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The aim of the paper is to present the experimental and theoretical study of frac-
ture of brittle materials. To this end, new and more complete experimental data on de-
formability and fracture of brick and mortar subjected to tri-axial state of stress were
discussed. Such experimental data are necessary to formulate the theoretical models
capable of describing the mechanical behaviour of concrete, cementitious composites,
ceramics and rocks. The second objective of this study is to present the potentialities
of our own phenomenological model, based on continuum damage mechanics and on
the theory of tensor function representation. Comparison of the experimental results
obtained for tri-axial compression of brick and mortar with respective theoretical
predictions showed satisfactory agreement.

1. Introduction

The progress in mechanics of solids and structures requires mutually
interrelated extensive theoretical and experimental studies of mechanical prop-
erties of structural materials, which are necessary to formulate theoretical mod-
els capable of describing the physical processes observed in solids subjected to
multi-axial states of stress. Strong motivation for such experiments exists in the
case of brittle rock-like materials because of complexity of the phenomena that
affect their mechanical response. Some rather incomplete experimental data for
rocks subjected to confined pressure presented by Cristescu and Hunsche [9],
Derski et al. [10], Goodman [15] and Rummel [46] and similar but very lim-
ited results shown for concrete by Chen [8] and Neville [42], could give only
preliminary information on the behaviour of brittle rock-like materials tested
under tri-axial states of stress. Wide utilisation of ceramics and cementitious
composites requires deeper studies of such phenomena like load or deformation-
induced anisotropy that develops in the loading process due to internal oriented
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damage growth. Simultaneously, new approaches based on micromechanics [1,
21, 23] and on the methods of continuum damage mechanics have been used
by Chaboche et al. [7], Litewka et al. [31], Murakami and Kamiya [40]
and Halm and Dragon [16, 17] to formulate some phenomenological models
capable of describing the mechanical behaviour of brittle rock-like materials in
the presence of damage-induced anisotropy. Further developments and practi-
cal applications of these theoretical descriptions can be found in more recent
papers [24, 34, 35]. However, those analyses are based on limited experimental
data, particularly for tri-axial state of stress and were verified for some specific
cases of loading only. To obtain more realistic theoretical description of overall
material response, further extensive experimental studies are needed.

The aim of this note is to supply new and more complete experimental data
on mechanical response of brittle materials subjected to tri-axial states of stress.
To this end, a well known tri-axial test used mainly in rock mechanics [9, 10,
15] that consists in simultaneous action of axial compressive stress and hydro-
static pressure, referred to as a confining pressure, was employed. However, this
classical procedure is not sufficient to obtain appropriate information on de-
formability, damage growth and fracture of brittle materials and that is why one
more tri-axial test was used here to determine experimentally the behaviour of
brick and mortar. The second objective of the study presented here is to show
the potentialities of our own phenomenological model [31, 32, 34, 35], based on
continuum damage mechanics [19, 22, 27, 39] and on the theory of tensor func-
tion representation [3, 4, 45, 47], that can be used to describe the response, of
brittle rock-like material subjected to tri-axial state of stress.

2. Theoretical background

Theoretical and experimental studies by Chen [8], Horii and Nemat-

Nasser [20], Mitrofanov and Dovzenko [38] and Bogucka et al. [5] showed
that compressive load applied to brittle rock-like materials results in develop-
ment of oriented microcracks perpendicular to the direction of maximum princi-
pal stress. However, the mechanism of oriented damage growth strongly depends
on the state of stress and the overall structural degradation of the material is dif-
ferent for tension, compression and for combination of both the cases. It means
that an originally isotropic material becomes orthotropic, with principal axes
of orthotropy coinciding with the directions of the principal stresses. Early at-
tempts to describe the mechanical behaviour of brittle materials by using the
methods of damage mechanics can be found in [11, 14]. According to the rules
of the continuum damage mechanics, the current state of the deteriorated mate-
rial structure can be described by a certain independent variable or a group of
variables [43] responsible for the current state of the material structure. Mathe-
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matical model of deformability of brittle rock-like materials used in this paper is
based on the assumption of tensorial nature of the material damage [26]. That
is why the symmetric second-rank damage tensor defined by Vakulenko and
Kachanov [50], Murakami and Ohno [41] and Betten [2] was used as a
variable responsible for deterioration of the material internal structure. Explicit
form of the relevant constitutive equations was found by employing the methods
of the theory of tensor function representations, as applied to solid mechanics by
Boehler [4] and Betten [3]. Some results of possible application of the above
theory to describe a nonlinear behaviour of concrete, fibre concrete and rocks
including the experimental verification was explained elsewhere [31, 33, 34, 35].
The constitutive equations presented there consist of the stress-strain relations
for anisotropic elastic solids:

