
Arch. Mech., 57, 2-3, pp. 81–102, Warszawa 2005

Yield criteria in anisotropic finite elasto-plasticity

S. CLEJA-ŢIGOIU

Faculty of Mathematics and Informatics,
University of Bucharest
str. Academiei 14, 010014 Bucharest, Romania
e-mail: tigoiu@math.math.unibuc.ro

The paper deals with several descriptions of the yield criteria, within the constitutive
framework of anisotropic finite multiplicative elasto-plasticity. We put into evidence
appropriate yield criteria, defined either in stress or strain spaces and we analyse the
Eulerian setting attached to Σ-models, first described in relaxed configuration, when
Σ represents the Mandel’s stress measure or the quasistatic Eshelby stress tensor.
We compare our anisotropic model with the elasto-plastic model, usually adopted in
computational finite plasticity.

1. Introduction

The paper deals with several descriptions of the yield criteria, within the consti-
tutive framework of anisotropic elasto-plastic materials with local current relaxed
configurations (lcrc), denoted by Kt, proposed by Cleja-Ţigoiu and Soós [3]
(see also Cleja-Ţigoiu [1]) and based on the multiplicative decomposition of
the deformation gradient F, see Mandel [19], Teodosiu [26], Rice [24], into
its elastic and plastic components

F = EP,(1.1)

denoted E and P.
• The behaviour of the material is elastic with respect to a moving set of

plastically deformed configurations (lcrc), while the irreversible variables, i.e. the
plastic component and the internal variables, are defined by the rate-independent
evolution equations, related to the appropriate yield surfaces. The mathemati-
cal description of the (icrc) has been introduced simultaneously with the law of
materials, taking into account the physical origin and mechanical significance,
attributed by Teodosiu [26], Kratochvil [12], Mandel [19] to the elastic
and plastic parts of deformation. Based on the material symmetry concept in-
troduced and developed by Cleja-Ţigoiu and Soós [2, 3], it is proved that
the material symmetry group with respect to Kt is fixed gKt = gk. Here gk

characterizes the structural preexisting anisotropy (a) in the undeformed body.
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The evolving anisotropy (b) is induced by the development of the plastic defor-
mation, via the internal variables, α. Both anisotropies (a) and (b) are involved
in the constitutive models.

The different descriptions of the yield surfaces were introduced and analyzed
in Mandel [19], Miehe [21, 25], Cleja-Ţigoiu and Maugin, [6], motivated
by the work conjugate pair of variables. The presence of Σ, non-symmetric Man-
del’s stress tensor (also called quasi-static Eshelby’s tensor, see Maugin [22]),
naturally appears as a conjugate variable to the rate of plastic deformation in re-
laxed configuration (called also intermediate configuration by certain authors),
see thermodynamic considerations in [26, 19, 16, 9, 10]. The yield criteria in
Σ-space, as an extension of the Huber–Mises condition, were derived for com-
pressible as well as for incompressible elasto-plastic material. In our approach
to anisotropic body we developed models for two material symmetry groups g1

and g4, in the case of the transverse isotropy, and for g6 – orthotropic material,
respectively, see Cleja-Ţigoiu [7, 8]. The symmetry groups gk are just those
defined by I-Shih Liu in [14].

• The inelastic part of deformation P and the internal variables α are defined
by the evolution equation written either in strain or in stress formulation. The
different stress measures are involved in the evolution equations: Π – symmetric
Piola–Kirchhoff stress tensor or Σ, generally non-symmetric stress tensor for
anisotropic materials, T – Cauchy stress tensor. They are related by the formulae

(1.2)

Π

ρ̃
= (detE)E−1T

ρ
E−T , Σ = G

Π

ρ̃

with G = ETE, ρ̃ = |detE|ρ,

Π, Σ are related to the unstressed configuration, and G denotes the elastic
(right) strain tensor.

• In finite multiplicative elasto-plasticity many attempts have been made
in order to obtain physically motivated restrictions, based on the appropriate
generalizations of the classical dissipation postulates. We mention several forms
of the Il’yushin postulate, in connection with Drucker postulate, say for instance
in Marigo [20], in Lucchesi and Podio–Guidugli [17], in Lucchesi and
Šilhavý [18] within the framework of isotropic materials with elastic range for
isothermal and respectively, non- isothermic processes, in Krawietz [13] for
finite plasticity, basically formulated for stress cycles in relaxed configurations.
Ily’iushin-type dissipation postulate formulated by Cleja-Ţigoiu in [4] (see also
[5] for other consequences of the dissipative restrictions), extends for anisotropic
multiplicative elasto-plasticity the previous results.

We also mention Mandel’s nine-dimensional flow rule, [19], Lubliner’s con-
sequences, in [15, 16], the models in Cleja-Ţigoiu and Maugin [6], based on
the conjugate rates of deformation with stress measures, as well as the models of
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associative plasticity developed in Simo [25], all of them derived from the max-
imum dissipation postulate. In manipulating these postulates the constitutive
framework is essential.

In the present paper, we deal in Sec. 2 with different descriptions of the yield
functions, within the constitutive framework of elasto-plastic models with relaxed
configurations for generally anisotropic material, anisotropy being characterized
by the invariance properties listed in Sec. 4. In Sec. 3 we perform the analyse for
Eulerian setting attached to Σ-models, first described in relaxed configuration
but without any specification of special anisotropy. In the Sec. 4 we emphasize
the peculiar feature of anisotropic elasto-plastic models versus the isotropic ones.

