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Bifurcation into shear bands on the Bishop and Hill polyhedron

Part III: Case of the edges of dimension one
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The present paper ends a series of three papers devoted to the micro-mechanical
conditions which render possible the appearance of shear bands in crystalline mate-
rials. It presents the results on the edges of dimension 1 (encompassing the states of
the deviatoric stress applied between two vertices of the Bishop and Hill polyhedron).
They show that bifurcation is possible with a relatively small number of active slip
systems, in conditions of strain hardening which are of the same order of magnitude as
those at the vertices. An application is given to the case of the C {112} 〈111̄〉 oriented
single crystal compressed in a channel die. The characteristic experimental feature:
appearance of two successive sets of bands (111) [112̄] and (111̄) [112] is explained in
terms of the most favoured bifurcation planes and the local rotation of the crystal.
Though convincing to predict the onset of shear bands, the above calculations do not
provide a description of their intergranular development, especially crossing of the
grain boundaries, since at this stage the material has been too much affected by the
intense shearing to be treated by a method of bifurcation.

Key words: shear bands, edges of dimension one, C {112} < 111̄ > orientation.

Notations

q respective contribution of the vertices of an edge d = 1 to the state of deviatoric stress,
θ inclination of the {hhk}<uuw> crystallographic orientations around [1̄10],

measured from the C {112} 〈111̄〉 orientation,
ED elongation direction,
γ̇P glide rate common to two coplanar (CP) slip systems,
γ̇D glide rate common to two codirectional (CD) slip systems,

ξ normalised shear strain,
Bi apex on the stereographic projection of a flow cone,
Gs source grain,
Gt target grain,
L fourth order three-dimensional tensors,

hB microscopic strain-hardening modulus in a shear band,
τB

c critical resolved shear stress on a shear band,

hgk element of the matrix of microscopic heterogeneous strain hardening.
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1. Introduction

The present article ends a sequence of papers [1, 2] devoted to shear
banding on the Bishop and Hill polyhedron, conducted with Hill and Hutchin-
son’s approach of bifurcation. This phenomenon was seen as a dramatic change
in the glide rates on the slip systems, and the recombination of some of them
into an intense shearing. When they are scarce, in the case of the edges d = 2
or 3, only specific geometries lead to bifurcation. On the contrary, the ‘vertex
effect’ was explained by their large number (six or eight).

The case of the 216 edges of dimension d = 1, with four, five or six available
slip systems, is intermediary, and allows to take the full measure of the ‘edge
effect’. It corresponds to states of deviatoric stress with one degree of freedom
between two end vertices Sν1 and Sν2 which can be written as:

S = qSν1 + (1 − q)Sν2 , 0 ≤ q ≤ 1.

Table 1. States of deviatoric stress in the eight classes of edges d = 1.





2q 0 0
0 −q 6 − 6q
0 6 − 6q −q









3 + q 3 − 3q 0
3 − 3q −3 + q 0

0 0 −2q





Edge n◦1 class 3A , Edge n◦7 class 3B,
(from 4A to 4C) (from 4A to 4E)





0 q q
q 0 2 − q
q 2 − q 0









2 − 2q 3 3
3 −1 + q 3q
3 3q −1 + q





Edge n◦19 class 3C, Edge n◦31 class 3D,
(from 4B to 4C) (from 4B to 4D)





−2 + 2q 3 3
3 1 − q 3q
3 3q 1 − q









−1 + q 3 − 3q 0
3 − 3q 2 − 2q 3 + 3q

0 3 + 3q −1 + q





Edge n◦43 class 3E Edge n◦55 class 3H,
(from 4B to 4D) (from 4C to 4D)





0 0 0
0 1 − q 1 + q
0 1 + q −1 + q









3 − q 3 3q
3 −3 + 2q 0
3q 0 −q





Edge n◦79 class 3G Edge n◦85 class 3H,
(from 4C to 4E) (from 4D to 4E)
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Examples taken in each of the eight crystallographic classes 3A to 3H are
given in Table 1. They are labelled according to [3] and other articles referenced
in the previous papers. The class of their end vertices (4A to 4E) has also been
tabulated. Interest is raised by two types of considerations. One is that the C
(Copper)–oriented crystals, with their transparent geometry of four symmetric
slip systems, are known for their aptness to shear banding and have been much
used for the experimental investigation in high stacking fault energy metals [4].
The other is the success of the relaxed constraint hypothesis in modelling of the
polycrystals [5] which implies such stress states and has also been applied to
the appearance of shear bands [6]. Hence the tree parts below: the resolution
of the (S) system (see [1], Eqs. (3.9)), which requires here a special treatment
because of its nonlinearity; its application to the case of single crystals which,
like the C orientation, retain a symmetry plane during their deformation; and
brief considerations on crossing of the grain boundaries.

