flow problem
from the framework of high Reynolds number asymptotic methods based on
the triple deck and multi-deck ideas. The self-consistent asymptotic approach
allows for a full solution of the Navier–Stokes equations and may enable to
extend this study by permitting the incorporation of the effects of, inter alia,
boundary layer non-parallelism, nonlinearity and unsteadiness. This approach
has its genesis in the work of Smith [14, 15], Smith and Bodonyi [16, 17] and
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Gajjar and Smith [2]. For more recent contributions, see Motsa et al. [9] and
the references therein.

Natural convection is an important phenomenon in geophysics and astro-
physics. Some natural convection flows in the atmosphere and micro-meteorolo-
gical phenomena are often caused by combined effects of the temperature gradi-
ents and differences in concentrations of dissimilar chemical species. The heating
of the earth by sunlight causes atmospheric thermal convection, which may be
modified by the presence of moisture evaporated from the ground.

Convection in which the buoyant forces are due to both the temperature and
chemical concentration gradients are generally referred to as thermosolutal or
double diffusive convection. Various modes of convection are possible, depending
on how the temperature and concentration gradients are oriented relative to one
another, as well as to gravity, Ostrach [12].

Thermosolutal convection caused by stable vertical concentration distribu-
tion with heating from the side or from the bottom is important in large water
bodies such as in lakes and oceans. Consequently, thermosolutal convection has
been widely investigated by oceanographers, see for instance, Turner [19]. Here
the stability theory has been used to explain the occurrence of layered structures
observed in the ocean. Turner [19] gave a systematic survey of the problems.

Wang et al. [21] experimentally investigated the physical phenomenon and
obtained the heat and mass transfer data in a thermosolutal convection sys-
tem. They found that the mass transfer rate increased with increasing thermal
Grashof numbers. Their results showed that doubling temperature differences
would increase the Sherwood number by 17% in their system.

Processes in which the buoyancy driving forces arise solely due to tempera-
ture differences and flows arising from differences in concentration or material
constitution in conjunction with temperature effects, have received considerable
attention for both the steady and transient internal flows, both laminar and
turbulent.

Much information on simultaneous heat and mass transfer in laminar free
convection boundary layer flows over plates can be found in the monograph by
Gebhart et al. [3] and in the papers by Khair and Bejan [5], Lin and Yu [6, 7]
and Mongruel et al. [8]. Many of the most important general characteristics
and mechanisms of such flows have been clarified.

Gebhart and Pera [4] investigated natural convection flows caused by the
simultaneous diffusion of thermal energy and chemical species. They assumed
small species concentration levels and have shown that the Boussinesq approx-
imations led to similarity solutions similar in form to those found for single
buoyancy mechanism flows. Mulonani and Rahman [10] presented a theoret-
ical study of laminar natural convection flow caused by chemical diffusion and
reaction from a vertical plate surface. Their numerical results were based on the
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fourth order Runge–Kutta method for the Schmidt number ranging from 0.0
to 100.0 and reaction orders of magnitude ranging from 0.0 to 1.5. Their re-
sults showed that when chemical reaction occurs, diffusion and velocity domains
expand out from the plate.

In Mureithi et al. [11], the effect of heat transfer on the upper-branch sta-
bility of Tollmien–Schlichting waves in accelerating boundary layers over a rigid
surface in incompressible flows was investigated. Their analysis showed that
buoyancy has generally a destabilizing effect on rigid surfaces. They also showed
that in the presence of strong buoyancy forces, the five-zone structure is altered.
However, for moderate buoyancy, the five-zone asymptotic structure of Smith
and Bodonyi [17] persists with some minor modifications. Motsa et al. [9]
showed that in the case of flow over a compliant boundary there are cases where
large buoyancy leads to modes which are more stable than the instability modes
which arise in the absence of buoyancy.

