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The two-dimensional deformation of homogeneous, isotropic, thermoelastic half-
space with voids as a result of inclined line load is investigated by applying the Laplace
and Fourier transforms. The inclined load is assumed to be a linear combination
of a normal load and a tangential load. The displacements, stresses, temperature
distribution and change in volume fraction field so obtained in the physical domain
are computed numerically. The variations of these quantities have been depicted
graphically in the Lord–Shulman (L–S) theory and Green–Lindsay (G–L) theory for
an insulated boundary.
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1. Introduction

The theory of linear elastic materials with voids is one of the most impor-
tant generalizations of the classical theory of elasticity. This theory has practical
utility for investigating various types of geological and biological materials for
which the classical elastic theory is inadequate. This theory is concerned with
elastic materials having a distribution of small pores (voids) in which the void
volume is included among the kinematics variables, and in the limiting case of
volume tending to zero, the theory reduces to the classical theory of elasticity.

A nonlinear theory of elastic materials with voids was developed by Nun-
ziato and Cowin [7]. Later, Cowin and Nunziato [9] developed a theory of
linear elastic materials with voids for the mathematical study of the mechani-
cal behavior of porous solids. They considered several applications of the linear
theory by investigating the response of the materials to homogeneous deforma-
tions, pure bending of beams and small amplitudes of acoustic waves. Puri
and Cowin [11] studied the behavior of plane waves in linear elastic materials
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with voids. Domain of influence theorem in the theory of elastic materials with
voids was discussed by Dhaliwal and Wang [18]. Scarpetta [19] studied the
well-posedness theorems for linear elastic materials with voids. Birsan [26] es-
tablished the existence and uniqueness of weak solutions in the linear theory of
elastic shells with voids.

Rusu [14] studied the existence and uniqueness of solutionsin thermoelas-
tic materials with voids. Saccomandi [15] presented some remarks about the
thermoelastic theory of materials with voids. Ciarletta and Scalia [17] dis-
cussed the nonlinear theory of nonsimple thermoelastic materials with voids.
Ciarletta and Scarpetta [21] discussed some results concerning thermoelas-
ticity for dielectric materials with voids. Dhaliwal and Wang [20] developed a
heat-flux dependent theory of thermoelasticity with voids. Marin [22, 23] stud-
ied the uniqueness and domain of influence results for thermoelastic bodies with
voids. Marin [24] presented the contributions on uniqueness in thermoelasto-
dynamics for bodies with voids. Marin and Salca [25] obtained the relation
of the Knopoff-de Hoop type in thermoelasticity of dipolar bodies with voids.
Chirita and Scalia [28] studied the spatial and temporal behavior in linear
thermoelasticity of materials with voids. Pompei and Scalia [29] discussed the
spatial decay estimates in linear thermoelasticity of materials with voids.

When the source surface is very long in one direction in comparison with the
others, the use of two-dimensional approximation is justified and consequently,
calculations are simplified to a great extent and one gets analytical solutions in
closed form. A very long strip-source and a very long line-source are examples
of such two-dimensional sources. Love [1] obtained expressions for the displace-
ments due to a line source in an isotropic elastic medium. Maruyama [2] ob-
tained the displacement and stress fields corresponding to long strike-slip faults
in a homogeneous isotropic half-space. Okada [12, 16] presented a compact an-
alytic expressions for the surface deformation and internal deformation due to
inclined shear and tensile faults in a homogeneous isotropic half-space. Several
authors [4, 6, 27, 30] discussed the problems of inclined load in the theory of
elastic solids. No attempt has been made so far to study the response to inclined
load in a thermoelastic body with voids.

We study the general plane strain problem of thermoelastic half-space with
voids due to different sources. The integral transform technique has been used to
solve it. We have obtained the expression for displacements, stresses, tempera-
ture distribution and change in volume fraction field in a thermoelastic half-space
with voids due to an inclined line load in the form of Laplace and Fourier trans-
forms, which are converted to the original solution numerically. The deformation
due to other sources such as strip loads, continuous line loads etc. can also be
similarly obtained. The deformation at a point of the medium is useful to ana-
lyze the deformation field around mining tremors and drilling into the crust of
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the earth. It can also contribute to the theoretical consideration of the seismic
and volcanic sources since it can account for the deformation fields in the entire
volume surrounding the source region.

