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Vibrations of a weakly nondegenerate 1D-3D multi-structure
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We study the effect of the transition between degenerate and nondegenerate con-
figurations for a 1D-3D multi-structure, by considering a particular nondegenerate

configuration. Analytical asymptotic formulae are derived for the first six eigenfre-
quencies which include information about the location of the 1D parts (legs) of the
multi-structure. This enables us to analyse the transition region by moving the legs
closer to each other. Accuracy of the asymptotic formulae is compared with numer-
ical solution for the pile structure (skeleton) and with finite element computations.
Some inaccuracies associated with numerical and finite element computations are
discussed. In addition, a discussion on two-sided estimates for the eigenfrequencies is
also included.

1. Introduction

The analysis of multi-structures is still a fairly new subject. To clarify
the terminology, we use the word multi-structure to mean a union of structures,
for which the limit dimensions are different. These problems are classified as
singularly perturbed, hence they are difficult to treat numerically due to the
presence of a small parameter usually associated with the geometry (see Maz’ya,
Nazarov and Plamenevskii [1]). There are two major publications on the
subject, namely the comprehensive monographs by Ciarlet [2] and Kozlov,
Maz’ya and Movchan [3], in which the methods proposed to treat the stated
problems differ fundamentally. The first adopts a variational approach, whereas
the second employs the method of compound asymptotic expansions, based on
the papers by Kozlov, Maz’ya and Movchan [4–6].

In recent years, Aslanyan, Movchan and Selsil published a number of
papers on this topic, more precisely on eigenvalue problems posed for 2D-3D
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and 1D-3D multi-structures [7–9]. The main emphasis of these papers was on
the derivation of analytical asymptotic formulae for the first six eigenfrequencies
of the above mentioned multi-structures (this could be used in a number of
practical applications by engineers and other scientists as these structures do
exist, for example, the Aquapark, Moscow and Charles de Gaulle Airport, Paris,
which have both partly collapsed, and can be considered as multi-structures).

There are also very challenging mathematical issues of interest associated
with problems of multi-structures, for example, two-sided estimates for the eigen-
frequencies of these structures require rigorous mathematical analysis. We note
that the representation of these estimates was given in Kozlov, Maz’ya and
Movchan [3], as well as the particular estimates for certain types of multi-
structures (for degenerate multi-structures under certain restrictions related to
the position of the 1D parts). The definition of the terminology degenerate multi-
structure was given in Kozlov, Maz’ya and Movchan [3] and will be discussed
later in the present paper. For now, we can simply say that by the term degener-
ate multi-structure we mean that the determinant of the stiffness matrix associ-
ated with the pile structure (the skeleton of the multi-structure) (see Asplund
[10]) is equal to zero. If this requirement is not satisfied, the term nondegenerate
multi-structure will be used.

Following the definitions above, another matter of interest is to understand
the existence of the nonzero determinant of the stiffness matrix being small
(by small we mean a certain degree of the small parameter associated with the
multi-structure). This paper is mainly concerned with these particular types of
1D-3D multi-structures, so-called weakly nondegenerate multi-structures. Here,
we derive analytical asymptotic formulae for the first six eigenfrequencies of a
particular example of a weakly nondegenerate multi-structure, and we discuss
the transition between degeneracy and nondegeneracy. A specific example may
appear to be far from a general analysis, but we note that general asymptotic
formulae for the eigenfrequencies of a weakly nondegenerate multi-structure are
impossible to construct as there is more than one type of weakly nondegenerate
1D-3D multi-structure. This idea will be discussed in more detail in the present
paper. As in the previous papers, we also limit this analysis to the first six
eigenfrequencies of the multi-structure since these eigenfrequencies correspond
to rigid body motion of the 3D body, i.e. they are crucial for the safety of the
multi-structure as they are the modes which require the most energy.

In Sec. 2 we summarize the main results, including the representations of the
analytical asymptotic formulae for the first six eigenfrequencies of a particular
weakly nondegenerate 1D-3D multi-structure. We formulate the eigenvalue prob-
lem associated with this multi-structure and introduce various notations used
throughout the paper in Sec. 3. In addition, we present general asymptotics for
the pile structure (the skeleton) associated with the multi-structure. This section



Vibrations of a weakly nondegenerate 1D-3D multi-structure 19

ends with a detailed discussion on the general definition of a weakly nondegen-
erate 1D-3D multi-structure. A particular example of this type of structure is
given in Sec. 4., where we carry out a detailed analysis and compare our results
with numerical solutions and finite element computations. An additional exam-
ple is also included in this section to clarify the difference between two structures
which, at first, may appear to be identical. Concluding remarks can be found in
Sec. 5. Appendix A is related to the derivation of so-called lock forces and mo-
ments, i.e. the forces and moments exerted by the 1D parts of the multi-structure
onto the 3D part. These 1D parts will be called “the legs”. Finally, Appendix B
deals with an auxiliary lemma on the symmetry and positive definiteness of a
certain matrix, crucial to our analysis.

2. Summary of main results

The main result of the present paper is the investigation of the effect of
the transition between degenerate and nondegenerate configurations for a 1D-3D
multi-structure.

The following analytical asymptotic formulae

fk ∼
1

2π

b

l

√

E l yk

ρΩ0
, k = 1, 2, fk ∼

1

2π

b

l

√

E l2 yk

ρΩ0 L
, k = 3, . . . , 6, b→ 0,

which are constructed for the first six eigenfrequencies associated with the par-
ticular nondegenerate configuration of a 1D-3D multi-structure shown in Fig. 2,
make it possible to analyse the behaviour of the solution with respect to all the
parameters of the structure. Here, E is the Young’s modulus, ρ is the density, Ω0

is the volume of the 3D body, yk, k = 1, 2, 3, are the solutions of certain quadratic
equations (see (4.6)–(4.8)), and l, L and b are the lengths and the diameter as-
sociated with the legs of the multi-structure. We note that Eqs. (4.6)–(4.8) and
hence the analytical asymptotic formulae above, include information about the
location of the legs of the multi-structure.