The present work presents an asymptotic analysis of the flow induced by
buoyancy effects due to the diffusion of chemical species adjacent to horizontal
surfaces. The flow has uniform surface conditions with the buoyancy effect pri-
marily away from the surface. Our analysis is limited to processes which occur
at low concentration gradients and moderate buoyancy. This allows the reten-
tion of the multi-deck flow structure and the use of the self-consistent asymptotic
methods. We present an asymptotic investigation of the interactions between the
chemical kinematics and the fluid hydrodynamics with the Damkohler number,
Da, as the parameter of primary interest. The Damkohler number is the ratio of
the flow time scale of the fluid to that of the chemical reaction time scale. In the
limit of large Damkohler numbers, the chemical kinematics proceeds at a much
faster rate compared to the fluid hydrodynamics. If the Damkohler number is
close to zero, the chemical reactions are slow compared to the motion of the fluid.
In this case, a non-reactive fluid can be assumed. Only when the Damkohler num-
ber is of the order of unity, we can anticipate the greatest interaction between
chemical reactions and fluid dynamics.

In this study we primarily focus attention on the case when the Damkohler
number is large. The objective is to determine the influence of fluid buoyancy that
is due to the density stratification caused by the chemical concentration differ-
ences between the reacted and unreacted fluids and to determine the influence
of the Damkohler number on the stability characteristics of the upper-branch
Tollmien–Schlichting waves.

The essential difference between the current work and that of Mureithi et al.

[11] arises from the introduction of a chemical concentration and the absence of
heating of the wall. The absence of wall compliance and wall heating or cooling,
and the presence of a chemical species make the current work different from
Motsa et al. [9].



28 S. Shateyi, P. Sibanda, S. S. Motsa

2. Mathematical formulation

We consider a two-dimensional, incompressible fluid flow over a flat plate
which is composed of a reacting chemical species that is maintained at a fixed
concentration. The chemical species is assumed to be diffusing into the nearby
fluid inducing a buoyancy force. We shall also assume that the space and time
scales of fluid dynamics and chemical reactions are much larger than those of
thermodynamics. Thus, the thermodynamic process is always considered to be
in equilibrium.

The equations governing a two-dimensional incompressible fluid flowing over
a horizontal plate which is composed of a chemical species, expressed in dimen-
sionless form are, under a Boussinesq-type approximation, given by:
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(2.1)

where x and y are the streamwise and normal coordinates respectively, u and v
are the streamwise and normal velocity components respectively, t is the time,
C is the species chemical concentration and p is the pressure. In addition,
Sc (= µ/Dρ) is the Schmidt number, µ is the dynamic viscosity of the fluid,
ρ is the density of the fluid and Da (= τc/τA) is the Damkohler number, defined
as the ratio of the flow time scale to the chemical time scale, where τc = 1/kc

with kc being the chemical reaction rate and τA is the advective fluid time scale.
The parameter Gc is a buoyancy parameter term defined by Gc = Gr/Re2 where
Gr = βgL3(Cw −C∞)/ν2 is the Grashof number, β is the volumetric coefficient
of expansion with concentration, ν (= µρ) is the kinematic viscosity and g is
the acceleration due to gravity and Re = U∞L/ν is the Reynolds number of
the flow.

Equation (2.1) has been nondimensionalised by making the following sub-
stitutions: (x∗, y∗) = L(x, y), (u∗, v∗) = U∞(u, v), p∗ = ρU2

∞p, t∗ = (L/U∞)t,
C = (C∗ − C∞)/(Cw − C∞), where L is the characteristic length scale (for ex-
ample the distance measured from the leading edge of the plate). The asterisks
denote dimensional quantities and the ‘w’ subscript refers to the values of the
quantities at y = 0. Also the subscript ‘∞’ refers to the free stream values.
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At the boundary y = 0, we assume no-slip conditions, therefore the boundary
condition on velocity is

(2.2) u = v = 0.