We propose also a new rate-type constitutive equations, compatible with the
dissipation postulate proposed in [4], in Sec. 5. We put into evidence appropriate
descriptions of the yield criteria, as image and preimage of the elastic ranges,
defined either in stress or strain spaces, following the above descriptions, and we
give the reasons for adopting a certain model.

Further we shall use the following notations:
Lin – the set of all second order tensors;
Sym – all symmetric elements of Lin, Sym+ all positive definite tensors of Sym;
Ort+− all proper rotation of the orthogonal group Ort;
a · b – the scalar product of the vectors a,b;
A · B := tr ABT− the scalar product of A,B ∈ Lin; AT the transpose of the

tensor A; As =
1

2
(A + AT ) and Aa =

1

2
(A − AT ) – the symmetrical and

respectively skew-symmetrical parts of A ∈ Lin; I is the identity tensor;
ET − the transpose of E − fourth order tensor, defined for all A,B ∈ Lin by
ETA · B := A · EB;
∂G ϕ(G, α) – the partial derivative of the function ϕ(G, α) with respect to G;
H is Heaviside’s function; < z >= 1/2 (z+ | z |), ∀z ∈ R− the set of all real
numbers;
Ĉt denotes the history of the strain tensor up to time t; superposed dot de-
notes material time derivative, replaced sometimes by d/dt in order to avoid
ambiguities, see (3.16);
ρ0, ρ̃, ρ are mass densities in initial, relaxed and actual configurations.

2. Different description of the yield surfaces

Within the constitutive framework of elasto-plastic materials with local cur-
rent relaxed configurations (lcrc), denoted Kt (see [3, 1]), the yield conditions
have been formulated in the appropriate stress spaces, relative to Kt. These con-
ditions involve either Π or Σ and α – internal variables. It can be proved, see
[1, 4], that:
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1. Any stress formulation, for instance in the case of Σ models, leads
to a model in elastic strain formulation, with the relationship between the
appropriate yield functions, and constitutive functions, respectively, in the form:

(2.1)
F̃(G, α) = F̂(Σ̂(G, α), α), B̃(G, α) = B̂(Σ̂(G, α), α), where

Σ = Σ̂(G, α) the elastic-type constitutive equation,

in terms of Mandel’s stress measure Σ.
Note the similar relationships for Π models:

(2.2)
F̃(G, α) = F(h(G, α), α), B̃(G, α) = B(h(G, α), α), where
Π

ρ̃
= h(G, α) the elastic-type constitutive equation,

this time in terms of the Piola–Kirchoff stress tensor Π.
2. Any elasto-plastic models in elastic strain formulation lead to models in

strain formulation, i.e. in a Lagrangian form, with the yield function

(2.3) F(C,Y) := F̃(P−TCP−1, α) ≡ F̃(G, α) with Y ≡ (P−1, α).

In (2.3) Y denotes the irreversible variables, while the elastic strain G introduced
in (1.2) and the total strain C are related via the formula

(2.4) G = P−TCP−1, with C = FTF,

provided as a consequence of the multiplicative decomposition of the deformation
gradient (1.1).

The yield conditions are formulated within the elasto-plastic models for
materials with relaxed configurations.

• Let us briefly describe the Σ-models with respect to relaxed configura-
tions, Kt.

The elastic type constitutive equation, relative to the relaxed configurations,
in terms of Mandel’s stress measure is characterized by

(2.5)

Σ = Σ̂(G, α), with the constraints

G−1Σ̂(G, α) = Σ̂
T
(G, α)G−1,

Σ̂(I, α) = 0 and conversely

Σ̂(S, α) = 0 ∀S ∈ Sym+ ⇐⇒ S = I.

The last statements in (2.5) formalize the relaxation assumption, which confers
to the configurations Kt the attribute to be relaxed.
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Remark 1. We recall here that the plastic part of deformation is defined as
P(t) ≡ Kt(K0)−1, while E(t) ≡ ∇χ(t)K−1

t , for any χ – motion of the body. The
local configurations Kt for all t ∈ R are defined in Noll’s sense, [23], i.e. they
can be viewed as an invertible linear transformation.

The irreversible behaviour is described by rate-independent evolution
equations given in the form:

ṖP−1 = µ̂ B̂(Σ, α), α̇ = µ̂ l̂(Σ, α),(2.6)

attached to the yield function defined in Σ-space, dependent on α, i.e. to F̂(Σ, α),
via the Khun–Tucker and the consistency conditions

(2.7)
F̂(·, α) : DF̂ ⊂ Lin −→ R, F̂(0, α) < 0 and

µ̂ ≥ 0, µ̂ F̂ = 0, F̂ ≤ 0, and µ̂ ˙̂F = 0 consistency condition.

We add the initial condition

P(t0) = I, α(t0) = 0.(2.8)

• A larger class of elasto-plastic materials with relaxed configurations can be
described in strain formulation, with respect to time-dependent Kt – relaxed
configurations. The elastic type constitutive equation delivers the current value
of the Piola–Kirchhoff stress tensor

(2.9)

Π

ρ̃
= h(G, α), with G = ETE,

h(S, α) = 0 for S ∈ Sym+ ⇐⇒ S = I relaxation property.

The evolution equations for the plastic part of deformation P and internal vari-
able α with respect to the current relaxed configuration Kt are written in the
form

(2.10)
ṖP−1 = λ B̃(G, α), α̇ = λ l̃(G, α),

λ ≥ 0, λF̃ = 0, F̃ ≤ 0, λ
˙̃F = 0 consistency condition,

at which we add the initial condition (2.8).
The yield function F̃ is dependent on the elastic strain tensor G and internal

variables α.