By considering different configurations of this particular nondegenerate multi-
structure, more precisely, by moving the legs of the structure closer to each
other, we analyse the transition to degeneracy. This transition region is carefully
analysed and the accuracy of the asymptotic formulae is compared with the
numerical solution for the pile structure using Matlab [11] and with the finite
element solution for the 1D-3D multi-structure using COSMOS [12]. Here, we
note that the numerical solution is consistent with the finite element calcula-
tions, even for small values of the distance between the legs of the structure. We
also show that both of these solutions produce a certain degree of inaccuracy in
the case when some of the eigenfrequencies are close to each other. This does not
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happen with the asymptotic formulae, which is reliable in the regions where the
inaccuracies occur. In addition, we observe an unexpected effect when the legs
are close to the edges. In this case, the eigenfrequencies obtained from both the
numerical solution (using Matlab) and the asymptotic formulae differ consider-
ably from those obtained from the finite element solution (using COSMOS).

To establish two-sided estimates for the eigenfrequencies of the finite dimen-
sional approximation to the 1D-3D multi-structure, it is important to know the
value of the constant Q in

(2.1)
ρν2

k

1 + Qρν2
k

≤ ρω2
k ≤ ρν2

k ,

where ρω2 is the spectral parameter of the eigenvalue problem (3.6)–(3.8) and
ρν2

k is the spectral parameter of the corresponding eigenvalue problem for the
pile structure. However, it is difficult to determine this constant rigorously. In
fact, it is only possible to estimate it in terms of the small parameter associated
with the multi-structure. Our calculations lead to the result that the value for
the constant Q is possibly different for degenerate and nondegenerate 1D-3D
multi-structures.

3. General considerations for nondegenerate multi-structures

In this section, we first formulate an eigenvalue problem of three-dimensional
linear elasticity, with reference to [3], describe the general asymptotics for the
skeleton of the multi-structure and discuss the definition of weak nondegeneracy.

3.1. Problem formulation

Let x = (x1, x2, x3) denote the Cartesian coordinates in R
3, and (e1, e2, e3)

denote the corresponding orthogonal basis of unit vectors. Now consider a bound-
ed and convex domain in R

3, denoted by Ω, with Lipschitz boundary ∂Ω, see
Fig. 1. We use a(j), j = 1, 2, 3, . . . ,K to denote K given points on ∂Ω, at which
K segments r(j) of length l(j) are connected to Ω. We formally define these
segments as

(3.1) r(j) =
{

x ∈ R
3 : x = a(j) + tµ(j), 0 ≤ t ≤ l(j)

}

, j = 1, 2, 3, . . . ,K.

Here, µ(j) are given unit vectors satisfying the condition n · µ(j) > 0, where n

is the unit outward normal to ∂Ω at the point a(j), and b(j) = a(j) + l(j)µ(j)

are the opposite ends of the segments r(j). Without loss of generality, we assume
that the center of mass is situated along the Ox3-axis (directed downwards), i.e.

∫

Ω

xk dx = 0, k = 1, 2.
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Fig. 1. 1D-3D homogeneous multi-structure Ωε.

Next, we introduce the local Cartesian coordinate systems y(j) =
(

y
(j)
1 , y

(j)
2 , y

(j)
3

)

along each segment r(j), the new origin being at the point a(j) for each segment
and the y(j)

3 -axis being directed along the vector µ(j). We connect the local co-
ordinate systems y(j) with x in the following way:

(3.2) x = a(j) + Λ(j) y(j),

where Λ(j) is an orthogonal matrix and

(3.3) µ(j) = Λ(j)e3.

We note that the rotation of the local coordinate system on the y(j)
1 y

(j)
2 -plane

can be chosen arbitrarily.
Below, each segment r(j) is considered as the axis of a thin cylinder

Π(j)
ε =

{

y(j) : 0 < y
(j)
3 < l(j), ε−1(y

(j)
1 , y

(j)
2 ) ∈ g(j) ⊂ R

2
}

,

where g(j) is a bounded domain with Lipschitz boundary and ε is a small di-
mensionless parameter which denotes the maximum characteristic ratio of the
diameter of a leg to its length.

We also use the notation S(j)
ε for the base regions of the thin cylinders Π(j)

ε

which contain the points b(j) and let

(3.4) Sε = ∪K
j=1S

(j)
ε .

Now, we can define the 1D-3D multi-structure as

(3.5) Ω̄ε = Ω̄ ∪ Π̄(1)
ε ∪ ... ∪ Π̄(K)

ε ,
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and we consider the following eigenvalue problem:

−Lu = ρω2u, x ∈ Ω ∪K
j=1 Π

(j)
ε ,(3.6)

σ(n)(u) = 0, x ∈ ∂Ωε\Sε,(3.7)

u = 0, x ∈ Sε,(3.8)

where
L = µ∇2 + (λ+ µ) grad div

is the Lamé operator, u is the displacement vector, σ(n)(u) = σn is the stress
vector, ρ is the mass density and ω is the corresponding eigenfrequency. Here, λ
and µ are the Lamé elastic moduli.

As shown in [3] (p. 251, Theorem 6.1), the following estimate holds true for
the spectral parameter ρω2 of the problem (3.6)–(3.8):

ρν2
k

1 + Qρν2
k

≤ ρω2
k ≤ ρν2

k , k = 1, . . . , 6,

where (see [3], p. 251, Eq. (6.1.8))

(3.9) ρν2
k = min

v 6=0

a(v,v)

(v,v)

is the spectral parameter for the corresponding eigenvalue problem for the pile
structure (the skeleton of the multi-structure). In Eq. (3.9), a(·, ·) is the bilinear
form associated with the Lamé operator and v belongs to the respective subspace
of the possible pile structure motion (rigid body translations and rotations).