2. Basic equations

Following Lord-Shulman [3], Green–Lindsay [5] and Cowin and Nun-
ziato [9], the field equations and constitutive relations in thermoelastic solid
with voids without body forces, heat sources and extrinsic equilibrated body
force can be written as:

µ∇2u + (λ+ µ)∇ (∇.u) + b∇φ− β∇(T + δ2kτ1Ṫ ) = ρü,(2.1)

α∇2φ− b (∇.u) − ξ1φ− ω0φ̇+mT = ρχφ̈,(2.2)

K∇2T − βT0(∇.u̇ + τ0δ1k∇.ü) −mT0φ̇ = ρce(Ṫ + τ0T̈ ),(2.3)

and

(2.4) tij = λ uG,G δij+µ(ui,j+uj,i)+b φ δij−β(T+δ2kτ1Ṫ )δij , (i, j = x, y, z).

In Eqs. (2.1)–(2.4) we have used the notations: λ, µ – Lamé constants,
α (stress times squared length), b, ξ1 (stress), ω0 (stress times time), χ (equi-
librated inertia) which are material constants due to the presence of voids, m
(stress temperature coefficient) material constant due to presence of voids and
temperature, T – temperature change, β = (3λ + 2µ)αt, αt – linear thermal
expansion coefficient u – displacement vector, tij – stress tensor, ρ, ce – den-
sity and specific heat at constant strain, respectively, K – thermal conductivity,
φ – change in the volume fraction field, δij – Kronecker delta, T0 – uniform tem-
perature; a superposed dot denotes differentiation with respect to time variable
t, τ0, τ1 are thermal relaxation times. For the L–S theory, τ1 = 0, δ1k = 1 and for
the G–L theory τ1 > 0, δ1k = 0 (i.e., k = 1 for the L–S theory and k = 2 for the
G–L theory). The thermal relaxations τ0 and τ1 satisfy the inequality τ1 ≥ τ0 > 0

for the G–L theory only, ∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
, ∇2 =

∂2

∂x2
+

∂2

∂y2
+
∂2

∂z2
are the

gradient and Laplacian operators respectively.

3. Formulation and solution of the problem

We consider a homogeneous, isotropic, thermally conducting elastic half-
space with voids in the undeformed state at uniform temperature T0. The rec-
tangular Cartesian coodinate system (x, y, z) with z-axis pointing vertically into
the medium is introduced.
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Suppose that an inclined line load F0 per unit length is acting on the y-
axis and its inclination to z-direction is θ (Fig. 1). To simplify the algebra, only
problems with zero initial conditions are considered.

Fig. 1. Inclined load over a thermoelastic half-space with voids.

For a two-dimensional problem, we assume u = (u, 0, w) in Eqs. (2.1)–(2.4).
We introduce the dimensionless quantities:

(3.1)

x′ =
ω∗

1

c2
x, z′ =

ω∗
1

c2
z, t′ = ω∗

1t, u′ =
ω∗

1

c2
u,

w′ =
ω∗

1

c2
w, T ′ =

T

T0
, φ′ =

ω∗2
1 χ

c22
φ,

∈1 =
βc22
Kω∗

1

, τ ′0 = ω∗
1τ0, τ ′1 = ω∗

1τ1, a′ =
ω∗

1

c2
a,

(3.2) t′ZZ =
tZZ

βT0
, t′ZX =

tZX

βT0
, h′ =

hc2
ω∗

1

,

where

c2 =

(
µ

ρ

)1/2

and ω∗
1 =

ρcec
2
2

K
.