2. Resolution of the system (S) on the edges d = 1

2.1. Algebra

For the resolution of the system (S), the normal ν to the plane of bifurcation
is taken as a data, and Cij = R (αij + λβij)+γij . (S) is uniquely determined for
all the edges d = 1 which belong to classes other than 3B and 3H. For the latter,
a choice has to be made of four independent slip systems for Eqs. (3.9)5 to (3.9)9
which assure that the proposed bifurcation shear belongs to the vectorial space
which comprises the flow cone. Along with Eq. (3.9)4, they form a homogeneous
linear system (S′) of six equations with seven unknowns ηi, i= 1..3 and µj ,
j = 1..4. Since those quantities are defined only within a scalar factor, (S′) gives
the direction of the flow whatever q if ν is known. It is important to note that the
deviatoric stress state does not intervene in (S′), which corresponds to purely
geometrical conditions, but only in the equilibrium equations (3.9)1 to (3.9)3.
So, along one edge, the planes of bifurcation and their associated directions are
the same from one end to the other.

When the ηi, i = 1..3 are determined as a solution of the system (S′), the
equilibrium conditions form a system of three equations with the unknowns
y, R and λ. It is not homogeneous because of the γij , and the R and λ are
uniquely determined, meanwhile y is determined within the accuracy of scaling
factor, the same as for the ηi. For two opposite deviatoric stress states (taken
on edges numbered υ and υ + 108), R(S) = −R(−S). The consequences on
the most and least favoured bifurcation shear systems are the following. The
extreme values of R varyalong the edges, as can be seen in Fig. 1, where they
have been represented as a function of the parameter q. Rmax(S) = −Rmin(−S)
and Rmin(S) = −Rmax(−S).
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Fig. 1. Extreme values of R along the edge d = 1.

(a) Classes 3A to 3D; (b) Classes 3E to 3H,

Classes 3A and 3E +, Classes 3B and 3F ⋄, Classes 3C and 3G 2, 3D and 3H △.

Contrary to what happens at the vertices, in most cases, Rmax 6= Rmin. So,
each graph corresponds to one half of the edges of a given class. On one par-
ticular edge, the resolution of (S) yields the (hkl) [uvw] corresponding to Rmax

and the (h′k′l′)[u′v′w′] corresponding to Rmin. In most cases, there are one, two
or four flow directions associated with each extreme value. Along one edge, the
(hkl) [uvw] and the (h′k′l′)[u′v′w′] are identical. So here they are referred to infra
as the most/least favoured bifurcating systems of the edge. If the opposite edge
is considered, the most favoured systems of the first become the least favoured
ones of the opposite and vice-versa. When all the edges of one class are consid-
ered, these systems form crystallographically equivalent sets {hkl}<uvw> and
{h′k′l′}<u′v′w′> which are alternatively maximum and minimum for one half
the edges of the class. They are given in this form in the developments below.

The largest value found for Rmax is 1.327 in the classes 3E, 3F and 3H.
Many extreme values already shown in the second paper of this series, such as
0.306, 0.816 and 1.071, appear again in the calculations, because they correspond
to the same combinations of active slip systems. In spite of the lesser number
of available slip systems, the bifurcation on the edges d = 1 is as easy as at the
vertices from the point of view of the strain hardening.
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As in the case of the vertices, the normals to the bifurcating planes form cones
in the Euclidian space, or continuous domains on a stereographic projection,
limited by apices with simple Miller indices: {100}, {110}, {111}, {112} and
{113}. For lack of space, all these cones have not been drawn here, but a specimen
can be found infra: see Fig. 3. When only four slip systems are available, if all
the µj are of the same sign, the shear flow solution of the system (S′) belongs to
the flow cone of the edges. It is not true in the case of the classes 3B and 3H. For
them, the cone has to be divided into sub-cones formed by four independent slip
systems, which are tested till one of them (if any) contains the proposed shear
flow. There are twelve sub-cones of dimension four for the class 3B and five for
the class 3H. The percentage of planes on which the bifurcation is possible has
also been calculated in Table 2. It shows that only the classes 3C and 3E offer
large possibilities for the bifurcation.