The value of the parameter Q in (2.1) depends on the geometry and the
material properties of the multi-structure, and in general, it is a difficult task
to find its value. In [3], the analysis was done for a specific degenerate multi-
structure, for which

(3.10) Q = O(ε−2), ε→ 0.

3.2. Description of the general asymptotics for the skeleton of the multi-structure

We assume that the 3D body Ω moves like a rigid body, i.e.

(3.11) v = α + β × x, in Ω,

where α and β are constant vectors. We also assume that the displacements in
(3.11) are valid under the effect of the body forces given by

(3.12) Ψ = c + d × x,
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where c and d are constant vectors. Here, it is important to note that the vectors
v and Ψ are not independent of each other, i.e.

(3.13) Ψ = Ψ(v) or v = v(Ψ).

Now we obtain this dependence explicitly.
Let us characterise the interaction between the 3D body Ω and the elastic

legs Π(j)
ε , j = 1, . . . ,K by concentrated forces F (j) and concentrated moments

M(j) applied at the junction points a(j). The resultant force F and the resultant
moment M, caused by the body forces (3.12), are applied to the body Ω. Hence,
the equilibrium equations have the form

(3.14) F +
K
∑

j=1

F (j) = 0, M +
K
∑

j=1

(M(j) + a(j) × F (j)) = 0.

We refer to monograph [3] (p. 177), which is outlined in Appendix A, for the
forces and moments at junction points a(j), exerted by the elastic legs onto the
3D body Ω and we use the following relation to establish the link between global
and local coordinates:

(3.15) ŵ(j) = Λ(j)w.

Hence, the forces and moments can be written in global coordinates as

(3.16) F (j) = −(Λ(j))∗R(j)Λ(j)
(

α + β × a(j)
)

− (Λ(j))∗Q(j)Λ(j)β,

(3.17) M(j) = −(Λ(j))∗(Q(j))⊤Λ(j)
(

α + β × a(j)
)

− (Λ(j))∗T(j)Λ(j)β,

where

(3.18) R(j) = diag{12C
(j)
1 /l(j)

3
, 12C

(j)
2 /l(j)

3
, C

(j)
3 /l(j)},

(3.19) T(j) = diag{4C(j)
2 /l(j), 4C

(j)
1 /l(j), C

(j)
4 /l(j)},

and

(3.20) Q(j) = (6/l(j)
2
)







0 C
(j)
1 0

−C
(j)
2 0 0

0 0 0






.

Here, (Λ(j))∗ denotes the adjoint matrix of Λ(j). The parameters C
(j)
i ,

i = 1, 2, 3, 4, j = 1, . . . ,K are known as the stiffness coefficients associated with
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the legs Π(j)
i and their definitions are also given in Appendix A. We also used

the following

β̂
(j)

× â(j) = Λ(j)(β × a(j)),

which is a simple consequence of (3.15).
If we consider a matrix

(3.21) A(j) =









0 −a
(j)
3 a

(j)
2

a
(j)
3 0 −a

(j)
1

−a
(j)
2 a

(j)
1 0









,

it is clear that we can write

(3.22) a(j) × b = A(j)b,

where b is an arbitrary vector.
Now, using (3.22) and (3.16)–(3.20), the equilibrium equations (3.14) take

the form

(3.23) F = Φ1,1α + Φ1,2β, M = Φ2,1α + Φ2,2β,

where Φk,l, k, l = 1, 2 are 3 × 3 matrices:

Φ1,1 =
K
∑

j=1

(Λ(j))∗R(j)Λ(j),(3.24)

Φ1,2 =
K
∑

j=1

{

(Λ(j))∗Q(j)Λ(j) − (Λ(j))∗R(j)Λ(j)A(j)
}

,(3.25)

Φ2,1 =
K
∑

j=1

{

(Λ(j))∗(Q(j))⊤Λ(j) + A(j)(Λ(j))∗R(j)Λ(j)
}

,(3.26)

(3.27) Φ2,2 =
K
∑

j=1

{

(Λ(j))∗T(j)Λ(j) − (Λ(j))∗(Q(j))⊤Λ(j)A(j)
}

+
K
∑

j=1

{

A(j)(Λ(j))∗Q(j)Λ(j) − A(j)(Λ(j))∗R(j)Λ(j)A(j)
}

.
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Hence, we define by Φ a 6 × 6 matrix such that

(3.28) Φ =

(

Φ1,1 Φ1,2

Φ2,1 Φ2,2

)

,

which is symmetric and positive definite (for the proof see Appendix B).
Next, we define a 6 × 6 matrix Γ as

(3.29) Γ =

(

Γ1 Γ2

Γ3 Γ4

)

,

where

Γ1 = diag{Ω0, Ω0, Ω0},

Γ2 = Γ3
⊤ =





0 K0 0

−K0 0 0
0 0 0



, Γ4 =







I1 −R1,2 −R1,3

−R1,2 I2 −R2,3

−R1,3 −R2,3 I3






,

(3.30)

with

(3.31)

Ω0 =

∫

Ω

dx, K0 =

∫

Ω

x3dx,

Ik =

∫

Ω

(|x|2 − x2
k)dx, k = 1, 2, 3,

Rk,l =

∫

Ω

xkxldx, k, l = 1, 2, 3; k 6= l.

As in [8], we have (see (3.12))

(3.32) F = Γ1c + Γ2d, M = Γ3c + Γ4d.