The expression relating the displacement components u(x, z, t) and w(x, z, t)
to the scalar potential functions ψ1(x, z, t) and ψ2(x, z, t) in dimensionless form
are given by

(3.3) u =
∂ψ1

∂x
− ∂ψ2

∂z
, w =

∂ψ1

∂z
+
∂ψ2

∂x
.
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Applying the Laplace and Fourier transforms

(3.4) f̂ (x, z, p) =

∞∫

0

f (x, z, t) e−ptdt and f̃ (ξ, z, p) =

∞∫

−∞

f̂ (x, z, p) eiξxdx,

to equations (2.1)–(2.3), after using Eqs. (3.1), (3.3) (suppressing the primes)
and eliminating ψ̃1, φ̃, T̃ and ψ̃2 from the resulting expressions, we obtain

(3.5)
(
d6

dz6
+Q

d4

dz4
+N

d2

dz2
+ I

) (
ψ̃1, φ̃, T̃

)
= 0,

and

(3.6)
(
d2

dz2
− λ2

4

)
ψ̃2 = 0,

where Q,N, I are listed in Appendix A.
The roots of Eqs. (3.5) and (3.6) are ±λℓ (ℓ = 1, 2, 3, 4). Assuming the regu-

larity condition at z = ∞, the solution of Eqs. (3.5) and (3.6) may be written as

ψ̃1 = A1ē
λ1z +A2ē

λ2z +A3ē
λ3z,(3.7)

φ̃ = d1A1ē
λ1z + d2A2ē

λ2z + d3A3ē
λ3z(3.8)

T̃ = e1A1ē
λ1z + e2A2ē

λ2z + e3A3ē
λ3z,(3.9)

ψ̃2 = A4e
−λ4z,(3.10)

with Aℓ (ℓ = 1, 2, 3, 4) being arbitrary constants and eℓ and dℓ are given in
Appendix B.

4. Application

Consider a normal line load of intensity F1, per unit length, acting in the
positive z-direction on the plane boundary z = 0 along the y-axis and a tangen-
tial line load F2, per unit length, acting at the origin in the positive x-direction
then the boundary conditions are

(4.1)

tzz(x, z, t) = −F1ψ(x) δ (t), tzx(x, z, t) = −F
2
ζ(x)δ(t),

∂φ

∂z
= 0,

∂T

∂z
+ hT = 0 at z = 0,

where δ( ) is the Dirac delta function, ψ(x) and ζ(x) denote the vertical and
horizontal load functions, respectively, distributed along the x-axis, h is the heat
transfer coefficient, F1 and F2 are force intensities.
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Fig. 2. Normal and tangential loadings.

Using Eqs. (3.1) and (3.2) along with F ′
1 =

F1

βT0
, F ′

2 =
F2

βT0
in the bound-

ary conditions (4.1) (suppressing the primes for convenience) and applying the
Laplace and Fourier transforms defined by Eq. (3.4), we obtain the transformed
boundary conditions as

(4.2)

t̃zz(ξ, z, p) = −F1ψ̃(ξ), t̃zx(ξ, z, p) = −F2ζ̃(ξ),

dφ̃

dz
= 0,

dT̃

dz
+ hT̃ = 0

where ψ̃(ξ) and ζ̃(ξ) are the Fourier transforms of ψ(x) and ζ(x) respectively.
Making use of Eqs. (2.4)–(3.3) (suppressing the primes for convenience) and

applying the Laplace and Fourier transforms defined by (3.4) in the trans-
formed boundary conditions (4.2) and substituting the values of ψ̃1, ψ̃2, T̃ , φ̃ from
equations (3.7)–(3.10), we obtain the expressions for displacement components,
stresses, temperature distribution and change in the volume fraction field which
are presented in Appendix C.

Inclined line load

For an inclined line load F0 per unit length, we have (see Fig. 1)

(4.3) F1 = F0 cos θ, F2 = F0 sin θ.