Table 2. Percentage of bifurcation according to the crystallographic class.

Class 3A 3B 3C 3D 3E 3F 3G 3H

Percentage of bifurcating planes 4.4 2.1 15.0 1.4 22.5 4.5 1.6 3.0

2.2. Results for the eight classes of edges

The analytical expression of the ηi as a function of the νi is given by the reso-
lution of the system (S’) as a quotient of polynomials of degree two in νi. Due to
the fact that the ηi are significant only within a scaling factor, simplifications can
be obtained and, with the exception of the classes 3F and 3G, the ηi can be given
as linear expressions of the νi. The extrema of R are found in three typical situ-
ations: i) for a combination of CP (coplanar) or CD (codirectional) slip systems,
as at the vertices ii) on some single slip system, which remains active alone while
the others stop gliding iii) by an exchange between the plane and the direction of
shear in some slip system, so that the bifurcation produces a {110}<111> shear.

Examples are given in the following analysis of the various classes.
Class 3A : two sets of CP slip systems; the ηi are <ν1, ν1, ν2 − ν3>; hence,

the flow direction belongs to the {110} planes of the crystal, a feature com-
mon to several classes below. The most/least favoured shear systems are the
{111} < 112 >, obtained by combination of two CP systems, and {110} < 111 >,
which corresponds to the situation iii) supra. At the end vertices, the bifurcation
with only four slip systems is obtained for the characteristic values Rmax = 0.306
and Rmax = 0.816.

Class 3B : six slip systems forming, as a whole, two sets of CP and two sets
of CD systems. The shear direction is <ν1, ν1, ν2 + ν3>. The Rmax and Rmin all
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correspond to {110}<111>. Unlike the class 3A, there are several combinations
leading to this result.

Class 3C : the four slip systems form two sets of CP and two sets of CD
systems, the shear direction is <ν1 + ν2, ν1 + ν3, ν2 − ν3>. The extreme values
of R correspond to {111}<110> and {113}<112>. The latter is the result of
combinations of the type:

3 (1̄1̄1)[1̄01̄] + 2 (1̄11)[110] → (113)[1̄2̄1].

Class 3D : the four slip systems form two sets of CP but only one set of CD
systems. The ηi are <ν1, ν1, ν2 − ν3> as in the class 3A, with the same the
most/least favoured slip systems. It must nevertheless be noted that the cones
of the normals to the bifurcating planes are not identical, and involve the apices
{113} in the class 3D along with the apices {110} and {111}. Only the latter
two appear with the class 3A.

Class 3E : there is one set of CP and one set of CD systems. The ηi are
<ν1, ν1, ν2 + ν3>, as in the class 3B. The extreme values of R are found for
{111}<112>, by the combination of two CP systems, and {110}<111>. One
edge belonging to this class is studied with more details in Sec. 2.

Class 3F : this class has a set of two CP slip systems, one of them being CD
with a third one; the fourth one has no particular property. The shear direction
is a quadratic expression of the νi. On the whole edge, Rmax = −Rmin and the
corresponding shear systems are {110}<111> and {111}<110>; this phenom-
enon of exchange of the Miller indices between the shear plane and the shear
direction, which is the rule with the vertices, is found for the edges d = 1 only
with the classes 3F and 3G.

Class 3G : the four slip systems are neither CP or CD. The class 3G has much
of the bifurcating characteristics of the class 3F. The shear directions are also
a quadratic expression of the νi , but belong to the {110} crystal planes. The
extreme values of R are different: 0.102 and 0.816 for 3F, instead of 0.816 and
1.327 (absolute maximum) for 3G.

Class 3H: the five slip systems form two sets of CP, the fifth system has no
particular properties; all their shear directions are different. The ηi are <ν1, ν1,
ν2 + ν3>, as in the classes 3B and 3E. All the most/least favoured bifurcation
systems are of the {110}<111> type.

