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On the admissibility of an isotropic, smooth elastic continuum
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Many studies of elasticity of inhomogeneous materials – in both elastostatics and
elastodynamics – assume the existence of locally isotropic, smooth stiffness tensor
fields. We investigate the correctness of such a model in the simplest setup of anti-
plane classical elasticity. We work with the concept of mesoscale (or apparent) moduli
for a finite-size window placed in such a material, in accordance with the Hill con-
dition for the Hooke law. The limit from mesoscale down to infinitesimal windows
is admissible within the model of an assumed smooth, locally isotropic continuum.
However, this limit is not admissible from the standpoint of a microstructure, and, in
order to set up an inhomogeneous elastic medium, one must introduce its anisotropy.
A separate argument against the local isotropy stems from the representation of a
correlation function of a wide-sense stationary and isotropic random field, whose re-
alizations are smooth stiffness tensor fields.

1. Introduction

Studies of many natural and man-made materials necessitate the considera-
tion of material microstructure. Examples are provided by practically all com-
posites, polycrystals, granular matter, fibrous media, functionally graded media,
etc. An additional aspect of such materials is their microstructural disorder,
which typically leads to random field models of constitutive laws – these are
models with spatial dependence (variability) of class C1 (at least once differen-
tiable, i.e. smooth) as required by the local (strong) form of field equations of
continuum mechanics. Such models are a starting point in various researches of
solid mechanics and wave propagation [1, 2], stochastic finite element methods
[3, 4], and functionally graded materials [5] to name a few. A very often used
Ansatz in classical elasticity of such inhomogeneous materials assumes the ex-
istence of locally isotropic, smoothly inhomogeneous stiffness tensor fields, such
as depicted in Fig. 1b. Clearly, local isotropy simplifies the ensuing analysis and
this is why most studies tend to employ it. In other words, one postulates

(1.1)
σik = Cikjmεjm

with Cikjm(x) = λ(x)δikδjm + µ(x) [δijδkm + δimδkj ] ,
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where λ and µ are class C1 fields of x. [For all the tensors, we shall interchange-
ably use the symbolic (V) and the subscript (Vij...) notations.]

In this paper we investigate the admissibility of such a model in the simplest
setup of anti-plane elasticity. We shall consider Hooke’s law of a linear elastic
material in anti-plane shear

(1.2) σi = Cijεj ,

where, for simplicity of notation, we denote σi ≡ σi3 and εj ≡ εj3, for i, j = 1, 2.
We assume the anti-plane stiffness tensor Cij (≡ C in the symbolic notation) to
be (i) locally isotropic, and (ii) a function of position xi (≡ x), i = 1, 2. This is
expressed as follows

(1.3) Cij (x) = C (x) δij or C (x) = C (x) I

The dilemma of correctness of this spatially dependent local isotropy postu-
late becomes relevant in many situations. For example, in the case of a finite
element discretization of a material with such dependence, one should derive the
stiffness matrix from the apparent stiffness tensor so as to have its mechanical
and energetic definitions mutually consistent. If the model is not admissible,
one then needs to accept jumps between contiguous elements placed along the
gradient, each corresponding to a locally isotropic part. Alternatively, one needs
to introduce finite elements having anisotropic stiffness matrices to assure the
continuity of stiffness in the direction of its spatial gradient.

In this paper we inquire whether the anti-plane stiffness tensor field which
is smooth in space can also be locally isotropic. Our strategy in examining the
admissibility of the model (1.3) hinges on first recognizing that a smooth stiffness
tensor field is really a continuum approximation