Remark 2. The evolution in time for Y ≡ (P−1, α) is governed by the solu-
tions of Cauchy problem, for a given total strain history, C(X, ·) : [t0,∞) → Sym.
The differential system pulled back to the initial configuration through the proce-
dure mentioned in (2.3), is written in an invariant form with respect to a change
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of frame in the actual configuration. In [1] the mathematical aspects concerning
the solutions of the appropriate Cauchy problem are analysed. Just the La-
grangian formulation of the differential system describing irreversible behaviour
allows to prove the coherent evolution of the solutions and the consistency of the
model.

Consequently, via the solution of the appropriate differential system formu-
lated for Y, the following definitions for the elastic range (or the current elastic
domain), in elastic strain space and in total strain space respectively, become
possible:

Definition 1. The elastic range (in the total strain space) and the reduced
elastic range (in the elastic strain space) at any time t, for a given history of the
total strain up to time t, Ĉt, denoted by U(Ĉt), UR(Ĉt), are defined by

(2.11)
U(Ĉt) : = {B ∈ Sym+ | F(B,Y(t)) ≤ 0} ,

UR(Ĉt) : = {A ∈ Sym+ | F̃(A, α(t)) ≤ 0},

F denotes the yield function in the initial configuration, while F̃ is the yield
function in the relaxed configuration, in a strain description.

The yield surfaces, or the yield conditions, can be characterized as the bound-
aries of the elastic ranges (2.11), in the total strain space and in the elastic strain
space respectively, by

(2.12)
∂U(Ĉt) : = {B ∈ Sym+ | F(B,Y(t)) = 0},

∂UR(Ĉt) = {A ∈ Sym+ | F̃(A, α(t)) = 0}.

The elastic ranges (2.4) have the same topological properties, due to the formula
(2.4), which defines an homomorphism between the elastic strain space and the
total strain space for any fixed P. UR(Ĉt) is considered to be the closure of
a connected open set, with identity strain tensor inside.

3. Elasto-plastic models in Eulerian setting

Starting from elasto-plastic models in the intermediate configuration we as-
sociate the description in the actual configuration for generally anisotropic ma-
terials, by the push-forward procedure.

Taking into account the constitutive description for Σ-models, (2.5), (2.6),
and the kinematic relation between the velocity gradient L ≡ gradv = ḞF−1 and
the rates of elastic Le ≡ ĖE−1 and plastic Lp ≡ ṖP−1 parts of deformation, de-
rived as a straightforward consequence of the multiplicative decomposition (1.1)

(3.1) L ≡ ḞF−1 = ĖE−1 + EṖP−1E−1, Le = ĖE−1, Lp = ṖP−1,
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we pass to the following equivalent formulation (3.3) together with (3.4), under
the hypothesis of the existence of a smooth stress potential ϕ(·, α(t)) such
that

(3.2)
Π(t)

ρ̃
= 2 ∂Gϕ(G, α) = h(G, α).

The irreversible behaviour is described by rate-independent evolution equa-
tions given in the form:

• evolution equations for (E, α)

(3.3) ĖE−1 = L − µ̂ EB̂(Σ, α)E−1, α̇ = µ̂ l̂(Σ, α),

with the conditions do define the plastic multiplier written in (2.7).
The elastic type behaviour is given in terms of Σ, from (1.2) and (3.2), in

the form

(3.4) Σ = Σ̂(G, α) ≡ 2 G ∂Gϕ(G(t), α(t)).

In order to obtain the consistency of the model in the sense that:
• for any smooth history F(X, ·) : [t0,∞) −→ Lin given at a fixed material point
X, there exists at every time a well-defined elastic part of deformation E and
the set of internal variable α, we introduce the causality assumption (similar to
those stipulated in [1]): the plastic multiplier µ̂ is uniquely determined, if the
current value of the appropriate stress is situated on the current yield surface.

In the framework of Σ-model, the current yield surface (or the yield condi-
tion) in Mandel’s stress space can be regarded as the boundary of the current
elastic stress range (see [5]) defined for a given value of internal variables,
α, by

(3.5) K(α) = {Σ ∈ Lin | F̂(Σ, α) ≤ 0}.

The current elastic stress range, (3.5), is considered to be the closure of a con-
nected open set, with zero stress inside. Moreover, the yield surface represented
by ∂K(α) is considered to be a differential manifold of the class C1. The pre-
image under the elastic stress function Σ̂, via formula (3.4),

(3.6) U(α) = {G ∈ Sym | F̂(Σ̂(G, α), α) ≤ 0}

plays a basical role in dissipative postulate, formulated for anisotropic finite
elasto-plastic materials in [4].

Remark 3. The image of the elastic (reduced) range ∂UR(Ĉt) under the
elastic stress function is generally accepted as definition of the elastic stress
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range in the appropriate stress space, [20, 17]. The topological boundary of the
elastic stress range (or domain) defines the yield condition in stress space. In our
approach to finite elasto-plasticity, the transformation map Σ̂ (i.e. the elastic
stress function in Σ from (3.4)) is not a one-to-one function, even for structurally
isotropic material. Σ̂ does not map the boundary of certain elastic reduced range
into the boundary of its image, i.e. the associated yield condition in stress space
is not well-definite. In order to avoid the issue produced by the lack of the injec-
tivity, a converse procedure to define the admissible stresses has been adopted in
[4, 5]. The pre-image of the elastic stress range under the elastic map Σ̂ gives rise
to an elastic domain with all the properties imposed in the former dissipation
postulate.