(2.1) εij = Aijklσkl,

where εij is the strain tensor and σkl is the stress tensor. The fourth-order
tensor Aijkl that appears in Eq. (2.1) is a function of the damage effect tensor
Dij explained in [29, 30] and defines the material constants of an orthotropically
damaged solid. It was shown earlier [31, 35] that instead of the most general
representation of such a tensor function the following linear form seems to be
sufficient:

(2.2) Aijkl = − ν0

E0
δijδkl +

1 + ν0

2E0
(δikδjl + δilδjk)

+ C(δijDkl +Dijδkl) +D(δikDjl + δjlDik + δilDjk + δjkDil).

Equation (2.2) contains the Kronecker delta δij , the Young modulus E0 and
Poisson’s ratio ν0 for an originally undamaged material, two constants C and D
to be determined experimentally and the second-order symmetric damage effect
tensor Dij responsible for the current state of internal structure of the material.
Substituting Eq. (2.2) to the stress-strain relation (2.1), the following tensor
function was obtained:

(2.3) εij = − ν0

E0
δijσkk +

1 + ν0

E0
σij

+ C(δijDklσkl +Dijσkk) + 2D(σikDkj +Dikσkj)

which describes the anisotropic elastic response of the damaged material.
Deterioration of the material structure due to applied load can be described

by the damage evolution equation expressed in the form of the tensor function

(2.4) Ωij = f1δij + f2σij + f3σikσkj ,
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where Ωij is a classical second-order damage tensor formulated by Vakulenko

and Kachanov [50], Murakami and Ohno [41] and Betten [2]. Our experi-
ments [5, 32, 33] performed for plain concrete and fibre concrete show that the
process of the damage growth starts at the very beginning of the loading and
no significant evidence of damage threshold was noticed. That is why it seems
to be reasonable to look for the damage evolution equation in the specific form
expressed by Eq. (2.4) where the damage tensor depends directly on the stresses
applied. Equation (2.4) contains three multipliers f1, f2 and f3 that are scalar-
valued functions of the stress tensor invariants. To determine the explicit form
of these multipliers, what is necessary to describe the behaviour of the material
subjected to a tri-axial state of stress, the analysis of mathematical properties of
Eq. (2.4) was performed. Preliminary experimental verification of possible shape
of this equation, by employing the available experimental results for uni-axial
and bi-axial compression for concrete and rocks, are shown in [31, 34, 35]. It was
found there that the respective scalar functions contained in Eq. (2.4) should
have the following form:

(2.5)

f1 = Asklskl (1 +H detσpq)
F ,

f2 = B
√
σklσkl (1 +H detσpq)

F ,

f3 = 0,

where skl is the stress deviator and A, B, F are unknown material parameters to
be determined experimentally. The multiplierH is a certain function of the scalar
invariants of the stress tensor that should satisfy some requirements explained
in [35]. New more general data presented in this note showed that the form of
the multiplier H obtained in [35] is not sufficient to describe the properties of
the materials subjected to a tri-axial state of stress. That is why it was finally
found that H should be expressed by the following function of the stress tensor
invariants:

(2.6) H =
227

200 |detσrs| +
∣∣σ3

ll

∣∣ .

