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Brief Note

A note on the flows of inhomogeneous fluids with
shear-dependent viscosities
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Inhomogeneous fluids have not been studied with the intensity that they deserve.
In fact, many studies that are supposedly concerned with the response of inhomo-
geneous fluids are not directed at inhomogeneous fluids, and this stems from not
recognizing the fact that the properties of a fluid varying in its current configuration
does not mean that the fluid is inhomogeneous. Here, we show that mild variations in
the properties of the fluid which might warrant it being approximated as a homoge-
neous fluid with average properties could lead to significant errors in the computation
of both global and local quantities, associated with the flow.

1. Introduction

Whether fluid or solid, most if not all bodies are inhomogeneous. When the
inhomogeneity is “sufficiently mild”, we ignore the inhomogeneity and model the
body as a homogeneous body. In this paper, we are interested in investigating the
errors inherent in such an approximation within the context of nonlinear fluids.
We find that approximating the properties of an inhomogeneous fluid that varies
mildly about a mean value can lead to differences in global responses that can
differ much more than the variation in the value of the property would suggest.
Thus, when the viscosity of a fluid varies by, say 2% about the mean, the flow rate
may vary by 20 to 30%, i.e., larger by an order of magnitude. Local quantities
such as the shear stresses (or velocity gradients) can vary more significantly
(several orders of magnitude). We find that the maximum shear rate for the flow
of an inhomogeneous fluid whose viscosity varies by 2% about a mean can exhibit
maximum shear rates that vary significantly (say 4500%) from the maximum
shear rate in the case of the corresponding homogeneous fluid. These results
can have profound implications on the flow of inhomogeneous geological and
biological fluids which we might choose to approximate as homogeneous fluids
for the sake of computational and analytical convenience. We illustrate the main
ideas by means of a very simple boundary value problem, with very simple forms
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for the inhomogeneity, but this should not detract from the value of the work. To
illustrate the ideas within the context of a flow in a more complicated geometry
will tend to obscure the basic issues, namely that slight inhomogeneities can lead
to very large differences in local measures for the flow.

Let B denote an abstract body and let P ∈ B denote a typical material
point. A one-to-one invertible mapping κ that assigns to each point P ∈ B
a point X ∈ κ(B) in a three-dimensional Euclidean space is called a placer and
κ(B) is called a configuration of the body. Let κt(B) denote the configuration
of the body at say some time t. If t is the current time then κt(B) would be
its current configuration. Let x ∈ κt(B) denote a typical point belonging to
the current configuration. The fact that the properties of a body vary from one
point to another in κt(B) does not mean that the body is inhomogeneous. This
point cannot be overemphasized. Unfortunately, in much of the literature
in fluid mechanics devoted to inhomogeneous fluids, sufficient care is not exer-
cised in explaining what is meant by an inhomogeneous fluid as the equations
are invariably expressed from an Eulerian point of view (the fact that the den-
sity of a fluid varies with location due to the action of gravity does not mean
that the fluid is inhomogeneous). For example, it is possible that the proper-
ties of a homogeneous fluid could vary from one point to another in the current
configuration. To recognise this consider a homogeneous1) shear thinning fluid,
homogeneous in some reference configuration, say a static initial configuration,
that starts undergoing a complex flow, the shear rate varying from one point in
the flow domain to another. In this case the viscosity of the fluid would vary
from one point to another in the flow domain but this by no means implies that
the fluid is inhomogeneous. The point is, in general, that an Eulerian description
cannot be used to determine whether a body is homogeneous, it is a notion that
is inherent to the abstract body B and not its present configuration, or for that
matter any specific configuration. This problem cannot be overcome by opting
for a Lagrangian description as what one chooses as the reference configura-
tion is yet arbitrary. In fact, the Eulerian perspective is nothing but a special
Lagrangian perspective where the current configuration is considered as the ref-
erence configuration. Usually, one refers to using the initial configuration as the
reference configuration as the Lagrangian perspective. In short, homogeneity is a
notion associated with the abstract body B and does not refer to response from
any specific configuration. Also, one could very well ask if the current definition
of homogeneity that implies the existence of “some configuration” in which the
properties of the fluid are constant, has any value whatsoever as only the config-
urations that the fluid actually takes matter. We shall not get into a discussion
of whether the definition of an inhomogeneous body, as it is commonly used now,

1)We give a rigorous definition of what is meant by a homogeneous body, below.



A note on the flows of inhomogeneous fluids ... 419

is useful and if a better definition can be put in place. We shall work with the
current definition of an inhomogeneous body.