The above analysis has been done in the axes of the crystal, while the bound-
ary conditions are applied to the sample and expressed in its reference frame.
Hence, the frequency with which the classes 3A. . . 3H are solicited cannot be
determined a priori: it depends on the mechanical agency and the crystal orien-
tations. As seen above, the eight classes are unequally likely to bifurcate. So, the
study concentrates now on a particular case, which activates the class 3E, and
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has been chosen because of its aptness to bifurcation and the numerous experi-
mental results available as a test.

3. The case of the channel die compression of a C{112}<111̄>crystal

3.1. Characteristics of the deformation of the C single crystal

When a single crystal of Copper orientation is compressed in a channel-die,
its lattice rotates around the transverse [1̄10] direction, either towards the orien-
tation (001) [110], described as Cube rotated 45◦ around the normal direction, or
the Goss orientation (110)[001̄]: see [7]. This phenomenon has been documented
both at the macroscopic level, using X-ray diffraction [8], and at the micro-
scopic one, using the EBSD (Electron Back Scattering Diffraction) or the CBED
(Convergent Beam Electron Diffraction) techniques [9]. Let ED, TD and ND be
respectively the elongation, transverse and normal directions of the channel die,
also referred to as 1, 2 and 3 in the expression of the tensors. Throughout the
deformation path, the plane (ED, ND), being a {110} plane, remains an element
of symmetry for both the mechanical agency and the crystal, whose position can
be determined by the angle θ between ND and its [001], as sketched in Fig. 2.
The latter has been drawn with TD pointing towards the sheet of paper, to
ensure that ED, TD and ND form a direct reference frame. The C orientation
(112)[111̄] thus corresponds to θ = −35.26◦. The crystal rotates positively (+)
TD towards the Dillamore (4 4 11)[11 11 8̄], the (116)[331̄] and the Cube ro-
tated 45◦ ND orientations; it rotates (−)TD towards (111)[112̄] and Goss. The
deformation is generally accompanied by a shear DEN small with respect to the
compressive deformation (DEN = ξε̇) so that the strain rate tensor in the axes of
the die is:

D = ε̇







1 0 ξ

0 0 0

ξ 0 −1






, |ξ| ≪ 1.

When expressed in the axes of the crystal as a function of θ, the strain-rate
tensor takes the characteristic form D = [Dij ] with D11 = D12 = D22 and
D13 = D23 for all θ and ξ. This means that all the D can be accommodated
by slip systems with only two different glide rates. Since {110} is an element of
symmetry, four of them are active. So, all along the deformation path, the flow
rate belongs to a vectorial subspace d = 4, and the corresponding deviatoric
stress state is on an edge d = 1. These edges, which vary with the angle θ and
the quantity ξ, have been reported on Fig. 2 in the case ξ = 0. A simple method
for their determination consists in calculating the vertices at which the work rate
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Fig. 2. Rotation of the crystal lattice around TD.

is maximum. There are two of them at a time, and the relevant edge is formed by
the deviatoric stress states between them. Here are some of their characteristics:

• For −45◦ < θ < −9.73◦, in the range of the C, Dillamore and (116)[331̄]
orientations, the edge is n◦ 162 (class 3E). There are two CP active systems
(111)[011̄] and (111) [101̄] and two CD ones (1̄11) [1̄1̄0] and (11̄1) [1̄1̄0]. If γ̇P

and γ̇D are the glide rates on the CP and CD systems, equating the macroscopic
and microscopic expressions of the tensor D leads to:

(3.1)

γ̇P =

√
6

2
ε̇ (cos 2θ + ξ sin 2θ) with γ̇P ≥ 0,

γ̇D =

√
6

4
ε̇
[

cos 2θ + 2
√

2 sin 2θ + ξ
(

− sin 2θ + 2
√

2 cos 2θ
)]

with γ̇D ≥ 0.

It can be checked that if ξ = 0, these quantities are positive for – 45◦<θ<−9.73◦.
• For −80.27◦ < θ < −45◦, the edge is n◦153 (also class 3E). When submitted

to (–) TD rotations from an initial C orientation, the crystals enter this range
which comprises in particular (111)[112̄] and has the same CD systems as the
edge n◦162, but different CP, namely (111̄)[101] and (111̄)[011]. As will be seen
infra, this has important consequences on the bifurcation into shear bands.