Taking into account Eqs. (2.5) and (2.6), the damage evolution equation (2.4)
can be written in the following form:

(2.7) Ωij = Asklskl

(
1 +

227 detσpq

200 |detσrs| +
∣∣σ3

ll

∣∣

)F

δij

+B
√
σklσkl

(
1 +

227 detσpq

200 |detσrs| +
∣∣σ3

ll

∣∣

)F

σij .
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The first term of Eq. (2.7) represents the isotropic damage and the second one
accounts for the oriented damage due to different effects of the stress tensor
components.

The damage tensor Ωij is very useful to describe the continuity of the material
only. As it was shown earlier by Murakami and Ohno [41] and Litewka [29,
30], such a damage tensor is not sufficient to describe the strength and stiffness
reduction of the damaged material, and that is why it was necessary to define a
second-order damage effect tensor Dij . The relation

(2.8) Di =
Ωi

1 −Ωi
, i = 1, 2, 3

between the principal values Ω1, Ω2 and Ω3 of the damage tensor Ωij and the
principal components D1, D2 and D3 of the damage effect tensor Dij contained
in Eqs. (2.2) and (2.3) was formulated in [29].

3. Experiments

Most of the available experimental data on the mechanical behaviour of brit-
tle rock-like materials like those obtained by Kupfer [25], Ehm and Schnei-

der [13], Thienel et al. [49] and Ligęza [28], concern the concrete subjected to
a plane state of stress. Such experiments performed on suitably shaped concrete
plates required special technique of bi-axial loading as well as elaboration of
appropriate experimental procedure. As was shown in [36], numerous technical
problems are faced when testing brittle rock-like materials under tri-axial state
of stress. That is why, rather limited amount of the respective experimental data
on the mechanical behaviour of materials subjected to such a state of stress can
be found in the literature. The available experimental results concern mainly the
rocks subjected to simultaneous action of axial compressive load represented by
compressive stress σV and by hydrostatic pressure p, referred to as a confining
pressure. This specific case of tri-axial loading shown in Fig. 1a corresponds to
the state of stress observed in rocks and soils in natural deposits and that is why
it is frequently used to study the properties of such materials. The data obtained
from these experiments for some rocks and very scarce similar results available
for concrete reported by Chen [8] and Neville [42], give some information on
the behaviour of brittle rock-like materials and make it possible to conclude that
the confining pressure increases the axial load that can be sustained. Moreover,
in the limiting case when hydrostatic pressure only is applied, practically lin-
ear mechanical response of a material described by the law of elastic change of
volume has been observed (Carvalho et al. [6]).

To obtain more complete information on deformability, oriented damage
growth and fracture for ceramics, concrete, cementitious composites and rocks,
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further experimental studies are needed. That is why the classical procedure of
tri-axial loading shown in Fig. 1a was extended by one more tri-axial test of
simultaneous action of hydrostatic pressure and bi-axial uniform compression,
explained in Fig. 1b. The experimental results presented here were obtained for
cylindrical specimens of mortar and brick. The height and diameter of these
specimens were equal to 12 cm and 6 cm, respectively. The program of loading
consisted of uni-axial compression and two cases of tri-axial loading referred to
as State I and State II as shown in Figure 1. Further details on the experimental
technique adopted and the equipment used can be found elsewhere [36, 37, 48].

Fig. 1. Configuration of the stress tensor components for two cases of tri-axial state of
stress: a) State I, b) State II.