Case 1. Concentrated force
In this case

(4.4)

ζ(x) = δ(x), ψ(x) = δ(x),

with

ζ̃(ξ) = 1, ψ̃(ξ) = 1.
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Case 2. Uniformly distributed force
The solution due to uniformly distributed force applied to the half-space

surface is obtained by setting

{ζ(x), ψ(x)} =

{
1 if |x| ≤ a,

0 if |x| > a,

in Eq. (4.1). The Laplace and Fourier transforms with respect to the pair (x, ξ)
for the case of a uniform strip load of unit amplitude and width 2a applied at
the origin of the coordinate system (x = z = 0) in dimensionless form, after
suppressing the primes, becomes

(4.5) { ζ̃(ξ), ψ̃(ξ)} =

[
2 sin

(
ξc2a

ω∗
1

)/
ξ

]
, ξ 6= 0 .

Case 3. Linearly distributed force
The solution due to linearly distributed force applied to the half-space surface

is obtained by setting

{ζ(x), ψ(x)} =





1 − |x|

a
if |x| ≤ a,

0 if |x| > a,

in Eq. (4.1), where 2a is the width of the strip load. Using Eqs. (3.1)–(3.2)
(suppressing the primes) and applying the transforms defined by Eq. (3.4), we get

(4.6) { ζ̃(ξ), ψ̃(ξ)} =





2

{
1 − cos

(
ξc2a

ω∗
1

)}

ξ2c2a

ω∗
1



 .

Using Eq. (4.3) in Eqs. (C.1) (Appendix C) and with the aid of Eqs. (4.4)–(4.6),
we obtain the expressions for displacements, stresses, temperature distribution
and change in the volume fraction field for different sources applied on the surface
of the thermoelastic half-space with voids.

4.1. Particular case

If we neglect the voids effect, i.e. (α = b = ξ1 = m = χ = ω0 = 0) in
the Eqs. (C.1) along with Eqs. (4.3), we obtain the expressions for displacement
components, stresses and temperature distribution in the thermoelastic half-
space (see Appendix D).
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The expressions for displacements, stresses and temperature distribution in
the case of inclined line load can be obtained for concentrated, uniformly and lin-
early distributed force by substituting ζ̃(ξ), ψ̃(ξ) from (4.4)–(4.6), respectively,
in Eqs. (D.1).

Sub-case 1: If h → 0, Eqs. (C.1) yield the expressions of displacements,
stresses, temperature distribution and change in the volume fraction field for the
insulated boundary.

Sub-case 2: If h → ∞, Eqs. (C.1) yield the expressions of displacements,
stresses, temperature distribution and change in the volume fraction field for the
isothermal boundary.

Special case 1: By putting k = 1 and τ1 = 0 in Eqs. (C.1), we recover the
displacements, stresses, temperature distribution and change in volume fraction
field for L–S theory.

Special case 2: For the G–L theory, we obtain the corresponding expres-
sions for displacements, stresses, temperature distribution and change in the
volume fraction field by substituting k = 2 in Eqs. (C.1).

Special case 3: The expressions for displacements, stresses, temperature
distribution and change in the volume fraction field for the theory of coupled
thermoelasticity (CT) are obtained by putting k = 3, τ0 = τ1 = 0 in Eqs. (C.1).

5. Inversion of the transforms

To obtain the solution of the problem in the physical domain, we must invert
the transforms in equations (C.1) and (D.1), for the two theories, i.e., L–S and
G–L. These expressions are functions of z, the parameters of Laplace and Fourier
transforms p and ξ, respectively, and hence they are of the form f̃(ξ, z, p). To
get the function f(x, z, t) in the physical domain, first we invert the Fourier
transform using the formula:

(5.1) f̂(x, z, p) =
1

2π

∞∫

−∞

e−iξxf̃(ξ, z, p)dξ =
1

π

∞∫

0

(cos(ξx)fe−i sin(ξx)f0)dξ,

where fe and f0 are, respectively, even and odd parts of the function f̂(ξ, z, p).

Thus, expression (5.1) gives us the Laplace transform f̂(x, z, p) of the function
f(x, z, t). Following Honig and Hirdes [10], the Laplace transform f̂(x, z, p) can
be inverted to f(x, z, t).