For the proof of symmetry and positive definiteness of the matrix Γ we again
refer to [8]. Hence, we have

(3.33) Γ = Γ⊤, Γ > 0.

Now, defining two vectors

(3.34) η = (c1, c2, c3, d1, d2, d3)
⊤,
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and

(3.35) θ = (α1, α2, α3, β1, β2, β3)
⊤,

we can rewrite the equilibrium equations for the multi-structure Ωε as (see (3.23)
and (3.32))

(3.36) Φθ = Γη,

which establishes (3.13).
Finally, we use formula (3.9) to derive

(3.37) t ≡ ρν2 = min
v 6=0

∫

Ω

(v,Ψ(v))dx

∫

Ω

(v,v)dx

,

where we also take the well-known D’Alembert’s principle into account.

Lemma 1. The characteristic equation for the auxiliary variational problem
(3.37) has the following form:

(3.38) det(Φ − tΓ) = 0.

P r o o f. The displacements of the 3D body Ω up to the leading order can
be written as (see (3.11))

(3.39) v = M1θ,

where

(3.40) M1(x) =





1 0 0 0 x3 −x2

0 1 0 −x3 0 x1

0 0 1 x2 −x1 0



 .

Using equation (3.36) we also have

(3.41) Ψ = M1η = M1Γ
−1Φθ.

Hence, by (3.37) and (3.39)–(3.41) we obtain

(3.42) t = min
θ 6= 0

∫

Ω

(M0θ,Γ
−1Φθ)dx

∫

Ω

(M0θ,θ)dx

,
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where M0(x) = M⊤
1 (x)M1(x). Here, we have also used the fact that (N1θ,N2θ)

= (θ,N⊤
1 N2θ), for arbitrary matrices with the same dimension as M1.

Since the matrix M0 in (3.42) is the only matrix which depends on x, we
obtain

(3.43) t = min
θ 6= 0

(θ,Φθ)

(θ,Γθ)
.

Note that here we have also taken into account that

(3.44)
∫

Ω

M0(x)dx = Γ.

Hence, the proof is complete.

Since the matrices Φ and Γ are symmetric and positive definite, all the roots
of the equation (3.38) coincide with the eigenvalues of the positive definite matrix
ΦΓ−1. Hence, they are all positive:

(3.45) 0 < t1 ≤ t2 ≤ · · · ≤ t6.

Therefore, using (3.37), we obtain the following approximate values for the
first six eigenfrequencies of the multi-structure Ωε:

(3.46) fk =
1

2π

√

tk/ρ, k = 1, . . . , 6.

3.3. Definition of a weakly nondegenerate multi-structure

We remark that the eigenvalues tk, k = 1, . . . , 6 (consequently fk, k = 1,
. . . , 6) are functions of the small parameter ε. In this section we clarify this
dependence.

From formulae (3.29)–(3.31) it is apparent that the matrix Γ is not associated
with the small parameter ε and gives information only about the 3D body Ω. On
the other hand, the matrix Φ is clearly a function of ε. The relevant description
of the stiffness coefficients in (3.18)–(3.20) can be found in Appendix A (see
(A.1)–(A.4)). It immediately follows that

(3.47) R(j) = ε2R
(j)
0 + ε4R

(j)
1 , T(j) = ε4T

(j)
1 , Q(j) = ε4Q

(j)
1 ,
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where

(3.48)

R
(j)
0 = diag

{

0, 0, C
(j)
3,0/l

(j)
}

,

R
(j)
1 = diag

{

12C
(j)
1,0/l

(j)3, 12C
(j)
2 /l(j)

3
, 0
}

,

T
(j)
1 = diag

{

4C
(j)
2,0/l

(j), 4C
(j)
1,0/l

(j), C
(j)
4,0/l

(j)
}

,

Q
(j)
1 =

6

l(j)
2







0 C
(j)
1,0 0

−C
(j)
2,0 0 0

0 0 0






,

do not depend on the small parameter ε.
Consequently, formula (3.28) can be represented as

(3.49) Φ = ε2Φ0 + ε4Φ1,

and therefore, equation (3.38) can be rewritten as

(3.50) det(Φ0 + ε2Φ1 − qΓ) = 0,

where q(ε) = t(ε)/ε2.
We note that if the matrix Φ0 is nonsingular, then we can seek q(k)(ε) in the

form

(3.51) q(k)(ε) = q
(k)
0 + ε2q

(k)
1 + O(ε4), ε→ 0, k = 1, . . . , 6,

and to obtain q(k)
0 , we need to solve

(3.52) det(Φ0 − q0Γ) = 0.

In [3], the definition of a nondegenerate multi-structure is given as follows: If
the equalities

µ(j) · (α − a(j) × β) = 0, j = 1, . . . ,K,

imply that the vectors α and β are zero, then the corresponding multi-structure
is nondegenerate. This definition is equivalent to the requirement that the matrix
Φ0 should be nonsingular (and, of course, positive definite (see Appendix B)).
Otherwise, the multi-structure is called degenerate.

However, despite the fact that Φ0 does not depend on ε, it is possible to
consider structures for which det(Φ0) is comparable with some order of the
small parameter ε, which is defined by the geometry of the legs. In what follows,
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such structures are called weakly nondegenerate, for which formula (3.51) may
not be applicable.

It is clear from this definition that there can be numerous configurations
which would lead to weakly nondegenerate structures. In the next section, we
investigate, in detail, a particular 1D-3D weakly nondegenerate multi-structure
to illustrate this interesting effect.