The horizontal plate is maintained at a uniform concentration, so we assume that
the concentration is prescribed as CBw. In the absence of any disturbances and
for large Reynolds number, the basic boundary-layer flow velocity, concentration
and pressure have the form:

(2.3) (u, v, p) = (UB, Re−1/2VB, PB)(x, Y ) + · · · , C = CB(x, Y ) + · · · ,

where Y = Re1/2y is the boundary coordinate, UB and VB are the basic veloc-
ity components in the streamwise and normal directions, respectively, CB is the
species chemical concentration and pB is the basic pressure within the boundary
layer. Substituting Eqs. (2.3) into the Navier–Stokes equations (2.1) and tak-
ing the limit Re → ∞, we obtain the following equations for the undisturbed
boundary layer:

∂UB

∂x
+

∂VB

∂Y
= 0,(2.4)
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∂UB
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∂UB
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∂CB
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∂CB

∂Y
= − 1

Sc

∂2CB

∂Y 2
− DaCB,(2.6)

∂pB

∂Y
= Re−1/2GcCB,(2.7)

with the non-slip boundary conditions on the velocity components

UB = VB = 0 and CB = CBw on Y = 0.

For general pressure gradient boundary layers, we assume that the basic flow has
the following additional properties:

UB ∼ λ1Y + λ2Y
2 + · · · , as Y → 0,

CB ∼ µ0 + µ1Y + · · · , as Y → 0,

UB → 1, CB → 0 as Y → ∞.

Details of basic flow properties can be found in Stewartson [18]. The coef-
ficients λ1 = UBy|y=0 > 0 and λ2 = UByy|y=0 < 0 are respectively the skin
friction and curvature of the basic flow profile. The coefficients µ0 and µ1 are
the concentration transfer coefficients.
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When the buoyancy term Gc is O(1), the right-hand side of Eq. (2.7) is
asymptotically small so that the velocity and concentration fields are decoupled,
becoming fully coupled only when Gc ∼ O(Re1/2). For large buoyancy equations
(2.4)–(2.7) reduce to the Taylor–Goldstein equation similar to that in Denier

and Mureithi [1].
We next introduce infinitesimal perturbations to the basic flow of size σ

(where σ ≪ 1) and consider the stability of the basic flow. For O(1) values of the
buoyancy parameter, Gc, the momentum and concentration fields are decoupled.
This allows us to adopt the five-tiered structure of Smith and Bodonyi [17]
to investigate the stability of the flow in the presence of a chemical reaction.
This structure (see Fig. 1) consists of five regions: the main part of the bound-
ary layer R1 of thickness O(Re−1/2), a thinner inviscid adjustment region R2 of
thickness O(Re−7/12) containing the critical-layer region R3, the viscous wall
layer R4 of thickness O(Re−2/3) and finally, the potential flow zone R5 of thick-
ness O(Re−5/12).

-
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-Flow
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Fig. 1. Schematic sketch of flow structure showing the multi-layered nature of the boundary
layer and the relative positioning of the five regions.

The upper branch scalings are now well known, and for large Reynolds num-
ber, Re, we define the small parameter ǫ = Re−1/12. To allow for wave modulation
scaled streamwise and for temporal variables relevant to the upper branch of the
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curve of the neutral stability, x = ǫ5X, t = ǫ4τ are introduced and we consider
small disturbances that are proportional to E = exp[i(αX − αcτ)], where α is
the wave number and c is the wave speed of the perturbed wave. In Mureithi

et al. [11] it was shown that when Gc = O(ǫ−5), the Tollmien–Schlichting (TS)
eigenrelation is first significantly altered. Following a similar analysis, we found
that when Da ∼ O(ǫ−4) that its effect becomes significant. In order to work with
quantities of O(1), we set Gc = ǫ−5G0, α = ǫ−5α0, Da = ǫ−4D0, ω = −ǫ−4ω0

and c = −ǫ−4c0.
The derivatives ∂/∂x, ∂/∂t in the governing equations are now replaced

with ǫ−5α0∂/∂X and −ǫ−4ω0∂/∂X, where ω0 is the frequency of the distur-
bances and we have expanded the wave number α and the frequency ω as
α = ǫ−5α0 + . . . , ω = −ǫ−4ω0 + · · · , since we are interested in wave numbers of
O(ǫ5) and frequencies of O(ǫ4).