The last step is to calculate the integral in Eq. (5.1). The method for evaluat-
ing this integral is described by Press et al. [13], which involves the application
of Romberg’s integration with adaptive step size. This uses also the results of
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successive approximations of the extended trapezoidal rule followed by extrapo-
lation of the results to the limit when the step size tends to zero.

6. Numerical results and discussion

Following Dhaliwal and Singh [8] we take the case of magnesium crystal-
like material for numerical calculations. The physical constants used are

λ = 2.17 × 1010 Nm−2, µ = 3.278 × 1010 Nm−2, ρ = 1.74 × 103 kgm−3,

ce = 1.04 × 103 J kg−1degree−1, ω∗
1 = 3.58 × 1011s−1, F0 = 1, T0 = 298◦ K,

K = 1.7 × 102 Wm−1degree−1, β = 2.68 × 106 Nm−2degree−1,

and the void parameters are

χ = 1.753 × 10−15 m2, α = 3.688 × 10−5 N, ξ1 = 1.475 × 1010 Nm−2,

b = 1.13849 × 1010 Nm−2, ω0 = 0.0787 × 10−3 Nm−2 sec,

m = 2 × 106 Nm−2degree−1.

The comparison of the values of normal boundary displacement w, normal
stress tzz, boundary temperature field T and change in the volume fraction field
φ with distance x for concentrated force (CF) are shown graphically in Figs. 3–6
for L–S and G–L theories for dimensionless relaxation times τ0 = 0.02, τ1 = 0.05

and for different values of θ = 0◦, 45◦, 90◦. The computations are carried out
for dimensionless time t = 0.5 at z = 1.0 in the range 0 ≤ x ≤ 10. The solid,
the small-dashed and the large-dashed lines without center symbol predicts the
variations of L–S theory for different values of θ whereas the solid, the small-
dashed and the large-dashed lines with center symbol predicts the variations of
G–L theory for different values of θ. The results for distributed load are presented
for dimensionless width a = 1.

Figure 3 depicts the variation of normal displacement w with distance x.
Near the point of application of the source, the values of w increase as the angle
of inclination increases for both the theories. The displacement for θ = 45◦ lies
between the corresponding displacements for a normal line load and tangential
line load for both the theories in the range 0 ≤ x ≤ 10. The behavior of variation
of w for the L–S theory and G–L theory is the same, with difference in magnitude
values in the whole range.
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Figure 4 shows the variation of temperature distribution T with distance x.
In the initial range, the values of T for θ = 0◦ are greater than for θ = 45◦ and
90◦ for both the theories. The values of T for θ = 0◦ exhibit small variations
about zero in the whole range for both the theories, whereas for θ = 45◦ and 90◦

the values of T start with a small increase and then become oscillatory in the
whole range for both the theories.

Fig. 3. Variation of normal displacement w with distance x.

Fig. 4. Variation of temperature T with distance x.
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Figure 5 depicts the variation of change in the volume fraction field φ with
distance x. The nature of variation of φ is opposite to that of normal displacement
w with difference in their magnitude as the angle of inclination increases from
θ = 0◦ to 90◦.

Figure 6 shows the variation of normal stress tzz with distance x. Initially
the values of normal stress for the G–L theory are greater than the L–S theory
and nature of variation of tzz is opposite to that of T with difference in their
magnitude as angle of inclination increases from θ = 0◦ to 90◦.

Fig. 5. Variation of change in the volume fraction field φ with distance x.

Fig. 6. Variation of normal stress tzz with distance x.
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7. Conclusions

1. It is evident from the figures that variations of normal displacement, stres-
ses, temperature distribution and change in the volume fraction field for
the L–S theory and the G–L theory are similar in nature for different angles
of inclination when the load is applied.

2. At the point of application of the source, the values of normal displacement
and normal stress increase as the angle of inclination increases, whereas
for temperature distribution and change in volume fraction field the values
show a reverse behaviour.