The objective of the test performed under uni-axial compression was to cali-
brate the materials tested. That is why the initial Young modulus E0 and Pois-
son’s ratio ν0 as well as the uni-axial compressive strength fc shown in Table 1
were measured experimentally for both the materials tested. These values of
standard constants as well as those for five other parameters A,B,C,D and F
contained in Eqs. (2.2), (2.3), (2.5) and (2.7) are necessary to employ the the-
oretical model proposed. The various methods used to identify the four above
constants, namely A, B, C and D, were presented in earlier papers [31, 32, 35].
Those methods are based on relevant experimental data for uni-axial or bi-axial
compression of the material tested and the final form of the equations used to
calculate these constants and other details related to the numerical procedure
can be found in [32, 35]. The numerical values of the constants A, B, C and D
shown in Table 1 were obtained by using the specific method of identification de-
scribed in [35]. The comparison of experimental stress-strain curves determined
for three specimens of brick and for four specimens of mortar, subjected to uni-
axial compression with theoretical predictions obtained from Eqs. (2.3), (2.7)
and (2.8), is shown in Figs. 2 and 3.
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Fig. 2. Experimental and theoretical stress-strain curves for mortar subjected to uni-axial
compression.

Fig. 3. Experimental and theoretical stress-strain curves for brick subjected to uni-axial
compression.

The objective of the tests under tri-axial state of stress was to determine the
respective stress-strain curves and to measure the stresses at material fracture
for the prescribed loading programs. Various combinations of the stress tensor
components and at least two different loading paths are necessary to supply the
information on the shape of the limit surface at material failure subjected to
tri-axial states of stress. The possible form of such a limit surface, together with
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Table 1. Experimental data and constants used in the analysis of tri-axial state

of stress of mortar and brick.

Constant Unit Mortar Brick

E0 MPa 8030 2420
ν0 − 0.175 0.105

fc MPa −7.39 −11.49

A MPa−2 2500×10−5 1064×10−5

B MPa−2 100.0×10−5 100.0×10−5

C MPa−1
−1.000 × 10−5

−1.500 ×10−5

D MPa−1 2.188×10−5 3.508×10−5

F − 0.9400 0.6300

the loading paths for State I and State II of tri-axial compression is shown in
Fig. 4. It is seen from this figure that respective loading paths consisted of two
stages. The Stage 1 was the same in both cases of tri-axial loading and consisted
in a monotonic increase of hydrostatic pressure up to the prescribed value p. In
the Stage 2 of the first tri-axial state of stress (State I), the vertical normal stress
σV was increased up to the material failure that occurs for σ3f = p + σV . In
the Stage 2 of the State II of tri-axial loading, two horizontal components σH of

Fig. 4. Limit surface at material fracture and loading paths for State I and State II:
∗ point corresponding to material fracture.
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uniform bi-axial state of stress were increased simultaneously up to the material
failure that corresponds to σ1f = σ2f = p + σH . The experiments presented
here have been performed for 6 specimens of brick and 6 specimens of mortar
subjected to State I and for the same numbers of the specimens subjected to
State II of the tri-axial compression. To obtain several combinations of the stress
tensor components, various levels of the hydrostatic pressure p were used. The
respective numerical data are shown in Tables 2 and 3.

Table 2. Magnitude of hydrostatic pressure p applied to brick and mortar

in State I of tri-axial loading.

Material Brick

Specimen CC1 CD1 CC2 CD2 CC3 CD3

Hydrostatic pressure p, MPa −1.03 −1.03 −2.05 −2.05 −3.05 −3.05

Material Mortar

Specimen ZC1 ZD1 ZC2 ZD2 ZC3 ZD3

Hydrostatic pressure p, MPa −1.05 −1.05 −2.05 −2.05 −3.05 −3.05

Table 3. Magnitude of hydrostatic pressure p applied to brick and mortar

in State II of tri-axial loading.