In order to avoid the objection formulated by Lubliner [15, 16], relative to
the nine-dimensional flow rule, in the analysis of the dissipative nature of the
plastic flow [4], the elastic range has been defined as the pre-image in the elastic
strain space, of the elastic stress range, via the elastic function, say here (3.4).

Proposition 1. For a given smooth history of the deformation gradient
F(X, ·) : [t0,∞) −→ Lin, the elastic part of deformation and internal variable
are defined to be a solution of the Cauchy problem, generated by the evolution
equations (3.3) together with the initial condition (2.8)

(3.7)

ĖE−1 = L − < β̂ >

γ̂
H(F̂) E (B̂) E−1, with L = ḞF−1,

α̇ =
< β̂ >

γ̂
H(F̂ )̂l(Σ, α), µ̂ =

< β̂ >

γ̂
H(F̂),

β̂ = E((∂G Σ̂)T [∂Σ F̂ ])ET · D, and D = {L}s,

γ̂ = (∂G Σ̂)T [∂Σ F̂ ]) · {GB̂}s − 1

2

dF̂
dα

· l̂,

here
dF̂
dα

≡ (∂ Σ̂α)T [∂Σ F̂ ] + ∂α F̂ ,

with γ̂ – the hardening parameter, supposed to be positive. The evolution func-
tions are calculated by composing the “hat functions” with the elastic-type con-
stitutive function (3.4), which means by passing to the elastic strain description
via the formulae (2.1).

In order to derive the expression of the plastic multiplier (3.7) we write the
consistency condition, on the yield surface when µ̂ > 0,

(3.8) ∂ΣF̂(Σ, α) · Σ̇ + ∂αF̂(Σ, α) · α̇ = 0.

We calculate the rate of elastic strain using kinematic relations (3.1) together
with the first evolution equation (3.3), in the form

(3.9) Ġ = 2 ETDE − 2µ̂ {GB̂}s
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as well as the partial derivative of the elastic-type constitutive functions (3.4)

(3.10) ∂GΣ̂[A] = 2 A∂G ϕ(G, α) + 2 G ∂2
GG ϕ(G, α)[A], ∀ A ∈ Sym.

Remark 4. In the actual configuration the behaviour of the elasto-plastic
material is described, for a given history of deformation F : [t0,∞) −→ Lin, by
the elastic-type constitutive equation, which delivers the current value of Cauchy
stress tensor,

T

ρ
= 2 E (∂Gϕ(G, α)) ET(3.11)

with (E, α) solution of the Cauchy problem (3.7), while the plastic part of de-
formation is calculated from (1.1), P = E−1F.

Let us define the tensorial internal variable a in actual configuration, similarly
to the relationship between the Mandel stress measure and the Cauchy stress
derived from (1.2), by pushing forward to the actual configuration

a := E−T αET ,
T

ρ
= E−TΣET .(3.12)

When we push forward the constitutive representation to the actual configura-
tion, the appropriate constitutive functions written in the intermediate configu-

ration generate new functions dependent on the set of variables
(

T

ρ
,a,E

)
, as

it follows:

(3.13)

F
(

T

ρ
,a,E

)
: = F̂(Σ, α) ≡ F̂

(
ET T

ρ
E−T ,ETaE−T

)
,

B
(

T

ρ
,a,E

)
: = E (B̂(Σ, α)) E−1,

l

(
T

ρ
,a,E

)
: = E−T (̂l(Σ, α)) ET ,

n

(
T

ρ
,a,E

)
: = E (∂ΣF̂ (Σ, α)) E−1,

q

(
T

ρ
,a,E

)
: = E (∂αF̂(Σ, α)) E−1

taking into account the formulae (3.12).
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Proposition 2. In the actual configuration the evolution equations (3.3)
for (E,a) become

Le ≡ ĖE−1 = L − µ B
(

T

ρ
,a,E

)
,

D̄e a

D̄t
= µ l

(
T

ρ
,a,E

)
,

(3.14)

with the objective time derivative of the field a introduced in (3.14) by the
formulae

D̄e a

D̄t
:= ȧ + (Le)T a − a (Le)T ≡ E−T α̇ET .(3.15)

In order to obtain the rate form of the constitutive equation in terms of
Cauchy stress tensor we take the derivative with respect to time in (3.11), and
replace the derivative of the elastic strain tensor Ġ from (3.9). It follows

(3.16)
d

dt

(
T

ρ

)
− LeT

ρ
− T

ρ
(Le)T = Ẽ [D]

− µ̂ Ẽ [E−T {GB̂}sE−1] + 2E (∂2
αG ϕ[α̇])ET ,

with fourth order elastic tensor Ẽ and the measure of the influence of the hard-
ening on the elastic-type constitutive function N , defined below:

Ẽ [A] = 4 E(∂2
GG

ϕ[ETAE])ET , ∀ A ∈ Sym,

N [l] ≡ 2 E(∂2
αG

ϕ[ET l E−T ])ET .
(3.17)

Further we use the notation from (3.13), as well as the equations (3.3), and the
identity

E−T {GB̂}sE−1 = {EB̂E−1}s = {B}s(3.18)

in order to transform (3.16).