Before we define what we mean by an inhomogeneous body, we first define
what we mean by a materially uniform body. Two material points P1, P2 ∈ B are
said to be materially uniform (see Truesdell and Noll [10]), when attention
is restricted to purely mechanical issues, if there exist two placers κ1 and κ2 of
the abstract body B into a three-dimensional Euclidean space such that there
exist neighbourhoods NX1

of X1 := κ1(P1) and NX2
of X2 := κ2(P2) that are

indistinguishable with regard to their mechanical response. If all the particles
belonging to the body are pairwise materially uniform, the body is said to be
materially uniform. A body is said to be homogeneous if all the material points
belonging to the body are materially uniform with respect to a single placer
κ. A body that is not homogeneous is said to be inhomogeneous. The above
definition has its own shortcomings as it requires one to know what we mean by
the abstract body B. While we know the configuration of this body B from the
place that it occupies in a three-dimensional Euclidean space at some instant of
time, the body B is in of itself a primitive set. Any configuration of the body
can serve as a reference and we are yet left with the onerous task of having to
show that there exists a configuration of the body in which its properties do not
vary for us to define the body as being homogeneous2). It is only if one can show
that there exists no configuration κ̃(B) in which the properties do not vary, can
one conclude that the body is inhomogeneous. From a practical standpoint, it is
well nigh impossible to prove that there is no other configuration in which the
properties do not vary, for even if we were to carry out an infinity of experiments,
we cannot be sure that there is not one other configuration where the properties
are a constant.

It is important to understand the difference between a body being homo-
geneous and a deformation being homogeneous. A deformation is said to be
homogeneous if in a Cartesian coordinate system, the deformation gradient has
constant entries.

There have been many studies concerning flows in which material particles
remain on specific planes (“horizontal strata”). While properties like density and
viscosity are allowed to vary from one strata to another, they do not vary on the

2)When working with biological materials that are growing, it is necessary to discuss the
notion of inhomogeneity of bodies and here, as the body is constantly adapting and growing,
the body is not a fixed set of particles and one only has an Eulerian description of the body as
other particles that were once present, may not be in place at the current time. In this case the
notion of inhomogeneity is far more complicated and one can use the Eulerian description, fix
a set of particles that correspond to the configuration in question to get at the abstract body
of interest that corresponds to the real body of interest that exists at time t. We shall not get
into a discussion of such a definition here.
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strata. As the particle remains on the plane, using the coordinate perpendicular
to the plane along which the properties vary, one can use an Eulerian coordinate
to carry out Lagrangian tracking, as the same coordinate normal to the strata
serves as both the Eulerian and Lagrangian coordinate. In general such a de-
vice cannot be adopted if one is to study general three-dimensional flows of an
inhomogeneous fluid. One has to start with some configuration (κR) in which
the inhomogeneity is defined, and then determine which material particle X be-
longing to the original reference configuration presently occupies a specific point
x in the current configuration (κt). As particles are always required to remain
on a horizontal plane, we can conclude, if we require configurations of the body
to be those actually taken by the body but not those in which the body could
be possibly placed, then we could conclude there is no configuration in which
the body can have uniform properties. More importantly, just because in the
current configuration due to the action of gravity, the density of a fluid varies, it
does not make the fluid an inhomogeneous fluid. The point is, in the absence of
gravity the density might not vary and the fluid could be homogeneous. Thus,
studies of stratified fluids, while perfectly reasonable, are not necessarily studies
of inhomogeneous fluids. It is possible that one could indeed have stratified flows
of an inhomogeneous fluid but this has to be decided on the basis of the body
under consideration and not on the basis of the property of the fluid, such as
density, varying due to body force fields such as gravity or for that matter any
type of force.

There has been a considerable amount of work on the flow of fluids (see Yih

[11, 12]) that are primarily concerned with stratified Euler fluids, purely due
to the variation in the density (in fact there is no treatment of inhomogeneous
Navier–Stokes fluids in [11] or [12]. The only problem, where frictional forces
enter into consideration, is in the study of flow through porous media where
the friction at the pores is included. However, the friction in the fluid itself is
neglected).

Rayleigh [6] studied the character of the equilibrium of an incompressible
Euler fluid arranged in horizontal strata, its density depending on the co-ordinate
normal to the horizontal strata, by subjecting it to perturbations. It might be
possible to place the fluid in a configuration, namely one which corresponds to
the effect of gravity being negated (i.e., deforming the current configuration ap-
propriately) wherein the density is a constant. Moreover, the same fluid in a zero
gravity environment would have constant density. This is not to say one cannot
study the flows of fluids under the influence of gravity that causes the density to
vary. Studies of stratified fluids concern such flows and are not necessarily flows
of inhomogeneous fluids. Of course it is important to point out that Rayleigh
does not call the fluids inhomogeneous. He is concerned with “stratified flows”
which he defines precisely. The perturbations were assumed by Rayleigh to be
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small and dependent on x, y and z. He considered the stability of two homoge-
neous fluids of constant density separated by a common boundary. Harrison