Material Brick

Specimen CA1 CB1 CA2 CB2 CA3 CB3

Hydrostatic pressure p, MPa 0 0 −2.50 −2.50 −3.29 −3.54

Material Mortar

Specimen ZA1 ZB1 ZA2 ZB2 ZA3 ZB3

Hydrostatic pressure p, MPa 0 −0.15 −1.95 −1.95 −3.62 −3.62

4. Stress-strain curves

Deformation of the specimen subjected to tri-axial loading should be deter-
mined at each stage of the loading process to supply the information necessary
to construct the stress-strain curves for the material tested. That is why four
electrical resistance strain gauges arranged in the form of two rosettes glued on
opposite sides of the specimen were used to measure longitudinal and lateral
deformations of the specimen. Unfortunately, these strain gauges were subjected
to direct action of hydrostatic pressure applied to the lateral surface of the
specimen and this unknown contribution of the hydrostatic pressure should be
eliminated by using appropriate method of compensation. The details of the pro-
cedure of indirect compensation used in these experiments were presented in [36].
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The stress-strain curves obtained experimentally for mortar and brick were com-
pared with the theoretical predictions. To this end, the respective equations of
the mathematical model used were expressed in terms of the stress tensor com-
ponents

(4.1) σij =



σ11 = p 0 0

0 σ22 = p 0

0 0 σ33 = σV + p




for State I and

(4.2) σij =



σ11 = σH + p 0 0

0 σ22 = σH + p 0

0 0 σ33 = p




for State II. The stress-strain relation (2.3) specified for the stress tensors (4.1)
and (4.2) have a form

(4.3) ε1 = ε2 = − ν0

E0
σV +

1 − 2ν0

E0
p

+ C [(D1 +D3)σV + p (5D1 +D3)] + 4DpD1,

(4.4) ε3 =
σV

E0
+

1 − 2ν0

E0
p + C [2D3σV + p (2D1 + 4D3)] + 4D (σV + p)D3

for State I and

(4.5) ε1 = ε2 =
1 − ν0

E0
σH +

1 − 2ν0

E0
p

+ C [4D1σH + p (5D1 +D3)] + 4D (σH + p)D1,

(4.6) ε3 = −2ν0

E0
σH +

1 − 2ν0

E0
p

+ C [2 (D1 +D3)σH + p (2D1 + 4D3)] + 4DpD3

for State II. Substituting the stress tensor components (4.1) and (4.2) to the
damage evolution equation (2.7), one can obtain the following relations:

(4.7) Ω1 = Ω2 =

(
2

3
Aσ2

V +Bp
√
σ2

V + 2σV p+ 3p2

)

·


1 +

227 (σV + p) p2

200 |(σV + p) p2| +
∣∣∣(σV + 3p)3

∣∣∣




F

,
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(4.8) Ω3 =

(
2

3
Aσ2

V +B (σV + p)
√
σ2

V + 2σV p+ 3p2

)

·


1 +

227 (σV + p) p2

200 |(σV + p) p2| +
∣∣∣(σV + 3p)3

∣∣∣




F

for State I and

(4.9) Ω1 = Ω2 =

(
2

3
Aσ2

H +B (σH + p)
√

2σ2
H + 4σHp+ 3p2

)

·


1 +

227 (σH + p)2 p

200
∣∣∣(σH + p)2 p

∣∣∣+
∣∣∣(2σH + 3p)3

∣∣∣




F

,

(4.10) Ω3 =

(
2

3
Aσ2

H +Bp
√

2σ2
H + 4σHp+ 3p2

)

·


1 +

227 (σH + p)2 p

200
∣∣∣(σH + p)2 p

∣∣∣+
∣∣∣(2σH + 3p)3

∣∣∣




F

for State II. Equations (4.3)–(4.10) together with Eq. (2.8) make it possible to
construct the theoretical stress-strain curves for mortar and brick. Comparison
of these theoretical predictions with the corresponding experimental results is
shown in Fig. 5, 6, 7, 8, 9, 10 and 11. It should be noted that theoretical curves
were obtained for six material constants E0, ν0, A, B, C and D shown in Table 1
determined from uni-axial compression. The last constant F was determined by
employing one experimental point for each material tested at a tri-axial com-
pression.

The respective curves seen in Figs. 5–11 present the relation between the
variable vertical component σV in State I or variable horizontal component σH

for State II and the horizontal or vertical strains determined from the relations

εH = ε1 −
1 − 2ν0

E0
p,

εV = ε3 −
1 − 2ν0

E0
p,

where ε1 = ε2 and ε3 are the principal strains measured experimentally for the
specimens tested or determined theoretically from Eqs. (4.3)–(4.6).
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Fig. 5. Experimental and theoretical stress-strain curves for tri-axial compression
(State I for p = −1.05 MPa) of mortar.