Theorem 1. The rate-type constitutive equations for the anisotropic Σ-
models, pushed forward to the actual configuration, are described in the form

of the differential system, for the unknowns
(

T

ρ
,a,E

)

(3.19)

d

dt

(
T

ρ

)
− L

T

ρ
− T

ρ
LT = Ẽ [D] − µ

(
2

{
BT

ρ

}s

+ Ẽ [{B}s] −N [l]

)
,

ĖE−1 = L − µ B,

ȧ + LTa − aLT = µ (BT
a − aBT

+ l),
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with the plastic multiplier µ and hardening parameter h̄c defined by

(3.20)

µ =
1

h̄c
<

(
n
T

ρ
+

1

2
Ẽ [n]

)
· D > with

h̄c = n ·
(
{B}sT

ρ
+

1

2
Ẽ [{B}s]

)
− 1

2
n · N [l] − 1

2
q · l.

We suppose that h̄c > 0.

A useful relationship can be obtained from (3.10) calculated for the rate of
plastic part of deformation, via the formula (2.6) together with (3.14):

(∂GΣ̂)T [ṖP−1] = µ̂ E−1

({
BT

ρ

}s

+
1

2
Ẽ [{B}s

)
E−T .(3.21)

4. Anisotropic elasto-plastic models in multiplicative plasticity

The Eulerian setting of elasto-plastic models has been derived in (3.19) with-
out imposing any specific anisotropy. The constitutive functions which enter

(3.19) are dependent on the set of variables
(

T

ρ
,a,E

)
, as it follows from (3.13).

Based on the material symmetry concept developed in [2], [3] and following
the adopted point of view in [7], within the constitutive framework of Σ-model
we introduce here:

The symmetry requirement. There exists a symmetry group gk ⊂ Ort+−
such that the constitutive functions satisfy the following restrictions:

(4.1)

ϕ(QGQT ,QαQT ) = ϕ(G, α),

F̂(QΣQT ,QαQT ) = F̂(Σ, α),

B̂(QΣQT ,QαQT ) = QB̂(Σ, α)QT ,

l̂(QΣQT ,QαQT ) = Ql̂(Σ, α)QT

for all Q ∈ gk.
Definition 2. The elasto-plastic material is anisotropic if there exists a ma-

terial symmetry group gk ⊂ Ort+, gk -= Ort+, and the material is isotropic if
gk = Ort+(but it follows that gk becomes equal to Ort).

Remark 5. In formulating the material symmetry concept, in [2, 3], we
have stipulated that for the same motion χ, two sets of (clrc) {Kt}, {K̄t}
can be equivalently used to characterize mechanical response, if and only if
K̄tK

−1
t = Q ∈ Ort is a fixed orthogonal map, i.e. the condition K̄tK

−1
t ∈ Ort,
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that follows from the relaxation assumption, has been reinforced. Thus, see also
Remark 1, we have taken into account that E,P,Π, hence Σ are changing into
EQT , QPQT , QΠQT , QΣQT , when the local initial configuration K0 is rotated
with an orthogonal transformation. We denoted by QK0 the transformed local
initial configuration, viewed as an invertible linear transformation. Here Q ∈ gk.

The tensorial internal variable must satisfy the same constraint as Σ, see
(3.12). In general case the set of internal variables can be split into tensorial
internal variables and scalar internal variables, all of them are considered to be
frame-independent. We appreciate that a well-elaborated model must specify,
in addition to concrete nature on the internal variables, their transformation
laws with respect to a change of frame in the actual configuration, as well as
to a change of the reference configurations [3]. Only the scalar set remains un-
changed by passing to the actual configuration, being also invariant with respect
to symmetry group, like (4.1)1.

Remark 6. Relative to the fact that gk is viewed as a subset Ort+, we
remark that if E,Π, are changed into EQT ,QΣQT , then from the relationship
between the Cauchy stress and Piola–Kirchoff (1.2) it follows that T is changed
into det(Q)T, i.e. T remains invariant under an orthogonal transformation, if
and only if det(Q) =1.

Objectivity axiom has been formulated in [3]: If (Kt, αKt) is a set of
local current configuration and internal variables associated to the motion χ,
then Kt is a current local configuration for the motion χ∗, which differs from χ
by a change of frame, as well α∗

Kt
− the set of internal variables corresponding to

χ∗, but related to Kt, is equal to αKt , i.e. α∗
Kt

= αKt . Here in order to simplify
the writing formulae, we have omitted the dependence on the local configuration
of the constitutive function and of the variables.

Remark 7. Due to the relationship (1.2), the statement: “T is objective
if and only if Π is invaraint with respect to a change of frame in the actual
configuration” is true, only under the hypothesis that Q ∈ Ort is restricted to
have det(Q) =1, i.e. Q ∈ Ort+.

Consequently, for any Q a rigid rotation, which defines the change of frame
from the motion χ to χ∗, it follows that:

P∗ = P, E∗ = QE, α∗ = α, Π∗ = Π, Σ∗ = Σ,

F∗ = QF, T∗ = QTQT .
(4.2)

The evolution in time of the right elastic strain tensor G can be prescribed as
a consequence of (3.9) together with (3.18) by

Ġ = 2 ET (D − µ̂ {B̄}s)E.(4.3)
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Concerning the time derivative of the tensorial internal variable a, we remark
that (3.19)3 can be also written in terms of the objective derivative Da/Dt

(4.4)
Da

Dt
= µ̂ E−T (B̂T α − αB̂T + l̂) ET ,

Da

Dt
:=

d

dt
a + LTa − aLT .

The equation (4.4) can be written formally in a simple form

(4.5)
Da

Dt
= µ̂ E−T (m̂) ET , with m̂(Σ, α) := B̂T α − αB̂T + l̂.