4. Weakly nondegenerate multi-structures

4.1. A particular example: A 1D-3D multi-structure with six legs

In this section we study a particular configuration of a 1D-3D multi-structure,
which leads to a certain degeneracy in the limit case, as shown in Fig. 2. As dis-
cussed in the previous sections, we would like to analyse the eigenfrequencies
of this multi-structure, when the legs on each face move closer together. For
simplicity, the 3D body is chosen as a parallelepiped of dimensions a1, a2, a3.
The choice of the coordinate axes Ox1x2x3 is also shown in Fig. 2. As men-
tioned in Sec. 3.1., the local y(j)

3 -axes (j = 1, . . . , 6) are directed along the seg-
ments.

Fig. 2. A 1D-3D homogeneous multi-structure, illustrating the transition between
nondegeneracy and degeneracy.

We assume that the legs are homogeneous with density ρ and isotropic with
Young’s modulus E and Poisson’s ratio ν. We also assume that they have b× b
cross-sections and lengths

l(1) = l(2) = l, l(3) = l(4) = l(5) = l(6) = L.

Assuming that l ≤ L, we introduce the dimensionless small parameter ε as b/l,
which is the maximum characteristic ratio.
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We use the following coordinates for the junction points:

(4.1)

a(1) = (a1/2, 0,−a3/2 + p3)
⊤, a(2) = (a1/2, 0,−a3/2 − q3)

⊤,

a(3) = (p1, a2/2,−a3/2)⊤, a(4) = (−q1, a2/2,−a3/2)⊤

a(5) = (0, p2, 0)⊤, a(6) = (0,−q2, 0)⊤,

where

(4.2) 0 < pk, qk < ak/2, k = 1, 2, 3.

From Fig. 2 it is clear that the unit vectors defining the directions of the legs
are

µ(1) = µ(2) = (1, 0, 0)⊤, µ(3) = µ(4) = (0, 1, 0)⊤, µ(5) = µ(6) = (0, 0, 1)⊤.

Hence, the transformation matrices are given as

Λ(1) =Λ(2) =





0 1 0
0 0 1
1 0 0



 , Λ(3) =Λ(4) =





0 0 1
1 0 0
0 1 0



 , Λ(5) =Λ(6) =





1 0 0
0 1 0
0 0 1



 .

Now, we construct the matrix Φ0 (see (3.49)). The nonzero elements of the
matrix Φ0 are given as

(4.3) Φ0 =
(

φ
(0)
k,m

)6

k,m=1
,

(4.4)

φ
(0)
1,1 = 2s1, φ

(0)
1,5 = φ

(0)
5,1 = (p3 − a3 − q3)s1,

φ
(0)
2,2 = φ

(0)
3,3 = 2s2, φ

(0)
2,4 = φ

(0)
4,2 = a3s2,

φ
(0)
2,6 = φ

(0)
6,2 = (p1 − q1)s2, φ

(0)
3,4 = φ

(0)
4,3 = (p2 − q2)s2,

φ
(0)
4,4 =

(

a2
3

2
+ p2

2 + q22

)

s2, φ
(0)
4,6 = φ

(0)
6,4 =

a3

2
(p1 − q1) s2,

φ
(0)
5,5 =

[

(a3

2
− p3

)2
+
(a3

2
+ q3

)2
]

s1, φ
(0)
6,6 = (p2

1 + q21)s2,

where s1 = lE and s2 = l2E/L. We note that the matrix Φ0 is nonsingular
due to (4.2), which enables us to use representation (3.51). However, if pk, qk
have smaller values, (3.51) may be violated and therefore, the matrix Φ1 should
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be taken into account in order to estimate the leading term of the asymptotic
approximation accurately.

In addition, the components of the matrix Γ can be computed as (see (3.29)–
(3.31))

(4.5)

Ω0 = a1a2a3, K0 = −
a3

2
Ω0, I1 =

1

12

(

a2
2 + 4a2

3

)

Ω0,

I2 =
1

12

(

a2
1 + 4a2

3

)

Ω0, I3 =
1

12

(

a2
1 + a2

2

)

Ω0,

Rk,l = 0, k, l = 1, 2, 3; k 6= l.

After some manipulation, Eq. (3.52) can be split into three quadratic equa-
tions:

(4.6)
1

12

(

a2
1 + a2

3

)

y2 −

[

p2
3 + q23 +

1

6

(

a2
1 + a2

3

)

]

y + (p3 + q3)
2 = 0,

where y = Ω0q0/s1, and

1

12

(

a2
1 + a2

2

)

y2 −

[

p2
1 + q21 +

1

6

(

a2
1 + a2

2

)

]

y + (p1 + q1)
2 = 0,(4.7)

1

12

(

a2
2 + a2

3

)

y2 −

[

p2
2 + q22 +

1

6

(

a2
2 + a2

3

)

]

y + (p2 + q2)
2 = 0,(4.8)

with y = Ω0q0/s2. This leads us to the following estimates for the first six
eigenfrequencies:

(4.9)

fk ∼
1

2π

b

l

√

E l yk

ρΩ0
, k = 1, 2,

fk ∼
1

2π

b

l

√

E l2 yk

ρΩ0 L
, k = 3, . . . , 6, b→ 0.

We now consider the following numerical values:
(4.10)

a1 = a2 = 108 [cm], a3 = 60 [cm], b = 4 [cm], l = L = 200 [cm],

p1 = p2 = q1 = q2 = (2 + 2p) [cm], p3 = q3 = (2 + p) [cm],

E = 2.1 · 1012 [g/(cm sec2)], ρ = 7.8 [g/cm3], ν = 0.28.