Fig. 6. Experimental and theoretical stress-strain curves for tri-axial compression
(State I for p = −2.05 MPa) of mortar.



Damage and fracture of brittle materials subjected ... 467

Fig. 7. Experimental and theoretical stress-strain curves for uniform bi-axial compression
(State II for p = 0 MPa) of mortar.

Fig. 8. Experimental and theoretical stress-strain curves for tri-axial compression
(State I for p = −1.03 MPa) of brick.
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Fig. 9. Experimental and theoretical stress-strain curves for tri-axial compression
(State I for p = −3.05 MPa) of brick.

Fig. 10. Experimental and theoretical stress-strain curves for tri-axial compression
(State II for p = −2.50 MPa) of brick.
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Fig. 11. Experimental and theoretical stress-strain curves for tri-axial compression
(State II for p = −3.49 MPa) of brick.

5. Criterion of fracture

The theoretical model presented in this paper can also be used to determine
the maximum stresses that can be sustained by the material subjected to multi-

axial state of stress. To this end the appropriate criterion of material fracture
should be formulated according to the rules of the damage mechanics. In the

early stage of development of damage mechanics it was assumed that the mater-
ial fracture occurs when scalar damage variable reaches its limiting value equal to

unity. However, experimental observations presented by Lemaitre [27], Dyson

and McLean [12], and Hayhurst [18] show that rupture of metals subjected to

creep at elevated temperature occurs when the value of scalar damage parameter
does not reach its limiting value equal to unity. This specific value of damage

variable at material fracture referred to as a critical value of the scalar dam-

age parameter [44] depends on the material, temperature and the state of stress
applied and varies from 0.2 to 0.8. That is why the fracture criteria for metals

subjected to damage are usually derived by employing the notion of such a criti-
cal value of the scalar damage parameter or critical configuration of the damage

tensor components when the tensorial measure of damage is employed. The in-
troduction of such a notion of critical state of material damage implies that in

general case of the multi-axial state of stress, the material fracture begins when
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the actual deteriorated internal structure, described by certain critical configu-

ration of the damage tensor components, cannot sustain the load applied. Such
an approach to the problem proved to be useful when formulating the respective

rupture criteria for metals subjected to creep damage at elevated temperature
[30] and probably may be necessary when dealing with uni-axial and bi-axial

tension and compression of brittle rock-like materials.
The experiments presented in this paper show that the fracture mechanism of

damaged brittle rock-like materials is different from that well known for metals
subjected to damage. The examination of the specimens performed after fracture

showed that the material tested was totally crushed into separate tiny particles.
It means that tri-axial compression of brittle rock-like materials results in crack

growth to such a state that at fracture, the net cross-section area is reduced to
zero. This full deterioration of internal structure of the material occurs when

at least one of the principal components Ω1, Ω2 or Ω3 of the damage tensor

Ωij determined from Eq. (2.7) reaches the limiting value equal to unity. In such
a case the material loses its continuity and its stiffness described by Eq. (2.2)

decreases to zero, what results in a practically horizontal part of the theoretical
stress-strain curves determined from Eq. (2.3) and shown in Fig. 5, 6, 7, 8 and 9.

Lack of a pronounced horizontal part of the stress-strain curves for brick shown
in Fig. 10 and 11 is a result of partial debonding of the electrical strain gauges

at the advanced stage of deterioration of the material structure due to tri-axial
loading.