[3] studied two linearly viscous fluids in the same geometry, in order to deter-
mine the effect of viscosity on the character of the stability. This study seems to
be one of the earliest studies on the flow of inhomogeneous Navier–Stokes flu-
ids. Other early studies involving inhomogeneous Navier–Stokes fluids are those
by Lewis [5], Taylor [9], Hide [4] and Chandrasekhar [1, 2]. Like Harri-

son [3], Chandrasekhar [2], generalized Rayleigh’s treatment of the case of
two uniform fluids separated by a horizontal boundary to the case of an incom-
pressible Navier–Stokes fluid by allowing the viscosity to depend on the vertical
coordinate. He however carried the instability analysis a lot further. While there
have been a few other studies concerning inhomogeneous Navier–Stokes fluids,
there is the need for a careful and systematic study of such fluids.

Here, we shall consider fluids whose density is constant but whose viscosity
varies from point to point in its reference configuration, i.e., we are interested
in inhomogeneous incompressible fluids. We shall also allow the fluid to be such
that its generalized viscosity can allow it to shear thin or shear thicken, that is
the viscosity will be assumed to depend on the symmetric part of the velocity
gradient. The form that we have chosen for the generalized viscosity allows for
a variety of characteristics for the viscosity depending on the values that can be
assigned to the parameters that appear in its definition.

We consider models wherein the generalized viscosity displays characteristics
associated with real fluids. To illustrate our thesis, we study the flow between
two parallel plates due to a pressure gradient and that between two concentric
circular cylinders, namely plane Poiseuille flow and cylindrical Couette flow.

It is important to recognize that qualitative results that are established in this
note are not a consequence of the special choice of the inhomogeneity. They have
been chosen to make our ideas transparent within the context of a simple model.
Finally, we observe that in the case of isotropic inhomogeneous nonlinear elastic
solids, significant differences in the value of the stresses can exist between those
in the actual inhomogeneous body and the homogenized approximation arrived
at by obtaining a model that has an equivalent stored energy (see Saravanan

and Rajagopal [7, 8]).

2. The model

We shall consider an inhomogeneous fluid whose Cauchy stress T is related
to the fluid motion in the following manner:

(2.1) T = −p1 + µ(X)

(

1 + β

(

1

2
trA1

2

))m

A1 ,
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where −p1 is the indeterminate spherical stress due to the constraint of incom-
pressibility, and A1 denotes the symmetric part of the velocity gradient. We
note that when m = 0, the model reduces to an incompressible inhomogeneous
Navier–Stokes fluid.

We shall be interested in plane Poiseuille flow for which the motion takes the
form:

(2.2) x = X + u(Y )t , y = Y , z = Z ,

and we shall consider a viscosity which is inhomogeneous in the following manner:

(2.3) µ(X) = µ̂(Y ) = µ̂(y) .

We also consider cylindrical Couette flow wherein the motion is given by:

(2.4) r = R , θ = Θ + ω(R)t , z = Z ,

and we assume that

(2.5) µ(X) = µ̂(R) = µ̂(r) .

In the case of flow between two plates that are a distance ‘h’ apart we assume
that

(2.6) µ̂(Y ) = µ̂(y) = µ0

(

1 + ε

(

6y2

h2
−

1

2

))

,

and also obtain results for another (similar) form:

(2.7) µ = µ0

(

1 + ε

(

1

2
−

6y2

h2

))

.

The choice of the inhomogeneity ensures that the mean value of the viscosity is
µ0, and if ε = 0.1, it follows that the viscosity is never more than 10% from its
mean value.

In the case of the (Couette) flow in the annulus between two very long cylin-
ders, we assume that:

(2.8) µ̂(R) = µ̂(r) = µ0

(

1 + ε

(

r2 −
3.31

3

))

,

and also obtain results for another (similar) form:

(2.9) µ = µ0

[

1 + ε

(

3.31

3
− r2

)]

,

so that once again the mean viscosity is µ0 and the viscosity never varies more
than 10% from the mean.
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3. Poiseuille flow between flat plates

On neglecting the body force, the appropriate governing equation is

(3.1)

[

µ(y)

(

1 + β(u′)2
)m

u′

]

′

= C ,

where C is the pressure gradient along the x-direction that is a constant, and
the prime denotes the derivative with respect to the argument.

If one assumes that the fluid adheres to the boundaries, then we need to enforce:

(3.2) u(h/2) = u(−h/2) = 0 .

Let us define the volumetric flow rate across unit cross-sectional area through:

(3.3) Q =

h/2
∫

−h/2

u(y)dy .

Let QH denote the mass flow rate corresponding to a homogeneous power law
fluid whose zero shear rate viscosity has a constant value µ0. Let us define the
difference Qe through:

(3.4) Qe =
Q − QH

QH
,

where QH corresponds to the flow rate of the homogeneous power-law fluid.
The non-dimensional parameters associated with the governing equation are

as follows:

û =
u

V
, ŷ =

y

h
, β̂ =

βV 2

h2
and Ĉ =

Ch2

µ0V
.