We note that the parameter p above is introduced to investigate the transition
between nondegeneracy and degeneracy. More precisely, by changing p from 0 to
24 in the above configuration, we are moving the legs further apart.
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To verify the accuracy of the asymptotic formulae (4.9), we solve equa-
tion (3.38) numerically, using Matlab (see Fig. 3). Further, we adopt the no-

tations f (j)
r , f

(j)
t , j = 1, 2, 3 (instead of fk, k = 1, . . . , 6) for eigenfrequen-

cies corresponding to rotations/translations about/along the xj-axis, that is,
the respective eigenvector θ = (α1, α2, α3, β1, β2, β3)

⊤ contains a dominating
component associated with the type of motion. We note that θ = θ(p) and
the notations introduced above are accurate for small values of the parameter
p (in our case p < 15). For larger values of p, we observe that some of the modes
are a combination of two dominating components. However, we still adopt the
same notations for all the values of the parameter p to avoid confusion.

0 5 10 15 20 25
0

10

20

30

40

50

60

f (j)t ; j = 1; 2; 3 f (2)rf (3)rf
(1)rf [Hz℄

p
Fig. 3. Eigenfrequencies f

(j)
r and f

(j)
t versus the parameter p, where j = 1, 2, 3 indicate

the respective rotation/translation about/along the xj-axis.

At this point, we would like to mention that it is clear that the eigenfre-
quencies f (j)

t , j = 1, 2, 3 are not significantly distinguishable, (see Fig. 3). More

precisely, the difference between, for example, f (1)
t and f

(3)
t is approximately

10−4%.
We now compare these results with the asymptotic formulae (4.9). The results

for the eigenfrequencies corresponding to rotation modes are presented in Fig. 4.
In each graph, the solid line corresponds to the numerical solution of equation
(3.38), whereas the dotted line corresponds to the eigenfrequency computed using
the asymptotic formulae (4.9). In addition, 3D finite element computations for
the same structure using COSMOS are included in this figure as circles, for
comparison. Finally, we note that the stars on the y-axes of each graph in Fig. 4
represent a structure with three legs only, formally constructed for the case when
p = 0. Again, COSMOS is used for the finite element computations. Specifically,
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these values are

(4.11) f (1)
r ≈ 7.30 [Hz], f (2)

r ≈ 7.94 [Hz], f (3)
r ≈ 6.61 [Hz].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

20

40

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

20

40

60

p

[Hz℄

f (1)r
f (2)r

f (3)r

Fig. 4. Eigenfrequencies f
(j)
r versus the parameter p, where j = 1, 2, 3 indicates the respective

rotation about the xj-axis: Solid lines denote the numerical solution of (3.38), dotted lines
denote analytical asymptotic solution given in (4.9) and the circles are obtained by direct 3D

finite element calculations.

We note that the star values are located above all the curves. At first, this may
seem like a contradiction, however, the structure with three legs only is different
than the structure with six legs with zero distance between the pairs. Since
the three-leg structure is stiffer than the six-leg structure, the corresponding
eigenfrequencies are larger. This issue is discussed in detail in the next section.

It is also important to underline that the difference between the eigenfrequen-
cies corresponding to translational modes calculated asymptotically and those
calculated numerically is significantly small. For instance, the difference between
the maximum values of f (j)

t computed asymptotically and the maximum values
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of f (j)
t computed numerically is less than 4 · 10−2%. Hence, in what follows, we

will mainly be concerned with the rotational modes only.
It is clear that when p is small, that is, when the legs are sufficiently close to

each other, asymptotic formulae do not coincide with the numerical solution. In
fact, when p = 1, i.e. the distance between the nearest legs is 2 cm, the percent-
age difference between the values computed asymptotically and numerically for
f

(1)
r , f

(2)
r and f

(3)
r is 33%, 44% and 35.5%, respectively. Moreover, when p → 0,

the difference is nearly 100% (see Fig. 5).
We emphasise the fact that the asymptotic formulae (4.9) are remarkably

accurate for larger values of the parameter p as shown in Fig. 4 and Fig. 5. The
formulae are also simple, and are useful in understanding the effect of different
parameters. Moreover, in the case when the curves for different eigenfrequen-
cies intersect each other (see Fig. 3), finite element computations and numerical
solutions face unexpected difficulties due to the change of order of the eigen-
frequencies and the structure of the eigenvectors. These problems do not occur
with the asymptotic formulae. Finally, we note that it is possible to improve our
asymptotic procedure by taking into account the fact that detΦ0(p) 6= 0 for
any p > 0, but detΦ0(0) = O(εα), ε → 0. We recall that this means that our
particular structure is weakly nondegenerate for small p.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

p
Æ(2)r Æ(3)rÆ(1)r

Fig. 5. Relative error between the asymptotic and numerical values of the eigenfrequencies
f

(j)
r , j = 1, 2, 3 versus the parameter p.

Now, we discuss the difference between the eigenfrequencies of the 1D-3D
multi-structure and the associated pile structure. It is possible to expect that this
difference is bigger for small values of the parameter p since the effect of boundary
layer fields near the legs may influence the results. It is interesting to observe
that estimates (2.1) were proved in [3], under the assumption that the legs were
sufficiently far from each other, however, our results show the contrary. For
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values from p = 1 to p = 13 the eigenfrequencies differ by 1.5% to 2%, whereas
for p = 23 this difference is 7.5%, 3% and 3.5% for the modes corresponding to
rotations about the xj-axis j = 1, 2, 3, respectively. The only explanation we
have for this phenomena is associated with the effect of the structure of the
boundary layer fields appearing near the edges of the parallelepiped.

We also note that Fig. 4 is consistent with the second inequality in (2.1), i.e.
the circles corresponding to the eigenfrequencies obtained from the finite element
computations all lie underneath the curve constructed for the associated pile
structure. Moreover, this allows us to make a one-sided numerical estimate for
the value of the parameter Q which appears in the first inequality in (2.1):

(4.12) Q ≥ max{Qk}, Qk =
1

ρ

(

ω−2
k − ν−2

k

)

, k = 1, . . . , 6.