The disturbance expansions relevant to the upper branch are now well known,
and are given for example in Gajjar and Smith [2] and in Motsa et al. [9]. In
each region we are going to present only the solutions which will be used to find
the eigenrelations.

2.1. Region I: The main boundary layer

This region encompasses most of the boundary layer and is scaled on the
thickness of the boundary layer. Here then we define y = ǫ6Y , where Y = O(1),
and expand the disturbances quantities as:

(2.8)
ū = UB + σ(u0 + ǫ2u1 + · · · ), v̄ = σǫ(v0 + ǫ2v1 + · · · ),
C̄ = CB + σ(C0 + ǫ2C1 + · · · ), p̄ = PB + σǫ2(p0 + ǫ2p1 + · · · ),

where the ui, vi, etc. are functions of the boundary layer variable Y and of the
slow spatial variable X; σ is the measure of the size of disturbances. Substituting
(2.8) into the linearized equations and solving yields the following first order
solutions:

(2.9)
u0 = A0UBY , v0 = −α0A0XUB, C0 = A0CBY ,

p0 = P0 + G0A0(θB − R0).

At the second order, O(σ2), the solutions are found to be

(2.10) v1 = α0c0A0X + α0UB

Y
∫
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P0X

U2
B

dY − α1A0X − α0A1XUB

+ α0UBG0A0X

Y
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0

(CB − µ0)

U2
B

dY,
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(2.10)
[cont.]

p1 = P1 − α2
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U2
B
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 dY,

where Ai = Ai(X), Pi = P1(X), (i = 0, 1) are unknown functions represent-
ing the displacement effect and the pressure effect. In the above results we set
Ai = Āie

iX + c.c, Pi = P̄ie
iX + c.c, where c.c denotes the complex conjugate.

2.2. Region II:

In this region we define y = ǫ7Ȳ with Ȳ = O(1) and the expansions follow
from Region I:

(2.11) (ū, v̄, C̄, p̄)T =
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2 + σ(u(0) + ǫu(1) + · · · ),

σǫ(ǫv(0) + ǫ2v(1) + · · · ),
µ0 + ǫµ1Ȳ + ǫ2µ2Ȳ
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Substituting the above equations into the linearized governing equations and
solving the resulting equations yields the following first order solutions:
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where ξ = (Y − c0/λ1). Using the no-slip boundary conditions (2.2) gives:

P (0) = c0λ1A0.

At the next order we obtain:
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(2.12)
[cont.]
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The solutions in this region possess both the logarithmic and algebraic sin-
gularities in the limit ξ → 0. At the point ξ = 0, the streamwise velocity UB is
equal to the local effective wave speed of the disturbances. The singularities are
smoothed out by introduction of a thin viscous region, called the critical layer,
in the neighbourhood of the critical level ξ = 0. The terms φ± and φ±

t represent
the phase-shift introduced to connect the solutions in the normal velocity and
pressure on either side of the critical level.