3. From the figures we conclude that the values of normal displacement,
stresses, temperature distribution and change in the volume fraction field
for θ = 45◦ lie between the values corresponding to θ = 0◦ and θ = 90◦.

4. The variations of normal displacement, normal stress, temperature distri-
bution and change in volume fraction field for uniformly and linearly dis-
tributed force are the same as those of a concentrated force, with difference
in their magnitude for both the theories.

5. The variations of normal displacement, stresses, temperature distribution
and change in volume fraction field for CT theory are the same as those of
the L–S theory and G–L theory, with a difference in the magnitude.

Appendix A

Q =
1

b1
{b1(b3 − b5 − 3ξ2) − p2 + a2a4 − b2b4 ∈1},

N =
1

b1

{
(a6a8p− b3b5 − 2b3ξ

2 + 2b5ξ
2 + 3ξ4)b1 − p2

(
b3 − b5 − 2ξ2

)

+ a2

(
a4b5 − 2a4ξ

2 − a6 ∈1 b4
)

+b2
(
∈1 b3b4 − 2 ∈1 b4ξ

2 − a4a8p
)}
,

I = − 1

b1

{
b1ξ

6 − ξ4(p2 + b1b3 − b1b5 + a2a4 + b2b4) + ξ2(b3p
2 + b5p

2

+ b1a6a8p− b1b3b5 − a2a4b5− ∈1 b4(a2a6 − b2b3)

+ p2 (a6a8p+ b3b5)
}
,

b1 = (1 + a1), b2 = a3(1 + τ1δ2kω
∗
1p), b3 = a7p

2 + a5 −
ω0c

2
2

ω∗
1α

,

b4 = (p+ p2τ0δ1kω
∗
1), b5 = (p+ p2τ0ω

∗
1), λ2

4 = ξ2 + p2,
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a1 =
λ+ µ

µ
, a2 =

bc22
χµω∗2

1

, a3 =
βT0

µ
, a4 =

bχ

α
,

a5 =
ξ1c

2
2

ω∗2
1 α

, a6 =
mχT0

α
, a7 =

ρχc22
α

, a8 =
mc42
ω∗3

1 χK

Appendix B

eℓ =
U∗λ2

ℓ + V ∗

a2λ2
ℓ + T ∗

, dℓ =
P ∗λ2

ℓ +Q∗

R∗λ2
ℓ + S∗

; (ℓ = 1, 2, 3),

U∗ = a2b4 ∈1 +pb1a8, V ∗ = −p2 − ξ2 (b1+ ∈1 a2b4) ,

T ∗ = b2a8p− a2

(
ξ2 + b5

)
, P ∗ =

a4

a6
− b1
b2
,

R∗ =
1

a6
, Q∗ =

1

b2
(ξ2b1 + p2) − a4ξ

2

a6
,

S∗ =
a2

b2
+

(
b3 − ξ2

a6

)
,

Appendix C

The expressions for displacement components, stresses, temperature distrib-
ution and change in the volume fraction field are given as

ũ = − iξ
∆
{F1ψ̃(ξ)(∆1ē

λ1z − ∆3ē
λ2z + ∆5ē

λ3z − ∆7ē
λ4z)

+ F2ζ̃(ξ)(∆2ē
λ1z − ∆4ē

λ2z + ∆6ē
λ3z − ∆8ē

λ4z)},

w̃ = − 1

∆
{F1ψ̃(ξ)(λ1∆1ē

λ1z − λ2∆3ē
λ2z + λ3∆5ē

λ3z − iξ∆7ē
λ4z)

+ F2ζ̃(ξ)(λ1∆2ē
λ1z − λ2∆4ē

λ2z + λ3∆6ē
λ3z − iξ∆8ē

λ4z)},
(C.1)

t̃zz =
1

∆
{F1ψ̃(ξ)(s1∆1ē

λ1z − s2∆3ē
λ2z + s3∆5ē

λ3z − s4∆7ē
λ4z)