The graph for Qk(p) versus the parameter p is given in Fig. 6. Here the transla-
tional modes are omitted, since they are two orders of magnitude smaller than
the rotational modes.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8
x 10

−4

p

Qj

Fig. 6. One-sided numerical estimate for the parameter Q ≥ Qj (see (2.1)) versus the
parameter p. The curves with triangles, stars and circles correspond to rotations about

the xj-axis (j = 1, 2, 3), respectively.

From Fig. 6 we also conclude that max{Qk(24)}/max{Qk(0)}, k = 1, 2, 3 is
of order ε. Hence, one can expect the same estimate for the value of the ratio
of the constant Q(24)/Q(0). However, configuration for p = 24 is nondegenerate

and for p = 0 is weakly nondegenerate. This means that Q for the nondegenerate
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structure should be much smaller than Q for the weakly nondegenerate and for
the degenerate structure with the same 3D body. Therefore, we have the pos-
sibility of proving accurate asymptotic estimates for nondegenerate structures,
similar to the corresponding one, proved for degenerate structures in [3]. We re-
call that in [3] it was proved that Q ∼ C ε−2, ε→ 0 for the particular degenerate

structure discussed. This may seem like a contradiction since Q3(0) ≈ 6.8 · 10−4,
however, the constant C depends on the elastic and geometrical parameters of
the structure, and not on the thickness of the legs (the small parameter ε).

4.2. A particular example: A 1D-3D multi-structure with three legs

As mentioned in the previous section, we discuss the difference between
a 1D-3D multi-structure with six legs (three adjacent pairs) and a 1D-3D multi-
structure with three legs (see Fig. 7). Following the detailed discussions given
before, the multi-structures are called weakly nondegenerate and degenerate, re-
spectively.

Fig. 7. A degenerate 1D-3D multi-structure with three legs.

For this particular choice of geometry formula (3.42) is still valid (since
Sec. 3.2. deals with the description of general asymptotics) and therefore will
be used to obtain asymptotic representations for the first six eigenfrequencies of
the multi-structure.

The body Ω of dimensions a1, a2 and a3 is supported by three legs, with the
following junction points and unit vectors defining their directions:

a(1) =
(a1

2
, 0,−

a3

2

)⊤

, a(2) =
(

0,
a2

2
,−

a3

2

)⊤

, a(3) = (0, 0, 0)⊤,

µ(1) = (1, 0, 0), µ(2) = (0, 1, 0), µ(3) = (0, 0, 1).

Note that the matrices Λ(j) (j = 1, 2, 3) are those given in the previous section.
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Again, all the legs are assumed to be homogeneous, isotropic and of the same
elastic material. As before, we assume that the legs are of the same length l.
Now the legs have the cross-section b1 × b2, b2 > b1 (see Fig. 7). It is clear that
in this particular problem the small parameter is ε = b2/l.

After some elementary calculations it can be shown that the matrix Φ0 can
be written as Φ0 = ElΦ0,0, where Φ0,0 = (φk,l), and the nonzero elements are

φ1,5 = φ5,1 = −φ2,4 = −φ4,2 = −
a3

2
,

φ1,1 = φ2,2 = φ3,3 = 1, φ4,4 = φ5,5 =
a2

3

4
.

The rank of the matrix Φ0,0 is 3 and there are only three positive roots of
equation (3.52):

(4.13) q
(4)
0 = q

(5)
0 = q

(6)
0 = ElΩ−1

0 γ, γ = b1/b2 ∈ (0, 1).

These eigenfrequencies can be approximated by the following formula (multiplic-
ity is caused by the symmetry of the multi-structure)

(4.14) f4,5,6 ∼
1

2π

√

Elγ

ρΩ0
(b2/l).

The last three solutions of Eq. (3.52) are equal to zero. To be able to find the
first three eigenfrequencies it is necessary to consider Eq. (3.50) and use the
representation of the matrix Φ1. Using the facts that Eq. (3.50) has three roots
of order O(ε2) for the case when ε 6= 0 and the matrices Φ0,Φ1 and Γ are
symmetric, we find these roots as

(4.15) fk ∼
1

2π

√

12E l γ θk

ρΩ0
(b2/l)

2, k = 1, 2, 3, b2 → 0.

Here, we have used the following notations:

(4.16)

θ1 =
1

a2
1 + a2

2

[

l2

3

(

1 + γ2
)

+
l2γ2β

2(1 + ν)
+
l

2
a1γ

2 +
l

2
a2 +

a2
1

4
γ2 +

a2
2

4

]

,

θ2 =
1

a2
1 + a2

3

[

l2

3

(

1 + γ2
)

+
l2γ2β

2(1 + ν)
+
l

2
a1 +

l

2
a3γ

2 +
a2

1

4
+
a2

3

4
γ2

]

,

θ3 =
1

a2
2 + a2

3

[

l2

3

(

1 + γ2
)

+
l2γ2β

2(1 + ν)
+
l

2
a2γ

2 +
l

2
a3 +

a2
2

4
γ2 +

a2
3

4

]

,
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(4.17) β =
1

3
−

∞
∑

k=0

64γ

π5(2k + 1)5
tanh

[

(2k + 1)π

2γ

]

.

It is relatively easy to check that β ≈ 0.141 when γ = 1. This calculation requires
the torsion potential, that is, the solution of a certain Neumann boundary value
problem on the cross-section of a leg.

We refer to the same material properties as in the previous section. Hence,
formulae (4.14) and (4.15) lead to

f1 ≈ 6.67 [Hz], f2 ≈ 7.40 [Hz], f3 ≈ 8.04 [Hz], f4,5,6 ≈ 39.49 [Hz],

while the finite element computations performed by COSMOS give

f1 ≈ 6.61 [Hz], f2 ≈ 7.30 [Hz], f3 ≈ 7.94 [Hz], f4,5,6 ≈ 39.24 [Hz].