2.3. Region IV: The Wall Zone

The solutions found in Region II do not satisfy the no-slip conditions at the
wall. We therefore introduce, as y → 0, a thin viscous layer of thickness O(ǫ8),
in which the velocity components adjust to the no-slip condition at the wall.
In this region, we then set y = ǫ8ζ where ζ is an O(1) coordinate and the flow
expansions are:

(2.14) (ū, v̄, C̄, p̄)T =



















λ1ǫ
2ζ + λ2ǫ

4ζ2 + · · · + σũ0 + · · · ,

σǫ3ṽ0 + · · · ,

µ0 + µ1ǫ
2ζ + · · · + σC̃0 + · · · ,

pB + σp̃0 + · · · ,

where ũi, ṽi, p̃i, C̃i for i = 0, 1, 2, · · · are functions of ζ and X. Substituting
these expansions into the governing equation (1.2) and then solving the resulting
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disturbance differential equations, subject to the boundary conditions at the wall
and matching (as ζ → ∞) with the results from R2 (as Ȳ → 0) yields

ṽ0 =
iα2

0P̃0

mω0
(1 − mζ − e−mζ),

p̃0 = P̃0,

where m = (α0c0)
1/2e−iπ/4.

2.4. Region V:

This is an outer potential-flow layer in which we define y = ǫ5ŷ where
ŷ ∼ O(1). The expansions of the perturbations follow from the solutions of
Region I in the limit Y → ∞ and are given by:

(2.15) (ū, v̄, C̄, p̄)T =



















1 + σǫ(û0 + ǫû1 + · · · ),
σǫ(v̂0 + ǫv̂1 + · · · ),
σǫ(Ĉ0 + ǫĈ1 + · · · ),
pB + σǫ(p̂0 + ǫp̂1 + · · · ).

From these expansions we obtain the following solutions:

(2.16) û0 = −P̂0e
−α0ŷ, v̂0 = −iP̂0e

−α0ŷ and p̂0 = P̂0e
−α0ŷ,

where P̂0 is an unknown function which describes the disturbance pressure at
the outer extreme of the boundary layer. The important solutions at the next
order are:

(2.17) v̂1 = −i[P̂1 − c0P̂0]e
−α0ŷ and p̂1 = P̂1e

−α0ŷ,

where P̂1 is an unknown function which describes the disturbance pressure at
the outer extreme of the boundary layer.

3. Linear neutral results and eigenrelations

Asymptotically matching the velocity and pressure solutions in their respec-
tive overlap regimes, we obtain two important results. The first, found by match-
ing the first order solutions across the entire boundary layer flow regime, is the
dispersion relation

(3.1) c0λ1 = G0µ0 + α0.
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Second order matching of pressure components between R1 (as Y → ∞) and
R5 (as ŷ → 0) yields

(3.2) P̂1 = P1 − α2
0A0I0 − A0G0

(

J0 +
D0

α0
I1

)

+ G0A1C
∞

B ,

where C∞

B = limY →∞ CB and Ii, Ji for i = 0, 1, 2 are defined in the Appendix.
Matching the pressure terms across R2 (as Ȳ → ∞) and R1 (as Y → 0) gives
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0
B,(3.3)

where C0
B = limY →0 CB. Matching the pressure terms across R4 (as Ȳ → ∞)

and R2 (as Y → 0) gives
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)

tan−1
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D0
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)

.

Next, matching the normal velocity components between R1 (as Y → ∞) and
R5 (as ŷ → 0) at the second order gives:

P̂1 = −c0P̂0 + α0A1U
∞

B − α0c0A0 − α0U
∞

B P0I2 − α0U
∞

B G0A0J1,(3.5)

where U∞

B = 1 is the free stream velocity. Matching the normal velocity across
regions R2 (as Ȳ → ∞) and R1 (as Y → 0) yields

(3.6) B0A0X + G0E0A0X − α0λ1A1X = −2α0λ2c0A0X

λ1
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+
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λ1
φ+ − α0λ1Ā1X − iα0µ1G0A0X(α0c0 + iD0)φ

+
t

2λ1D0
,

where the constants Bi and Ei i = 0, 1, 2 are defined in the Appendix.
Finally, matching of the normal velocity between R2 and R4 we obtain

(3.7)
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=

iµ1α0c0G0A0X

2λ2
1D0

(

α0c0 + iD0

)