+ F2ζ̃(ξ)(s1∆2ē
λ1z − s2∆4ē

λ2z + s3∆6ē
λ3z − s4∆8ē

λ4z)},

t̃zx =
1

∆
{F1ψ̃(ξ)(λ1∆1ē

λ1z − λ2∆3ē
λ2z + λ3∆5ē

λ3z + n1∆7ē
λ4z)

+ F2ζ̃(ξ)(λ1∆2ē
λ1z − λ2∆4ē

λ2z + λ3∆6ē
λ3z + n1∆8ē

λ4z)},
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(C.1)
[cont.] T̃ =

1

∆
{F1ψ̃(ξ)(e1∆1ē

λ1z − e2∆3ē
λ2z + e3∆5ē

λ3z)

+ F2ζ̃(ξ)(e1∆2ē
λ1z − e2∆4ē

λ2z + e3∆6ē
λ3z)},

φ̃ =
1

∆
{F1ψ̃(ξ)(d1∆1ē

λ1z − d2∆3ē
λ2z + d3∆5ē

λ3z)

+ F2ζ̃(ξ)(d1∆2ē
λ1z − d2∆4ē

λ2z + d3∆6ē
λ3z)},

where
∆ = ∆∗

1 + h∆∗
2,

∆∗
1 = λ2λ3 (s4λ1 − n1s1) (d3e2 − d2e3) +λ1λ3 (s4λ2 + n1s2) (d1e3 + e1d3)

+ λ1λ2 (s4λ3 + n1s3) (d1e2 − e1d2) ,

∆∗
2 = (s4λ1 − n1s1) (e3λ2d2 − e2d3λ3) + (e3λ1d1 − e1λ3d3) (s4λ2 + n1s2)

− (s4λ3 + n1s3) (e1λ2d2 − e2λ1d1) ,

∆1,2 = (n1, s4)∆10, ∆3,4 = (−n1, s4)∆20, ∆5,6 = (−n1, s4)∆30,

∆7 =
[
λ1λ2λ3

{
e3 (d1 − d2) + e2 (d3 − d1) − e1 (d3 − d2)

}

+ h
{
λ1 (e3d2λ2 − e2d3λ3) − λ2 (e3λ1d1 − e1λ3d3)

+ λ3 (λ1d1e2 − e1λ2d2)
}]
,

∆8 =
[{
s2λ1λ3 (d1e3 − e1d2) + s1λ2λ3(e2d3 − e3d2)

− s3λ2λ1(e1d2 − e2d1)
}

+ h
{
s1 (e3d2λ2 − e2d3λ3) − s2 (e3λ1d1 − e1λ3d3)

+ s3 (λ1d1e2 − e1λ2d2)
}]
,

∆10 = (e2d3 − d2e3)λ2λ3 + h (e3λ2d2 − λ3d3e2) ,

∆20 = (e1d3 − d1e3)λ1λ3 + h (e3λ1d1 + e1λ3d3) ,

∆30 = (e1d2 − d1e2)λ1λ2 + h (e2λ1d1 − λ2d2e1) ,



Deformation due to inclined load... 21

sℓ = −iξs′10 − λ2
ℓs

′
20 + dℓs

′
30 + eℓs

′
40; (ℓ = 1, 2, 3),

s4 = −(s′10 + iξs′20)λ4, s′10 =
−iξλ
βT0

,

s′20 =
− (λ+ 2µ)

βT0
, s′30 =

bc22
βT0ω∗2

1 χ
,

s′40 = (1 + pτ1δ2k), n1 =
λ2

4 + ξ2

2iξ
.