(1.4) Cij (x, L/d) = C (x) δij or C (x, L/d) = C (x, L/d) I

on a mesoscale L (Fig. 1b) larger than the microscale d (heterogeneity size) of
the underlying microstructure (Fig. 1a). That microstructure involves at least
two distinct phases distributed in a disordered fashion; a periodic distribution
is of no interest here, because the equivalent continuum is homogeneous. To
pass from the microscale of Fig. 1a to the mesoscale of Fig. 1b we use finite
size windows, subjected to boundary conditions dictated by the Hill condition
(Sec. 2). An examination in Sec. 3 of these boundary conditions shows which
particular type of mixed boundary condition is the proper way to make that
passage. When conducting the same passage in the disordered microstructure,
it becomes apparent that the approximating continuum cannot be isotropic. In
Sec. 4 we offer another proof via reductio ad absurdum of the same result; we
do it in the ensemble setting, where the materials of Fig. 1 are realizations (on
micro and mesoscales) of a random medium.
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a)

b)

Fig. 1.

2. Preliminaries

With reference to Fig. 1a), let us consider a heterogeneous material B on
microscale, i.e. a microstructure, made of two distinct phases B(α), α = 1, 2,
distributed in a disordered fashion according to an indicator function:

(2.1) χ(α)(x) =

{

1 if x ∈B(α),

0 if x /∈B(α).

Here B(1) is the matrix and B(2) the inclusion, and the whole body B = B(1) ∪
B(2).

Equation (2.1) pertains to a particular realization B(ω) of the microstructure
B = {B(ω); ω ∈ Ω}, so that χ(α)(x) in (2.1) really stands for χ(α)(ω,x), ω ∈ Ω.
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The ensemble of these functions makes up a random field: χ = {χ(α)(ω,x);ω ∈
Ω,x ∈ X}. As usual, ω pertains to a single realization of the random medium
B = {B(ω);ω ∈ Ω}. Formally, B is an ensemble of deterministic realizations
B(ω), while Ω is the probability space endowed with a σ-algebra and a proba-
bility measure.

We assume χ to be a strict-sense stationary (SSS) and isotropic random
field: all the n-point probability distributions of χ are invariant with respect to
arbitrary shifts and rotations in the material domain. We also require χ to be
mean-ergodic on domains of infinite extent.

Now, each phase is a homogeneous continuum described by an isotropic anti-
plane stiffness tensor C(α), α = 1, 2. It follows that

(2.2) C(ω,x) =
2
∑

α=1

χ(α)(ω,x)C(α)

is a realization of a discrete-valued, continuous parameter random tensor field

(2.3) {C(ω,x);ω ∈ Ω,x ∈R
2}

which, in view of the properties of (2.1), is also SSS, isotropic, and mean-ergodic.
To pass from the microscale of Fig. 1a to some larger mesoscale of Fig. 1b

we determine a mesoscale stiffness Cδ(ω,x) for any finite (i.e. mesoscale) L×L
domain Bδ(ω) in (x1, x2)-plane according to the Hill (or Hill–Mandel) condi-
tion [6]

(2.4) σ · ε = σ · ε,

where the overbars denote spatial averages. The subscript δ, defined as

(2.5) δ =
L

d
,

is a non-dimensional mesoscale parameter, which covers the full range: from
microscale (δ → 0, or continuum below the single inclusion level), up to the
macroscale (δ → ∞). For any finite δ, we get a continuous-valued, continuous
parameter random tensor field

(2.6) {Cδ(ω,x);ω ∈ Ω,x ∈R
2}.

It is well known that the necessary and sufficient condition for (2.4) to hold is

(2.7)
∫

∂Bδ

(t− σ · n (x)) · (u− ε · x)dS = 0.
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This is satisfied by three different types of boundary conditions: uniform dis-

placement (or Dirichlet) boundary condition

(2.8) u (x) = ε · x ∀x ∈ ∂Bδ;

uniform traction (or Neumann) boundary condition

(2.9) t (x) = σ · n (x) ∀x ∈ ∂Bδ;

uniform displacement-traction (or orthogonal-mixed) boundary condition

(2.10) (t (x) − σ · n (x)) · (u (x) − ε · x) = 0 ∀x ∈ ∂Bδ.