φ−

− α0c0µ1G0A0X

λ2
1

φ−

t +
iµ1G0A0X

λ2
1

(

α0c0 + iD0

)

φ−

− α0c0µ1G0A0X

D0λ2
1

(

α0c0 + iD0

)

tan−1

(

α0c0

D0

)



36 S. Shateyi, P. Sibanda, S. S. Motsa

(3.7)
[cont.]
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)

tan−1

(

D0

α0c0

)

− µ1G0A0X

2λ2
1

(

α0c0 + iD0

)

ln

∣

∣

∣

∣

D2
0 + α2

0c
2
0

λ2
1α

2
0

∣

∣

∣

∣

+
iα0c0µ1G0A0x

2λ2
1D0

(

α0c0 + iD0

)

ln

∣

∣

∣

∣

D2
0 + α2

0c
2
0

α2
0c

2
0

∣

∣

∣

∣

− α0P
(1)
X

λ1
+

2α0λ2c
2
0A0X

λ2
1

φ− + α0c0Ā1X + A0X(B1 + G0E1).

Eliminating Ā1, P (1), P0 and P̂0 gives a relation which determines the higher-
harmonic components of A1. If we restrict our attention to the eiX components,
then after some algebra, Eq. (3.7) reduces to:

(3.8) − α0λ
2
1√

2m̄
− 2α0λ2c

2
0π

λ1
+

2c0µ1α0G0π

λ1
+

µ1πG0D0

λ1

+
D0µ1G0

2λ1
ln

∣

∣

∣

∣

c2
0α

2
0 + D2

0

α2
0λ

2
1

∣

∣

∣

∣

− α2
0c

2
0µ1G0

2λ1D0
ln

∣

∣

∣

∣

D2
0 + c2

0α
2
0

α2
0c

2
0

∣

∣

∣

∣

= 0,

where m̄ =
√

α0c0 and we have assumed the results for linear theory by taking
the jump across the critical layer φ to be equal to −iπ. We have also restricted
our analysis to the real part of Eq. (3.7). Equations (3.1) and (3.8) are the
crucial linear eigenrelations which fix the neutral wave number to the neutral
wave speed.

4. Results and discussion

We begin by examining a certain interesting limiting behaviour of the neutral
eigenrelations as the buoyancy parameter G0 → +∞. The physical significance
of the limit G0 → +∞ corresponds to the increase in the buoyancy force through,
for example, an increase in the density difference between the reacted fluid and
the unreacted one. Solving the eigenrelations (3.1) and (3.8) we get, in the limit
G0 → +∞ with D0 ∼ O(1)

(4.1) α0 =

(

µ1λ1

λ2
− µ0

)

G0 + · · · , c0 =
µ1

λ2
G0 + · · · .

These limiting case results are similar to the ones obtained by Motsa et al. [9]
when the buoyancy is due to the temperature differences. Solving the eigenrela-
tions in the limit D0 → +∞ with G0 ∼ O(1), we get

(4.2) α0 =

(

µ1G0D0 ln |D0|
2λ2π

)1/3

, c0 =

(

µ1λ
3
1G0D0 ln |D0|

2λ2π

)1/3

.



An asymptotic analysis of convection... 37

This corresponds to the case when the chemical timescale is much more pro-
nounced than that of the hydrodynamics of the flow. The asymptotic limit of
the eigenrelations is

(α0, c0) ∼ O(D0 ln |D0|)1/3.

This limiting behaviour is confirmed by the results in Figs. 2–5. They show
that the disturbances would grow without limit with increasing Damkohler
numbers.
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Fig. 2. Dependence of the linear neutral wave number α0 on the buoyancy G0, for small and
large Damkohler numbers. When the Damkohler number is large, the instability splits into

two distinct branches.
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Fig. 3. Dependence of the linear neutral wave speed c0 on the buoyancy when D0 = 100.
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Figure 2 shows the effect of increasing both the fluid buoyancy and the
Damkohler number. For positive buoyancy, the effect of increasing the Damkohler
numbers is to destabilize the flow. However, for large Damkohler numbers the in-
stability is observed to have two branches. The second branch, with much smaller
wavenumbers, appears to be stabilized by moderate increases in the fluid buoy-
ancy. In the case of negative buoyancy, the wavenumbers converge to a fixed
limit for increasing Damkohler numbers.