• Around θ = 0◦ (Cube rotated 45◦ ND) the edge is n◦114; around θ = −90◦,
it is the opposite one, edge n◦6. They belong to the class 3A, characterized by
two sets of CP slip systems.

The corresponding deviatoric stress states can be calculated as seen in Sec. 1
with the help of the parameter q. On the edge n◦162 for example, S = qS53 +
(1 − q)S49 with 0 ≤ q ≤ 1. In the reference frame of the sample, taking into
account that T11 = 0, the stress tensor is:
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(3.2) T = −
√

6

2
τc













0

0
(

2
√

2 cos 2θ + sin 2θ
)

2

0

(

2
√

2 cos 2θ + sin 2θ
)

2
(

3 (4q − 1) + (cos 2θ − 2
√

2 sin 2θ)
)

2
0

0
(

cos 2θ − 2
√

2 sin 2θ
)















.

In this expression, it can be seen that there is a shear stress T13 which is zero
for θ = −35.26◦ (C orientation). Because of the symmetry of the crystal, no T23

is necessary to accomodate the imposed D23 = 0. The experiments show that
the reaction on the die is smaller in absolute value than the compressive stress:

|T22| ≤ |T33|. For the C orientation, this condition is fulfilled for 0 ≤ q ≤ 1

2
, that

is, when the stress state is closer to the vertex 53 (class 4B) than to the vertex
49 (class 4D).

3.2. Comparison with experiment

The characteristics of the bifurcation into shear bands, as predicted in Sec. 1
for the class 3E (here, for −80.27◦ < θ < −9.73◦), are the following:

• The shear direction is of the <ν1, ν1, ν2 + ν3> type. In the present geome-
try, this means that it belongs to the (ED, ND) symmetry plane. Meanwhile, the
planes possible for the bifurcation have their normals in non degenerated cones
of the three dimensional Euclidian space,

• The most favoured (and symmetrical) shear systems are {111}<112>, pro-
duced by the cooperation of the CP. They correspond to R = 1.071 for all the
stress states.

This is in complete agreement with the experiments:
• On the scale of the sample, Wagner et al. [10] have found that a copper

crystal starts from the C orientation and rotates towards Dillamore and back
again, forming macroscopic shear bands on the CP, according to the scheme:

(111)[101̄] + (111)[011̄] → (111)[112̄]

characteristic of the edge n◦62. The authors point out that this happens although
the CD slip systems are the most active ones, since γ̇D > γ̇P . Shear bands of
the (001)[1̄1̄0] type, which would correspond to the combination of the CD, have
not been observed.
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• On the scale of a few µm, Paul et al. [11] have shown that large clock-
wise and anticlockwise rotations around TD occur in C oriented crystals from
the very start of their deformation. They describe the different microstructures
that lie parallel to the CP planes and the progressive appearance of two sets of
macroscopic shear bands:

i) For the (+)TD rotation, an early substructure of a very regular mixture
of microbands lies on the traces of the (111)[112̄] shear system and, further on
the deformation path, a primary set of macroscopic bands appears according to
the scheme already mentioned for the edge n◦162;

ii) For the (–)TD rotation, the (111̄)[112] shear system is responsible for the
occurrence of a slightly elongated cell structure. Then appears a secondary set
of macro shear bands which correspond to:

(111̄)[101] + (111̄)[011] → (111̄)[112]

produced by the cooperation of the CP on the edge n◦153, which are not the
same as on the edge n◦162. The delay in the appearance of the corresponding
shear bands is explained because it is first necessary for the crystal lattice to
cross the boundary θ = −45◦.

This can be looked into with more detail by considering the results of the
calculations on the edge n◦162. In Fig. 3, the stereographic projection of the
normals to the bifurcating planes (22.5 % of the total) has been done on the
(ED, TD) plane. They form two distinct cones and the shear systems at their
apices have been documented in Table 3. They correspond to R values which
depend slightly on the stress state (hence on q) for those which are not situated on
ED. The R values indicated in Fig. 3 correspond to q = 1/2. The frontier R = 0
is marked on the figure by a continuous line; in compression, the material keeps
strain hardening, so that ha > 0 and R > 0. The apex B1, which corresponds to
the cooperation of the CP systems (R = 1.071), is clearly favoured by comparison
of the B2 one (R = 0.186), which corresponds to the CD.