In (2.8)–(2.10) ε (≡ εj) and σ (≡ σi) denote constant tensors, prescribed a

priori ; n (≡ ni) is the outer unit normal to ∂Bδ.
Each of these boundary conditions, if applied to an arbitrary heterogeneous

microstructure on a mesoscale δ < ∞ results in a different stiffness or compli-
ance tensors [7]; Huet and his co-workers use the adjective apparent [8, 9]. The
limit δ → ∞ results in the random mesoscale properties converging towards the
macroscopic stiffness tensor Ceff of the representative volume element (RVE).
While most micromechanics studies [10–12] assume the RVE a priori without
specifying its size, several studies indicate that the RVE may require extremely
large length scales relative to the microscale, e.g. [7, 13]. Thus, mesoscale fluc-
tuations shown in Fig. 1b cannot easily be ignored.

3. Micromechanics viewpoint

Evidently, we have three loadings to choose from, and hence, apparently,
a non-uniqueness of response on mesoscale. Now, in place of the disordered mi-
crostructure of Fig. 1a described by equations (2.1)–(2.2), let us consider a special
case of a smooth elastic continuum (1.3) with variability of C (x) in x1-direction
only. By Cδ(ij) we denote the components of the mesoscale stiffness Cδ. We make
analysis-type (A) observations:

A1: The mesoscale response Cδ(11) of Cδ of the L× L window is calculated
exactly under the assumption of a uniform stress σ1 (x) = σ1, ∀x ∈ BL, because
for this loading we have a smooth ‘microstructure’ of a series-type.

A2: The mesoscale response Cδ(22) of the L×L window is calculated exactly
under the assumption of a uniform strain ε2 (x) = ε2, ∀x ∈ BL, because for this
loading we have a smooth ‘microstructure’ of a parallel-type.

A3: Loadings dictated by A1 and A2 jointly correspond to the special case
of the boundary condition (2.7). Then, assuming any smooth function C (x) in
(1.3), Cδ(ij) on the left of equation (2.1) can be evaluated via integration of C (x)
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over the mesoscale domain BL. This would involve a calculation of compliance
Sδ(11) and of stiffness Cδ(22), which, given the fact that the axes x1 and x are
oriented along the principal directions, would allow one to determine all the
elements of Cδ(ij). Next, one can take the limit

(3.1) lim
δ→0

Cδ(ij)(x) = C (x) δij

and recover the original C (x) δij [unfortunately, δ as the subscript stands for
L/d, while δij means Kronecker delta]. The foregoing shows which particular
type of the mixed boundary condition is the proper way to make the passage
from micro to mesoscale.

An a priori statement of the model such as (1.3) does not address the issue
of a heterogeneous material microstructure from which the approximating inho-
mogeneous continuum – such as Cij (x), or perhaps C (x) δij – should actually
be derived. However, the observation A3 of the previous section suggests what
loading should actually be introduced when passing from the microstructure to a
mesoscale continuum. Let us denote this mesoscale response by Cmix

δ (x, ω), and,
in view of Fig. 1a), immediately remark that Cmix

δ (x, ω) will be anisotropic. In
particular, assuming the gradient of microstructural composition to be in x1,
the Cmix

δ(11) response is softer than the Cmix
δ(2) response! Additionally, because of the

disorder and overall lack of symmetry, Cmix
δ(12) 6= 0.

Furthermore, using the boundary conditions (2.5) through (2.6) we obtain, re-
spectively, mesoscale tensors CD

δ (x1, ω) and SN
δ (x1, ω); here D stands for Dirich-

let (2.8) and N for Neumann (2.9) conditions. Now, the important thing to
observe is that [8, 9]

(3.2) CD
δ (x1, ω) ≤ Cmix

δ (x1, ω) ≤
[

SN
δ (x1, ω)

]−1
.