Remark 8. For a given history of the deformation gradient, F̂t, the set of
evolution equations (4.3) and (4.5) for the fields (G,a) depends on the elastic
rotation Re, via the polar decomposition theorem for E

(4.6) E = Re Ue with G = (Ue)2, and be := EET ≡ Re G (Re)T .

Let us introduce the time derivative of the elastic left strain tensor, following
[25]. From (4.6) we get the identity

(4.7) ḃe = Lebe + be (Le)T .

We replace the rate of the elastic part of the deformation by (3.19)2 and we
arrive at the equation containing the appropriate objective derivative Lv be,
expressed by

(4.8) Lv be = −2 µ̂ {B̄be}s, where Lv be :=
d

dt
be − Lbe − be LT .

Finally we have proved:
• The set of the constitutive equations defining the model in terms of(

be,a,
T

ρ

)
can be expressed in the form

(4.9)

Lv be = −2 µ̂ E{B̂(Σ, α)}sET ,
Da

Dt
= µ̂ E−T (m̂(Σ, α)) ET ,

T

ρ
= 2 E (∂Gϕ(G, α)) ET .

Due to the definitions of the Mandel’s stress measure and of the internal variable,
Σ and α are related to T and a, and the right-hand side of the equations written
in (4.9) depends on the elastic strain G and on the elastic rotation Re.
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We rewrite the system (4.9) using the polar decomposition theorem (4.6)

(4.10)

Lv be = −2 µ̂ ReUe{B̂(Σ, α)}sUe(Re)T ,

Da

Dt
= µ̂ Re(Ue)−1 (m̂(Σ, α)) Ue(Re)T ,

T

ρ
= 2 ReUe (∂Gϕ(G, α)) Ue(Re)T .

We exemplify the push-forward procedure to generate the functions provided in
(3.13) for g4 – transversal isotropy, when the elastic behaviour is characterized
in [7] by:

Π

ρ̃
= Ê(n1 ⊗ n1)[∆] ≡ [a∆n1 · n1 + btr∆](n1 ⊗ n1)

(4.11) +(c∆n1 · n1 + dtr∆)I + e[(n1 ⊗ n1)∆ + ∆(n1 ⊗ n1)] + f∆,

∆ =
1

2

(
G − I

)
.

The existence of the stress potential holds if and only if b = c.
Within the constitutive framework of Σ-models, see [7], g4 – invariant yield

criterion, quadratical with respect to Σ = Σ − α, is characterized only by five
material parameters (if elastic strains are small (Σ / Π/ρ̃), α ∈ Sym and
κ = constant)

(4.12) F(Σ, α) ≡ A1[Σ · (n1 ⊗ n1)]
2 + A2[Σ

2 · (n1 ⊗ n1)] + A3tr (Σ
2
)

+ A4(tr Σ)[Σ · (n1 ⊗ n1)] + A5(tr Σ)2 − κ = 0 ,

for Σ = Σ − α.

Remark 9. In this case the elastic stress range K(α) is defined using (4.12)
in (3.5), while its pre-image U(α) is derived from (3.6) with the stress function

Σ̂ = G
Π

ρ̃
expressed from (4.11).

Proposition 3. Let us denote by S ≡ T

ρ
− a = E−T (Σ)ET , and by

m1 = En1 – the anisotropy direction pushed forward to the actual configu-
ration. By direct calculus the yield function supposed to be (4.12) is written in
the form
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(4.13) F
(

T

ρ
,a,E

)
= A1[S(be)−1 · (m1 ⊗ m1)]

2

+ A2S
2(be)−1 · (m1 ⊗ m1) + A3S · beS(be)−1

+ A4(tr S)S(be)−1 · (m1 ⊗ m1) + A5(tr S)2 − κ ,

with the evolution of the structural anisotropy characterized by ṁ1 = ĖE−1m1,
via an appropriate evolution equation (3.19)2, while the elastic-type constitutive
equation becomes a nonlinear one, given by

(4.14)
T

ρ
=

1

2

[
a(I − (be)−1)m1 · m1 + btr(be − I)

]
(m1 ⊗ m1

+
1

2

[
c(I − (be)−1)m1 · m1 + dtr(be − I)

]
be

+ e
1

2

[
(m1 ⊗ (be − I)m1 + (be − I)m1 ⊗ m1

]
+ fbe 1

2
(be − I).

We shall impose restrictions (4.1) to the constitutive functions which enter
the equations (4.10), for gk = Ort. When we replace in (4.1) Q by the elastic
rotation Re from (4.6), it follows ϕ(G, α) = ϕ(be, α), F̂(Σ, α) = F̂(Σ, α),
and so on. If we apply again (4.1) for QRe, for all Q ∈ Ort, the isotropy of the
constitutive functions with respect to their tensorial arguments follows at once.
We get the constitutive equations in the form written below:

Theorem 2. 1. The behaviour of isotropic materials is characterized in the
actual configuration by the following set of equations attached to the former
Σ-model:

(4.15)

Lv be = −2 µ̂ Ve{B̂(Σ, α)}sVe,

Da

Dt
= µ̂ (Ve)−1 m̂(Σ, α) Ve,

T

ρ
= 2 Ve (∂beϕ(be, α)) Ve,

where Σ : = Re Σ(Re)T , α := Re α(Re)T

Here the objective derivatives Lv and
D

Dt
are calculated through the formulae

(4.4) and (4.8)2, and the constitutive functions are isotropic relative to their
tensorial arguments.