Figure 3 shows the response of the wave speed to increasing buoyancy for
a fixed Damkohler number. In the limit G0 → +∞, the wave speeds are enhanced
in tandem with the increase in neutral wavenumbers. This increasing buoyancy
is again confirmed to be destabilizing while for large negative buoyancy, the wave
speeds reduce to zero for all Damkohler numbers.
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Fig. 4. Linear neutral wave number α0 against D0, with G0 = 0.5 to 2 and the respective
asymptotic predictions (– –).

Figure 4 shows the response of the wave number to increasing Damkohler
numbers for different values of the buoyancy parameter G0. It is again observed
that α0 → ∞ as D0 → ∞. Increasing G0 results in larger wavenumbers for
a fixed Damkohler number. This shows that the Damkohler number on its own
has weakly destabilizing effects.

Figure 5 shows the variation of the neutral wave speed c0 against the scaled
Damkohler number D0 for selected values of the scaled buoyancy parameter
G0. The results are qualitatively similar to those presented in Fig. 4. Hence the
Damkohler number has the same effect on both the wave number and the wave
speed.
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Fig. 5. Linear neutral wave speed c0 against D0, with G0 = 0.1 to 1 and the respective
asymptotic result (– –).

5. Conclusions

We have considered the effect of fluid buoyancy and chemical reaction be-
tween the chemical species and the fluid on the linear stability of two-dimensional
disturbance wave modes. Asymptotic methods have been used to investigate the
effects of increasing buoyancy and reaction kinematics. We have extended the
well known theory of boundary layer flows over horizontal surfaces to include
the chemical species and the effect of the Damkohler number. A steady-state
natural and forced flow over a semi-infinite horizontal plate has been studied in
which the plate is maintained at a given concentration in a chemical species and
convection arises as a result of chemical reaction, diffusing within the ambient
fluid and the slight disturbances applied to the flow.

When the wave number and speed number are varied against the scaled
Damkohler numbers (D0), the effect of increasing G0 was shown to be destabi-
lizing in line with conclusions in Motsa et al. [9] and other earlier works. We
have also shown that increasing reaction kinematics has weakly destabilizing ef-
fects for the TS waves. The obtained results were compared with the previously
published work and were found to be in excellent agreement. It is hoped that
the solutions presented in this paper with the various investigated effects would
be useful for validation of future work to include the temperature differences.
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Appendix

The constants and variables as used in the article are:

I0 =

∞
∫

0

U2
BdY, I1 =

∞∗
∫

Y0

CBY

UB
dY,

I2 =

0∗
∫

Y0

1

U2
B

dY, , J0 =

0∗
∫

Y0

(CB − µ0)

U2
B

dY,

J1 =

∞
∫

0

CBY





Y
∫

Y0

G0µ0 + α0 + G0(CB − µ0)

U2
B

dY1



 dY,

B0 = α0c0λ
2
1I2 −

2α0c0λ2

λ1
,

B1 =
2α0c

2
0λ2

λ2
1

ln

∣

∣

∣

∣

c0

λ1

∣

∣

∣

∣

,

B2 = −c0B0 + λ1B1 + λ1ω1 − α1λ1c0 + 2α2
0c0 + α2

0(λ1I2 − I0),

E0 = α0λ1

∞∗
∫

Y0

CB − R0

U2
B

dY,

E1 =
−µ1α0c0G0

λ1
,

E2 = c0E0 + λ1E1 − α0J0 − D0I1 + α2
0J1 − α0µ0.
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