We make micromechanics-type (M) observations:
M1: Each one of the three tensors in (3.2) is anisotropic.
M2: As the mesoscale δ → ∞, the tensors CD

δ (x1, ω), Cmix
δ (x, ω) and

[

SN
δ (x1, ω)

]−1 converge to Ceff , albeit far above the scale of all the fluctuations,
i.e. larger than Fig. 1b). Of course, this is assured by the “separation of scales”
limit (assured in turn by the ergodic and SSS properties of the microstructure)
where the homogeneous continuum applies – a situation of no interest to us
because fluctuations of Fig. 1b) arise below that limit.

M3: The ensemble average tensors
〈

CD
δ (x1)

〉

,
〈

Cmix
δ (x1)

〉

and
〈

SN
δ (x1)

〉−1

are orthotropic; a computed example was given in a study of thermal conduc-
tivities of functionally graded composites in 2-D [14], which, by a well-known
analogy, is equivalent to anti-plane elasticity of the same microstructure.

Note that the inequalities (3.2) apply to all the ‘well behaved’ realizations of
microstructure, except the extremely rare cases such as a microstructure covering
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a large extent with one phase only. Thus, we can say that (3.2) holds almost
surely (i.e. with probability zero on Ω) and for any finite mesoscale (L <∞).

4. Correlation theory viewpoint

Let us take an ensemble picture: the random medium B on the microscale
(Fig. 1a) is described by statistics which are strict-sense stationary and isotropic.
It follows that, the random medium homogenized on the mesoscale δ (Fig. 1b)
is, at the very least, described by a wide-sense stationary (WSS) and isotropic
random field Cδ. The mean-ergodic property is preserved at δ → ∞. We thus have
a random tensor field Cδ = {Cδ (x, ω) ;x ∈ X,ω ∈ Ω} with smooth realizations
Cδ (x, ω). Then, the normalized correlation function of a second-rank tensor is
a fourth-rank tensor:

(4.1) ρijkl(x1,x2) =
〈[Cδ(ij)(x1) −

〈

Cδ(ij)(x1)
〉

][Cδ(kl)(x2) −
〈

Cδ(kl)(x2)
〉

]〉
σij(x1)σkl(x2)

,

where σij(x1) and σkl(x2) are the standard deviations of the pair [Cδ(ij) (x1) ,
Cδ(kl) (x2)] at respective points.

As is well known, there are two interpretations of stationarity and isotropy
of random tensor fields:

(i) Conventional stationarity

(4.2) ρijkl(x1,x2) = ρijkl(x),

for any x = x2 − x1, followed by conventional isotropy

(4.3) ρijkl(x) = ρijkl(x),

where x is the length of x.
(ii) Stationarity and isotropy involving a simultaneous rotation of the coor-

dinate system when rotating the distance vector x = x2 − x1: a random tensor
field is said to be stationary and isotropic when the mean

〈

Cδ(ij)(x)
〉

(i.e. 〈Cδ〉)
and the correlation ρijkl(x) do not change upon the rotation of x into x′ = Qx,
which is accompanied by an appropriate transformation of Cδ into C′

δ = QQCδ,
corresponding to this rotation. In other words,

(4.4) 〈C′
δ〉 = QQ 〈Cδ〉 , ρijkl(x

′) = QQQQρijkl(x).

In the following we work with the latter interpretation. First, note that the
symmetry Cδ(ij) = Cδ(ji) implies these symmetries of ρijkl

(4.5) ρijkl = ρjikl = ρijlk.
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Now, recall after Robertson [15] and Lomakin [16] (also [2]) that ρijkl(x) in
3-D admits this representation

(4.6) ρijkl(x) = K4 (x) δijδkl +K6 (x) [δikδjl + δilδjk]

+ [K5 (x) −K6 (x)] [njnkδil + ninlδjk + ninkδjl + njnlδik]

+ [K3 (x) −K4 (x)] [ninjδkl + nknlδij ]