2. For a given history of the deformation gradient, (4.15) becomes a differ-

ential system for the unknowns
(
be,

T

ρ
,a

)
due to the following relationships

between the appropriate fields involved herein:
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be = (Ve)2,
T

ρ
= (Ve)−1ΣVe, a := (Ve)−1α Ve.(4.16)

3. The constitutive equations (4.15) and (4.16) are objective.

Theorem 3. Under the hypothesis that there is no influence of the hardening
on the elastic properties ∂α(∂Gϕ(G, α)) = 0, the elasto-plastic material allows
a simple constitutive description in the form

(4.17)

T

ρ
= 2 be ∂beϕ(be), Lv be = −2 µ̂ Ve

{
B̂

(
T

ρ
, α

)}s

Ve,

Da

Dt
= µ̂ (Ve)−1 m̂

(
T

ρ
, α

)
Ve, with a = (Ve)−1α Ve,

with the yield function F̂
(

T

ρ
, α

)
, and the evolution functions B̂ and m̂ isotropic

with respect to the set of variables
(

T

ρ
, α

)
.

The result is a direct consequence of the Theorem 2, taking into account that
T

ρ
= Σ follows from the permutability of G and ∂Gϕ(G), for isotropic potential

ϕ(G) = ϕ(be).

5. Constitutive restrictions imposed by dissipative restrictions

We emphasize certain restrictions imposed by Ily’iushin-type dissipation pos-
tulate on the elasto-plastic models with relaxed configuration, and we derive the
rate-type constitutive equation in Eulerian setting compatible with the dissi-
pation inequality, via the modified flow rule. On the other hand, we put into
evidence that certain models, compatible with the maximum dissipation postu-
late in Eulerian descriptions, can be reduced to isotropic elasto-plastic models
with respect to intermediate configurations.

Ily’iushin-type dissipation postulate adopted by Cleja-Ţigoiu [4] requires
that the work done by internal forces in the initial configuration should be pos-
itive on small cycles of strain only, i.e.:

• For all strain histories Ĉ from an appropriate admissible set, with the
Ĉ(s) := C(s) = FT (s)F(s), such that

(5.1) ∀ t1, t2 ∈ [0, 1], 0 ≤ t1 < t2 ≤ 1, Ĉ(t1) = Ĉ(t2) ∈
⋂

τ∈[t1,t2]

U(Ĉτ )

=⇒ 1

2

t2∫

t1

Π0(τ)

ρ0
· Ċ(τ)dτ ≥ 0.



Yield criteria in anisotropic finite elasto-plasticity 97

Here Π0 denotes the current value of the Piola–Kirchhoff stress tensor in
the initial configuration. The time interval is reduced to [0, 1], as the time-
independent evolution equations are involved in the model [17].

U(Ĉτ ) is the elastic range in total strain space associated to the restriction
of the strain history Ĉ up to time τ . It is defined in (2.11), and it is the closure
of connected open set, with identity strain tensor inside it.

The dissipation postulate becomes efficient only within the precise constitu-
tive framework. Within the largest class of elasto-plastic models formulated here
in elastic strain formulation (2.9), (2.10), the following results have been proved
in [4].

Theorem 4. The dissipation postulate can be equivalently expressed by i), ii):
i) For all Ĉ sufficiently smooth, and for all t ∈ [0, 1) there exists a smooth

stress potential ϕ(·, α(t)) : UR(Ĉt) −→ R , i.e a function of variables
(G, α), such that

Π(t)

ρ̃
= 2 ∂Gϕ(G(t), α(t)) = h(G, α).(5.2)

ii) For all t ∈ (0, 1) such that C(t) ∈ ∂U(Ĉt), the following dissipation in-
equality holds for all A ∈ U(Ĉt), i.e.

(5.3) 2 [G(t)∂Gϕ(G(t), α(t)) − G∗(t)∂Gϕ(G∗(t), α(t))] · Ṗ(t)P−1(t)

+ [∂αϕ(G∗(t), α(t)) − ∂αϕ(G(t), α(t))] · α̇(t) ≥ 0 ,

where G(t) = P−T (t)C(t)P−1(t), G∗(t) = P−T (t)AP−1(t).

The inequality (5.3) can be equivalently reformulated within the class of Σ-
models, taking into account constitutive equation (3.4). The dissipation inequal-
ity (5.3) is satisfied at any time t, if and only if, for every accessible stress
state

(5.4)

Σ∗ ∈ ImΣ̂ := {Σ | ∃ G such that Σ = Σ̂(G, α)}

and F̂(Σ∗, α(t)) ≤ 0,

(Σ(t) − Σ∗) · Ṗ(t)P−1(t) + (β(t) − β∗) · α̇(t) ≥ 0

hold for Σ(t) having the properties F̂(Σ(t), α(t)) = 0 ,Σ(t) ∈ Im(Σ̂).
Here the forces conjugated to internal variables (see [10]) are considered

(5.5) β(t) := −∂αϕ(G(t), α(t)), β∗ = −∂αϕ(G∗, α(t))

with the strains G(t) and G∗ giving rise to the stresses Σ(t) and Σ∗:

(5.6) Σ(t) = Σ̂(G(t), α(t)) , Σ∗ = Σ̂(G∗, α(t)).
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Remark 10. The inequality (5.4) formalizes the maximum dissipation pos-
tulate, in the intermediate configuration.

• Further investigation of the consequences of the dissipation postulate within
the class of Σ-models leads to the modified flow rule, expressed in [5] by

(5.7) (∂GΣ̂(G, α))T [ṖP−1] = λ∂G F̃(G, α) + ∂2
αGϕ(G, α)[α̇]

for G such that Σ = Σ̂(G, α) and F̂(Σ̂(G, α), α) = 0, the time t will be omitted
in writing the above formulae. Here in (5.7) λ ≥ 0 is an arbitrary function,
proportional to plastic multiplier.