Appendix D

The expressions for displacement components, stresses and temperature dis-
tribution are are given by the formulae:

ũ = − F0

∆∗∗

[
ψ̃(ξ) cos θ

{
− iξ(∆∗∗

3 ē
λ∗

1
z + ∆∗∗

4 ē
λ∗

2
z) + ∆∗∗

5 λ4ē
λ4z

}

+ ζ̃(ξ)sinθ
{
iξ(∆∗∗

6 ē
λ∗

1
z + ∆∗∗

7 ē
λ∗

2
z) − ∆∗∗

8 λ4ē
λ4z

}]
,

w̃ =
F0

∆∗∗

[
ψ̃(ξ) cos θ

{
λ∗1∆

∗∗
3 ē

λ∗

1
z + λ∗2∆

∗∗
4 ē

λ∗

2
z + iξ∆∗∗

5 ē
λ4z

}

− ζ̃(ξ) sin θ
{
λ∗1∆

∗∗
6 ē

λ∗

1
z + λ∗2∆

∗∗
7 ē

λ∗

2
z + iξ∆∗∗

8 ē
λ4z

}]
,

(D.1) t̃zz =
F0

∆∗∗

[
ψ̃(ξ) cos θ

{
s∗1∆

∗∗
3 ē

λ∗

1
z + s∗2∆

∗∗
4 ē

λ∗

2
z + s∗3∆

∗∗
5 ē

λ4z
}

− ζ̃(ξ) sin θ
{
s∗1∆

∗∗
6 ē

λ∗

1
z + s∗2∆

∗∗
7 ē

λ∗

2
z + s∗3∆

∗∗
8 ē

λ4z
}]
,

t̃zx = − F0

∆∗∗

[
ψ̃(ξ) cos θ

{
λ∗1∆

∗∗
3 ē

λ∗

1
z + λ∗2∆

∗∗
4 ē

λ∗

2
z − n1∆

∗∗
5 ē

λ4z
}

− ζ̃(ξ) sin θ
{
λ∗1∆

∗∗
6 ē

λ∗

1
z + λ∗2∆

∗∗
7 ē

λ∗

2
z − n1∆

∗∗
8 ē

λ4z
}]
,

T̃ = − F0

∆∗∗

[
ψ̃(ξ) cos θ

{
e∗1∆

∗∗
3 ē

λ∗

1
z + e∗2∆

∗∗
4 ē

λ∗

2
z
}

− ζ̃(ξ) sin θ{e∗1∆∗∗
6 ē

λ∗

1
z + e∗2∆

∗∗
7 ē

λ∗

2
z
}]
,
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where

∆∗∗ = ∆∗∗
1 + h∆∗∗

2 ,

∆∗∗
1 = − (s∗1e

∗
2λ

∗
2 − s∗2e

∗
1λ

∗
1)n1 − (s∗3e

∗
2 − e∗1)λ

∗
1λ

∗
2,

∆∗∗
2 = (s∗1e

∗
2 − s∗2e

∗
1)n1 + s∗3e

∗
2λ

∗
1 − e∗1λ

∗
2,

∆∗∗
3 = −(λ∗2 − h)e∗2n1,

∆∗∗
4 = (λ∗1 + h)e∗1n1,

∆∗∗
5 = (e∗1 − e∗2)λ

∗
1λ

∗
2 + h(e∗2λ

∗
1 − λ∗2e

∗
1),

∆∗∗
6 = (λ∗2 − h)e∗2s

∗
3,

∆∗∗
7 = (λ∗1 + h)e∗1s

∗
3,

∆∗∗
8 = −(e∗1s

∗
2λ

∗
1 − e∗2s

∗
1λ

∗
2) + h(e∗2s

∗
1 − s∗2e

∗
1),

λ∗2ℓ =
−A+ (−1)ℓ+1

√
A2 − 4B

2
; ℓ = 1, 2,

A = −p
2 + (2ξ2 + b5)b1+ ∈1 b2b4

b1
,

B =
(p2 + ξ2b1)(ξ

2 + b5)+ ∈1 b2b4ξ
2

b1
,

s∗ℓ = −iξs′10 − λ∗2ℓ s
′
20 − e∗ℓ ; ℓ = 1, 2,

s∗3 = (s′10 − iξs′20)λ4,

e∗ℓ =
b1λ

∗2
ℓ − p2 − b1ξ

2

b2
; ℓ = 1, 2.
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