+ [K1 (x) +K2 (x) − 2K3 (x) − 4K5 (x)]ninjnknl,

wherein the Ki’s are

(4.7)
K1 = ρ1

1111, K2 = ρ1
2222, K3 = ρ1

1122,

K4 = ρ1
2233, K5 = ρ1

1212, K6 = ρ1
2323,

and ni = xi/x. Here ρ1
ijkl stands for the correlation between Cδ(ij) (x1) and

Cδ(kl) (x2) in a coordinate system centered at x1 and directed to x2.
Now, if we assume local isotropy of each realization (Cδ(ij) (ω,x) =

Cδ (ω,x) δij) as per equation (1.3), we conclude that

(4.8) ρ1
1212 = ρ1

2323 = 0,

with the obvious symmetries (4.5) present, and by (4.7) implies

(4.9) K5 = K6 = 0.

Clearly, the 2-D setting of anti-plane elasticity is a special case of this, and we
come to conclude that, in particular, ρ1212 (x) = 0; it must be because Cδ(12) = 0
everywhere.

At this point we recall our computational mechanics studies of ρijkl(x) in
three kinds of SSS and isotropic random two-phase materials [17, 18]:

• random chessboard;
• matrix-inclusion composite with circular inclusions being centered at the

points of a ‘Poisson point field with exclusion’ (so as to prevent mutual
disks’ overlaps);

• matrix-inclusion composite with circular inclusions being centered at the
points of a Poisson point field.

The figures presented in those papers clearly show that ρijkl is strongly de-
pendent on the particular pair [Cij , Ckl] as well as on the direction x. Here, we
make correlation-type (C) observations:

C1: As expected, ρ1111 transforms into ρ2222 upon the rotation of x = (x1, 0)
into x′ = (0, x2).
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C2: Against expectation, ρ1212 6= 0, which indeed can be understood from
physical considerations alone, especially at x = 0, without any recourse to nu-
merics. This provides an argument via reductio ad absurdum against the admis-
sibility of (1.3–1.4).

C3: Only ρ1112 and ρ2212 turn out to be null.
The ρijkl(x) function in [17, 18] was computed separately for tensors CD

δ

and SN
δ , but, since the mixed loading discussed in A3 involves less symmetric

loadings than either uniform strain or uniform stress, the ρijkl(x) function for
Cmix

δ would exhibit even stronger anisotropic effects.

5. Conclusions

This quote from [19] might be a fitting motto of our paper “Continuum me-

chanics presumes nothing regarding the structure of matter.” Evidently, general-
izing the notion of a uniform isotropic elastic continuum to an inhomogeneous,
smooth and isotropic one does not appear to violate any principles of contin-
uous media. However, when the micromechanics is brought into the analysis
of anti-plane elastic response (1.3–1.4) – indeed, one of the simplest models in
continuum mechanics – we arrive at two contradictions.

First, in terms of a single realization Cδ (ω) we see that the mesoscale re-
sponse of a finite domain of a heterogeneous material is anisotropic, simply be-
cause the stiffness in the direction of the gradient in microstructural composition
is lower than that in the direction orthogonal to that gradient (observation M1).
This is consistent with the Hill condition.

Secondly, if we consider an ensemble Cδ of smooth stiffness tensor fields Cδ (ω)
with local isotropy, and adopt a wide-sense stationarity and isotropy property –
which, actually, is much weaker than the strict-sense stationarity and isotropy of
the underlying microstructure - we arrive at a correlation function inconsistent
with the correlation function obtained directly by computational mechanics for
several types of microstructures (observation C2). This conclusion is consistent
with the Hill condition for every realization of Cδ.

We conclude with the following notes:
1. In order to set up a smoothly inhomogeneous elastic medium for any

realization of the ensemble, one must introduce its local anisotropy.
2. By virtue of the well known mathematical analogies, the results presented

here have related consequences in many other areas of continuum physics.
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