Fig. 3. Stereographic projection of the normals for the edge n◦ 162 and iso-values of R.
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Table 3. Remarkable bifurcation shear systems on the edge n◦162.

Shear system R = ha/τc

q 0 1/4 1/2 3/4 1

B1 (111) [112̄] 1.071

B1* (112̄) [111] −1.071

B2 (001) [1̄1̄0] 0.186

B2* (1̄1̄0) [001] −0.186

B3 (121) [113̄] 0.393 0.403 0.413 0.423 0.433

B4 (1̄12) [110] 0.196 0.245 0.294 0.342 0.391

B5 (101̄) [111] −1.296 −1.221 −1.148 −1.076 −1.003

The histograms of the R values for all the possible planes of bifurcation have
also been drawn: they depend on the parameter q. Figure 4 pictures the following:
i) q = 0, the deviatoric stress state at the vertex 53 ii) q = 1/2 iii) q = 1, stress
state at the vertex 49. For i) and iii), the R values were also calculated as in [2],
that is, taking into account the six active slip systems of the end vertices instead
of the four available on the edge n◦162. Not surprisingly, the bifurcation is easier
when more slip systems are available.

Fig. 4. Histogram of R from one vertex to the other on the edge n◦ 162.
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The exceptional aptitude of the C orientation to shear banding comes from
the fact that the micro-shear bands have no difficulty to develop into macroscopic
ones since the most favoured shear systems remain so in spite of the lattice
rotation. And it proves that propagation is possible when only four active slip
systems are available.

4. Considerations on crossing of the grain boundaries

The previous sections of this series of papers have dealt about the way shear
bands appear within grains. Many authors [12] have shown that most of them
originate in coarsening of slip systems already active during the homogeneous
phase of the deformation. In the above analysis, this corresponds to the inten-
sification of the glide on some systems as the result of the bifurcation. As long
as the crystallographic orientation is maintained, the conditions of existence of
the band are met and this can explain its propagation without deflection within
the grain, although other approaches of the post-bifurcation development are
possible [13, 14, 15]. Do the above calculations cast light on what happens at
the grain boundaries since the shear bands, in rolling for example, can end up
as macro-bands expanding throughout the whole thickness of the sheet?

4.1. Experimental observations

First, let the main observations done on this phenomenon be mentioned [16].
Once formed, the bands propagate rapidly within the grains. The shear reaches
high values, typically ε̄ = 5 or more, as can be seen by the displacement of the
bars of the microgrids when observing micro-displacements at the surface of a
sample [17]. Various authors have pointed out the specificity of this mechanism,
which involves a rarefaction of the dislocations within the microband, in which
the mean free path of the existing ones increases [18]. A parallel was done with
the easy glide which can be found at the onset of the tensile deformation of
crystals oriented so that only one slip system is active. The micro-band can even
be considered as a specific slip system with a large, although instable Burgers
vector [19].

The crossing of the grain boundaries takes place later in the process, after
intragranular microbands parallel to the initial one have developed. The prop-
agation is delayed at the grain boundary, against which the dislocations pile
up so that the band gains impetus to channel through the neighbouring grain
[20]. A distinctive feature of the phenomenon is that a band seldom changes its
plane at the crossing, as shown by numerous electron microscopy observations.
There is no experimental evidence of changes in the direction of shear, although
the contrary has not been documented either. This rectitude is all the more
remarkable since neighbouring grains are randomly and largely disoriented in



Bifurcation into shear bands... Part III 399

polycrystals, and since the dependence of shear banding on the crystallography
is well established.