To analyse the experimental results obtained for the two cases of tri-axial
compression referred to as State I and State II Eq. (2.7) was expressed in terms

of the stress tensors components shown in Eqs. (4.1) and (4.2). This substi-
tution leads to Eqs. (4.7) and (4.8) for State I, and to Eqs. (4.9) and (4.10)

for State II. The fracture of the material subjected to State I occurs when two

horizontal principal components of the damage tensor Ω1 and Ω2 are equal to
unity. It means that the fracture criterion in this case can be written in the

form

(5.1) Ω1 = Ω2 =

(
2

3
Aσ2

V +Bp
√
σ2

V + 2σV p+ 3p2

)

·


1 +

227 (σV + p) p2

200 |(σV + p) p2| +
∣∣∣(σV + 3p)3

∣∣∣




F

= 1.

The third principal component of the damage tensor Ω3 does not decide in this
case on the material fracture, since it grows slower than those determined by

Eq. (5.1). The State II of tri-axial compression is characterised by faster growth



Damage and fracture of brittle materials subjected ... 471

of the vertical principal component of the damage tensor Ω3 and that is why the

material fracture occurs when

(5.2) Ω3 =

(
2

3
Aσ2

H +Bp
√

2σ2
H + 4σHp+ 3p2

)

·


1 +

227 (σH + p)2 p

200
∣∣∣(σH + p)2 p

∣∣∣+
∣∣∣(2σH + 3p)3

∣∣∣




F

= 1.

In this case the growth of two other principal components Ω1 and Ω2 of the

damage tensor is slower and that is why they do not decide on the onset of
fracture.

Equations (5.1) and (5.2) were used to determine the theoretical values of
the stresses at material fracture

(5.3) σ3f = p+ σV

for State I and

(5.4) σ1f = σ2f = p+ σH

for State II. Comparison of the theoretical predictions obtained from Eqs. (5.1)–
(5.4) with the corresponding experimental data for mortar and brick is shown

in Figs. 12, 13, 14 and 15. The maximum difference between the theoretical and

Fig. 12. Comparison of experimentally determined stresses at material fracture σ3f with
theoretical predictions for tri-axial State I of mortar.
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Fig. 13. Comparison of experimentally determined stresses at material fracture σ1f = σ2f

with theoretical predictions for tri-axial State II of mortar.

Fig. 14. Comparison of experimentally determined stresses at material fracture σ3f with
theoretical predictions for tri-axial State I of brick.
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Fig. 15. Comparison of experimentally determined stresses at material fracture σ1f = σ2f

with theoretical predictions for tri-axial State II of brick.

experimental results seen in these figures for some specimens is approximately
equal to 20%. The discrepancies obtained for other specimens are much smaller

and the average difference determined for all the specimens tested does not
exceed 0.3%. This relatively good agreement shows that overall accuracy of the

theoretical model used in this paper is satisfactory.

6. Conclusions

Classical tri-axial test of confined axial compression used in rock mechanics is
not sufficient to study the mechanical behaviour of brittle materials subjected to

multi-axial state of stress. To obtain more complete information on the material
response, at least two different tri-axial tests are necessary. That is why one

more test of simultaneous action of uniform bi-axial compression and hydrostatic

pressure was employed.
Theoretical model used here made it possible to describe the experimentally

determined mechanical properties of mortar and brick. It was found that theoret-
ical stress-strain curves for tri-axial loading obtained from the relevant equations

show a satisfactory agreement with the experimental data. Fairly good agree-
ment of the experimental data and theoretical predictions was also obtained for

the stresses at the material fracture. Increasing compressive strength of brittle
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rock-like materials known from earlier experiments for specimens subjected to

confined axial compression was also observed in the new tri-axial test used here.
This phenomenon can be explained theoretically within the mathematical model

proposed. Thus, the experimental technique adopted and the phenomenological
model used in this paper proved to be accurate enough to study the phenomena

observed in tri-axial loading of brittle rock-like materials.
The mathematical model presented in this paper has a form necessary to de-

scribe our own as well as the other currently known and available experimental
data for brittle rock-like materials that are limited to multi-axial but monotonic

loading. Possible generalizations of the relevant equations for unloading, cycling
loading and non-proportional loading need further experimental studies neces-

sary to explain the nature of the specific physical phenomena involved.
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