The governing equation (3.1) subject to the condition in Eq. (3.2) can be
solved easily, and it can be shown that the error in the flow rate by assuming a
homogeneous fluid with a mean viscosity can be as high as 43%. While this error
in itself is quite large, it does mask a much deeper problem, namely errors in the
wall shear rate that can be of the order of 4000%! This can be verified from Figs.
1–2, wherein the error in the shear rate between that for the inhomogeneous
fluid and that for the homogenized fluid are plotted. Tables 1 and 2 document
the error in the flow rate and the velocity gradient (at the wall) between the
inhomogeneous fluid whose inhomogeneity varies in the manner defined through
Eqs. (2.7) and (2.6) respectively, and the corresponding homogeneous fluid.
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Fig. 1. Error (in the velocity gradient) for m = −0.5, Ĉ = −2.0, ε = 0.1. Inhomogeneity
given in Eq. (2.6). Maximum error is 97.77%.
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Fig. 2. Error (in the velocity gradient) for m = −0.5, Ĉ = −1.8, ε = 0.1. Inhomogeneity
given in Eq. (2.7). Maximum error is 4517.66%.
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Table 1. Error, in the flow rate and velocity gradient (at the wall), between
the inhomogeneous fluid defined through Eq. (2.7) and the corresponding

homogeneous fluid.

m Ĉ Variable
β̂

1.0 0.81 0.25 0.01

−0.5 −1.8 Error in the velocity gradient (at wall) 4517.66% 49.48% 14.58% 11.22%
−0.5 −1.8 Error in the mass flow 49.34% 14.17% 5.54% 4.38%
−0.4 −14.9 Error in the velocity gradient (at wall) 69.36% 69.34% 69.43% 20.12%
−0.4 −14.9 Error in the mass flow 42.83% 42.81% 42.85% 7.45%

Table 2. Error, in the flow rate and velocity gradient (at the wall), between
the inhomogeneous fluid defined through Eq. (2.6) and the corresponding

homogeneous fluid.

m Ĉ Variable
β̂

1.0 0.81 0.25 0.01

−0.5 −2.0 Error in the velocity gradient (at wall) 97.77% 31.07% 11.61% 9.17%
−0.5 −2.0 Error in the mass flow 34.60% 11.98% 4.76% 3.74%
−0.4 −15.0 Error in the velocity gradient (at wall) 37.91% 37.90% 37.89% 13.90%
−0.4 −15.0 Error in the mass flow 26.86% 26.86% 26.84% 5.75%

Given a specific model of the form (2.1), it is not possible to obtain solutions
of the form (2.2), for all values of the pressure gradient C. Consider an integral
of (3.1). We immediately recognize that, when say m = −1/2,

(3.5) u′ =

Cy

µ(y)
(

1 − β

(

Cy

µ(y)

)2)1/2
,

and in order for u′ to be real, we need the denominator to be real which would
not be possible for certain viscosities.

4. Couette flow in the annular region between two coaxial cylinders

The governing equations for the flow of the inhomogeneous fluid reduce to

(4.1)
d

dr̄

[

µ̂(r)

(

1 + βr2

(

dω

dr

)2)m

r3 dω

dr

]

= 0 ,

and the adherence of the fluid to the two cylinders implies that:

(4.2) ω(Ri) = 0 , ω(Ro) = Ω ,

where Ri and Ro are the radius of the inner and outer cylinders, respectively.
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Let us suppose that

(4.3)
Ro − Ri

Ri
= 0.1 .

For the sake of notational simplicity, let us define a constant β̄ through β̄ = βΩ2.
Figure 3 records the variation of the error (with β̄) in the velocity gra-

dient (non-dimensional), between the inhomogeneous and homogeneous cases,
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Fig. 3. Variation of error (in the velocity gradient at the inner cylinder) with β̄ for
m = −0.5, ε = 0.1. Inhomogeneities defined through Eq. (2.8) – (I) and (2.9) – (II).

Maximum errors are 139.67% and 36.58%, respectively.
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Fig. 4. Variation of error (in the velocity gradient at the inner cylinder) with ε for various
m, β̄. Inhomogeneities defined through Eq. (2.8) – (I).
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recorded at the inner cylinder for a particular value of m. We see that the error
increases with β̄ and can be quite significant, i.e., greater than 100%. Figures 4
and 5 record the variation of this error with ε, and we see that a 10% variation
in the viscosity can lead to an error over 100% in the shear rate.
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Fig. 5. Variation of error (in the velocity gradient at the inner cylinder) with ε for various
m, β̄. Inhomogeneities defined through Eq. (2.9) – (II).
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