4.2. Discussion on the mechanism of shear banding in the target grain

The following development is an attempt to apply the mechanical analysis
of the initiation of shear bands to their propagation from a source grain Gs to
a target one Gt. Since the plane is the same and the respective crystallographic
orientations are arbitrary, the calculations can be conducted according to the
scheme used above, based on the system (S). The normal ν is considered as a data
which can take any value in the Euclidian space. Differential equilibrium must be
met in all cases. The deviatoric state of stress in Gs gives little information on the
corresponding state in Gt, even if the equilibrium through the grain boundary is
supposed. Hence all the varieties on the Bishop and Hill polyhedron are possible
in the target grain. The strain hardening in it increases with the deformation;
since the crossing of the grain boundary occurs with delay, R takes a range of
values while the band is held at the frontier, so that R must be considered as an
adjustable parameter. It will be necessary later to verify that the values suitable
for the system (S) fall in the range in which the bifurcation is possible: see
Table 2 in [2] and Table 2 in the present paper. Two different assumptions are
used for the discussion:

• the direction of the shear η is the same in Gs and Gt, hence it must be
checked that the ηi, i = 1..3 satisfy all the equations of (S),

• η is free, and the ηi, i = 1..3 are considered as unknowns.
In both cases, the strongest hypothesis made is the following: can the shear

originated in the grain Gs propagate in Gt through the work of a suitable com-
bination of the slip systems available in Gt, or is the propagation due to a quite
distinct mechanism? Counting the unknowns and the parameters in the system
(S) gives some clues.

i) η is considered as a data. Since νη = 0, the system (S) reduces to eight
equations. Whatever the dimension d of the variety, there are only seven un-
knowns and parameters: y proportional to the gradient of the rate of hydrostatic
pressure, the µ1. . . µ(5−d) which assure the compatibility of the flow, the para-
meters λ1. . . λd of the rate constitutive law and R which represents the strain
hardening. In the general case, no solution is available. This means that if the
direction of the shear is kept constant between the grains Gs and Gt, it is not
possible to retain all the hypotheses of the bifurcation.

ii) the ηi, i = 1..3 are considered as three unknowns. As in the previous
sections of these papers, (S) can be analysed as a homogeneous linear system of
(9 − d) unknowns depending upon (d + 1) parameters, hence solutions exist in
certain cases provided that:
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• The shear band waits at the grain boundary until the target grain takes
the value required for R. The parameter R decreases all along the deformation
path and this could explain the delay for the crossing,

• The µi are such that the flow belongs to the cone of the normals, and not
only to EV . This is a restrictive condition, as shown in [1]. The abovementioned
Tables (2) give the percentage of planes which actually bear a shear direction in
the cases d = 0 (vertices) and d = 1 (edges) according to the crystallographic
class. In no case it exceeds 26% of the planes of the Euclidian space. Since
the grains along a macro shear band are randomly oriented, how is it possible
to explain that the band is not stopped at some grain boundary? The cases
d > 1 are not favourable either, because the last five equations in (S) involve
only (8 − d) unknowns ηi, i = 1..3 , µ1. . . µ(5−d) and no parameter (see analysis
in [1]).

Hence, even if no condition of continuity of the flow direction is set between
the grains Gs and Gt, the hypothesis according to which the shear band in the
target grain is the product of the activity of the slip systems of the original
crystal cannot be maintained. Although the band is formed in the matrix and
retains its chemical composition, it must be considered as a solid with different
mechanical properties. It can be represented by a crystalline medium with only
one slip system of a new type, to which the following rate constitutive law can
be attributed:

(4.1) Š
∗

=
hB

τB
c

((

S0 +
4
∑

n=1

λnXn

)

⊗ S0

)

: D,

where hB is the microscopic strain hardening modulus (lower than in an ordinary
slip system) τB

c the critical resolved shear stress and S0 the projection of the
origin. As pointed out supra, the physics of the intense deformation in the shear
band, with the alteration it causes to the sub-structure of the material, supports
this point of view.

5. General conclusion

The conditions in which the homogeneous flow of a rigid plastic, rate-insensi-
tive crystal whose yield surface is a Bishop and Hill polyhedron gives way to
shear banding, have been studied by adapting a bifurcation analysis by Bishop
and Hill (1975). For this purpose, the rate-constitutive law of the crystal has
been explicited. Its form depends on the applied state of deviatoric stress, i.e. on
the variety of the Bishop and Hill polyhedron. A distinctive feature is that, for
the edges on which exist non-zero vectorial subspaces orthogonal to the flow, it
involves parameters which are not determined by constitutive (but rather here,
by equilibrium) considerations.
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The vertices and the edges d = 1 deserve a special interest because shear
banding is possible on a continuum of planes, each of them bearing a single
direction of shear and associated to one state of strain hardening (represented
by the parameter R). Those which are possible first have been determined in
the case of the channel die compression. The predicted geometry is in good
agreement with the experimental results, in particular with the characteristic
slant of about 35◦ to the rolling direction. The strain hardening at the onset of
the shear banding corresponds to what actually happens in the most sensitive
alloys (e.g. Al-Mg or some austenitic steels).