Moreover if at the time t we have F̂(Σ̂(G, α), α) < 0, then there is no
variation of the irreversible variables ṖP−1 = 0 and α̇ = 0.

We can prove the following theorem:

Theorem 5. The rate form of the model compatible with the dissipation
postulate is given by

(5.8)
d

dt

(
T

ρ

)
− L

T

ρ
− T

ρ
LT = Ẽ [D] − 2 λE∂EF̃(G, α)ET ,

with fourth order elastic tensor Ẽ defined in (3.17). The scalar function is pro-
portional to the plastic multiplier, which enters the evolution equations, via the
modified flow rule (5.7).

In order to prove (5.8), first we replace the terms containing the plastic
multiplier in (3.19) from (3.21) and we take into account the expression of N
introduced in (3.17). The rate-type constitutive equation in actual configuration
results in the form

(5.9)
d

dt

(
T

ρ

)
− L

T

ρ
− T

ρ
LT = Ẽ [D] − 2 E (∂GΣ̂)T [ṖP−1]ET

+ 2 E(∂2
αG ϕ[α̇ ])ET ,

or with the objective derivative for
T

ρ
≡ τ defined in the left-hand side of (5.9)

(5.10)

D

Dt

(
T

ρ

)
= Ẽ [D] − 2 E ((∂GΣ̂)T [ṖP−1] − ∂2

αG ϕ[α̇ ])ET , with

D

Dt

(
T

ρ

)
:=

d

dt

(
T

ρ

)
− L

T

ρ
− T

ρ
LT .

From the modified flow rule (5.7) we evaluate the difference

(5.11) E ((∂GΣ̂)T [ṖP−1] − ∂2
αG ϕ[α̇ ])ET = λE ∂G F̃(G, α) ET .
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Finally we consider the model of plasticity widely used in numerical simulations,
see [25, 21], typically formulated directly in the actual configuration.

We are starting from the model relative to the actual configuration, de-
fined by:

• Uncoupled isotropic hyperelastic behaviour is described by

τ = 2 (∂be W e) be, β := −∂α W p,

when ϕ(be, α) = W e(be) + W p(α),
(5.12)

W e and W p are the elastic and plastic parts of the free energy function ϕ(be, α).
• The evolution equations are represented by the flow rule

(5.13)
Lv be = −2 λmτ(τ , β) be, with mτ := ∂τ f(τ , β),

α̇ = λmβ(τ , β), with mβ := ∂β f(τ , β)),

being attached to the generic yield function f(τ , β). The Lie derivative Lv is
defined in (4.8), mτ ,mβ correspond to the flow directions, while λ is the plastic
multiplier, via the appropriate Khun–Tucker conditions λ ≥ 0, f ≤ 0, λ f = 0.

Here is the particular case of the equations (4.17), with only scalar inter-
nal variables, supposed to be invariant under a change of frame in the ac-
tual configuration. From the objectivity principle it follows that W e and f
are isotropic with respect to be and τ , respectively, i.e. for instance f(τ , β) =
f(QτQT , β), ∀ Q ∈ Ort.

The principle of maximum dissipation requires the inequality

(5.14) [τ − τ ∗] ·
[
−1

2
(Lv be)(be)−1

]
+ [β − β∗] · α̇ ≥ 0

for all admissible pairs (τ ∗, β∗) ∈ DEl.
The elastic range, denoted DEl, is defined by DEl = {(τ ∗, β∗) |f(τ ∗, β∗) ≤ 0}.
We derive the model pulled back to the intermediate configuration.
Combining the kinematic relationships (3.1) that follows from the multiplica-

tive decomposition (1.1) one obtains

(5.15) Lv be = −2 {E(ṖP−1) ET }s.

Using the evolution equation (5.13)1, (5.15), as well as the permutability of the
tensors τ and be related through (5.12)1, with W e being an isotropic function
relative to be, we get

(5.16) Re{ṖP−1}s(Re)T = mτ(τ , β) with mτ := ∂τ f(τ , β).

Taking into account the isotropy of the yield function f we proved the following
result:
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Proposition 4. The model described in the actual configuration by (5.12)
and (5.13) is equivalent to an isotropic elasto-plastic model, which is hyperelastic
with the associated flow rule

(5.17)

Lp = λ ∂Σ f(Σ, β), α̇ = λ ∂β f(Σ, β), here Lp = ṖP−1,

yield function f(τ , β) = f(Σ, β) since τ :=
T

ρ
= ReΣ(Re)T .

We remark that the plastic spin {Lp}a = 0 is vanishing.

6. Conclusions

1. In the paper, different models within the constitutive framework of the
elasto-plastic materials with relaxed configuration have been presented. In adopt-
ing a certain description of the model, the arguments of the mathematics and/or
physics nature have been dominant.

2. For instance, in order to reflect at the macroscopic level, the fact that the
plastic (inelastic) deformation begins to develop only if the reduced shear stress
reaches a critical value, different stress measures have been involved in the yield
criteria.

3. When we deal with the dissipation postulate, the strain description of the
yield conditions have been imposed by the mathematical issues. As a consequence
of the dissipative restrictions, it has been proved in [4] that the convexity and
normality properties of the elastic range in stress space can be treated only
within the constitutive framework of Σ-model, but the normality does not mean
the associated plastic flow rule.
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