The mechanical analysis only predicts the possibility of localization; its imple-
mentation in the metal is linked to substructural events which control the move-
ment of the dislocations, like the breakdown of the obstacle networks. Although
designed at the mesoscopic scale (fraction of µm), the present theory takes into
account the occurrence of such microscopic phenomena, since it analyses the
loss of homogeneity as a change in the glide rates on the active slip systems;
but it does not necessitate a precise description of the physical causes of this
transformation. It is consistent with the fact that shear bands appear at quite
different stages in materials with a similar initial flow behaviour. It also explains
that the present calculations work well to predict the appearance of the shear
bands, but are not relevant for their development, especially the crossing of grain
boundaries.

The study above has been done assuming a uniform strain hardening, be-
cause its heterogeneity entails that every flow surface is a particular case, so
that the results would lack generality. Nevertheless, uniformity is a strong hy-
pothesis: the effects of latent hardening have been put into evidence in shear
banding metals and might be at the origin of the blockade of some slip sys-
tems, hence of the bifurcation phenomena. When a general incremental strain

hardening law τ̇ g
c =

(5−d)
∑

k=1

hgkγ̇
k is considered, it is easier to calculate the rate

constitutive law than in the case of the Bishop and Hill polyhedron because the
strain hardening relation can be inverted (see Appendix). Most of the results
should be similar to those obtained previously in the homogeneous case. The
choice of physically founded values to model anisotropic strain hardening and
its application to specific deformation paths is a task to be set about soon.

Appendix A.

For rigid plastic rate-insensitive crystals deforming under the Schmid law on
an arbitrary set of slip systems, the flow surface is a polyhedron in the five-
dimensional vectorial space of the states of deviatoric stress. In the general case
all the τ g

c are different. For f.c.c. crystals for example, there is a maximum of 24
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facets, since some of them may be situated outside the polyhedron because their
τ g
c is high.

The number of vertices also depends on the τ g
c . In the f.c.c. case it is, in gen-

eral, larger than 56 (which corresponds to the Hill and Hutchinson polyhedron)
because there are no symmetries, and each vertex has only 5 active slip systems.
In the same way, the edges are more numerous, but each corresponds to (5− d)
slip systems.

The piecewise-linear differential constitutive law:

(A.1) Š
∗

= L : D

where L is a fourth order three-dimensional tensor which depends on the variety
of the flow surface. As seen before, arbitrary parameters λn, n = 1..d associated
to tensors Xn such as Xn:D = 0 intervene in it.

The calculations presented in the case of the Bishop and Hill polyhedron can
be reproduced provided that the active slip systems are known by their Schmid
factors Msg g = 1..(5− d). The calculation of L in Eq. (6) is simpler than in [1]
because, if there are no particular symmetries, the differential hardening law can
be inverted:

(A.2) γ̇g =
d
∑

k=1

h−1
gk τ̇k

c

hence:

(A.3) D =
d
∑

g=1

Msg γ̇g =
d
∑

g=1

Msg

d
∑

k=1

h−1
gk τ̇k

c =
d
∑

g=1

Msg

(

d
∑

k=1

h−1
gk Msk : Š

∗

)

.

Since the Ms are symmetric tensors, L has the symmetries of the elasticity and
for practical purposes, the rate constitutive law can be written as:

(A.4) Š
∗

=

((

A +
d
∑

n=1

λnXn

)

⊗ B

)

: D,

A and B being symmetric second order tensors such as A⊗B =

[

d
∑

g,k=1

h−1
gk Msg

⊗ Msk

]

−1

.

This allows to calculate all the elements of a system of the same form as
the system (S) in [1] and results similar to the isotropic hardening case are
expected. The number of unknowns and parameters is the same and depends on
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the dimension of the variety, hence a range of bifurcating cases should appear if
d < 2. Conclusions on crossing of the grain boundaries similar to those drawn
in the present paper have been presented in the case of heterogeneous strain
hardening [21].
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