Hence, the accuracy of the asymptotic formulae is clear.

5. Concluding remarks and further work

The present paper is a continuation of our interest in problems posed for
multi-structures, which has a wide range of practical applications.

Here, we gave an accurate formulation of an eigenvalue problem for a 1D-3D
multi-structure and described general asymptotics for the skeleton. This led us
to the interesting issue of degeneracy associated with a 1D-3D multi-structure
and we defined so-called weak nondegeneracy. The different possibilities of con-
figurations leading to weak nondegeneracy are endless (see, for example, Fig. 8).
Hence, instead of analysing different configurations, we concentrated on a partic-
ular case and analysed this in detail. For this particular example, we constructed
analytical asymptotic formulae for the first six eigenfrequencies, which makes it
possible to analyse the behaviour of these frequencies with respect to all para-
meters of the structure. The accuracy of these formulae was also tested against
numerical and finite element computations, which showed interesting and unex-
pected effects. We emphasise once more that the inaccuracies faced by numerical
and finite element computations, for the case when some of the eigenfrequencies
are close to each other, are absent in our asymptotic results. Remarkably, these
inaccuracies occur in the regions in which the asymptotic formulae are most reli-
able. It is also interesting to note that the accuracy of the pile structure solution
is high, even for small distances between the legs. We believe that these results
are difficult to predict without a detailed analysis, such as that given in the
present paper.
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Fig. 8. A 1D-3D homogeneous multi-structure, illustrating a different type of weak

nondegenracy.

To establish a two-sided estimate for the finite-dimensional approximation
to a 1D-3D multi-structure, it is important to know the value of the constant
Q in (2.1). However, it is difficult to find this constant rigorously. In fact, it is
only possible to estimate it with respect to the small parameter associated with
the multi-structure. Our calculations lead to the result that the value for the
constant Q is different for degenerate and nondegenerate multi-structures.

Future work is on the rigorous estimates of the constant discussed above.
In addition to this we are also interested in analysing 1D-3D nonhomogeneous
multi-structures, which have applications in damage mechanics.
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Appendix A.

We denote the stiffness coefficients of the legs Π(j)
ε by C

(j)
i , i = 1, 2, 3, 4,

j = 1, . . . ,K, where

(A.1) C
(j)
i = E

∫

g(j)

y
(j)
i

2
dy

(j)
1 dy

(j)
2 , i = 1, 2,

stand for the tranverse displacements,
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(A.2) C
(j)
3 = E mes (g(j))

corresponds to the longitudinal displacement and

(A.3) C
(j)
4 =

E

2(1 + ν)

∫

g(j)

||∇ϕ(j) − y
(j)
2 e

(j)
1 + y

(j)
1 e

(j)
2 ||2 dy

(j)
1 dy

(j)
2 ,

corresponds to the axial rotation. Here, ϕ(j) is the torsion potential (see, for
example, [4]).

It is clear that

(A.4) C
(j)
i = ε4C

(j)
i,0 , k = 1, 2, 4, C

(j)
3 = ε2C

(j)
3,0 ,

where C(j)
i,0 , i = 1, 2, 3, 4, j = 1, . . . ,K, do not depend on ε.

The functions v̂(j)
i , i = 1, 2, 3, 4, j = 1, . . . ,K satisfy the ordinary differential

equations

(A.5)

d4v̂
(j)
i

dy
(j)
3

4

(

y
(j)
3

)

= 0, 0 < y
(j)
3 < l(j), i = 1, 2,

d2v̂
(j)
i

dy
(j)
3

2

(

y
(j)
3

)

= 0, 0 < y
(j)
3 < l(j), i = 3, 4.

The transmission conditions at junction points a(j), j = 1, . . . ,K are formulated
as

v̂
(j)
i (0) = α̂

(j)
i + (β̂

(j)
× â(j))i, i = 1, 2, 3,(A.6)

v̂
(j)
4 (0) = β̂

(j)
3 ,

dv̂
(j)
1

dy
(j)
3

(0) = β̂
(j)
2 ,

dv̂
(j)
2

dy
(j)
3

(0) = −β̂
(j)
1 ,(A.7)

and the clamping conditions on Sε lead to

(A.8) v̂
(j)
i (l(j)) = 0, i = 1, 2, 3, 4,

dv̂
(j)
i

dy
(j)
3

(l(j)) = 0, i = 1, 2.

The components of the forces and the moments, exerted by the legs Π(j)
ε on the

body Ω, in local coordinates, can be written as (see (3.15))

F̂
(j)
i = −C

(j)
i

d3v̂
(j)
i (0)

dy
(j)
3

3 , i = 1, 2, F̂
(j)
3 = C

(j)
3

dv̂
(j)
3 (0)

dy
(j)
3

,(A.9)

M̂
(j)
3−i = (−1)i+1C

(j)
i

d2v̂
(j)
i (0)

dy
(j)
3

2 , i = 1, 2, M̂
(j)
3 = C

(j)
4

dv̂
(j)
4 (0)

dy
(j)
3

,(A.10)
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where C
(j)
i , i = 1, 2, 3, 4, j = 1, . . . ,K are positive stiffness coefficients and

v̂
(j)
i , i = 1, 2, 3, 4, j = 1, . . . ,K are given by

v̂
(j)
1 (y

(j)
3 ) = φI(y

(j)
3 /l(j))(α̂

(j)
1 + (β̂

(j)
× â(j))1) + l(j)φII(y

(j)
3 /l(j))β̂

(j)
2 ,

v̂
(j)
2 (y

(j)
3 ) = φI(y

(j)
3 /l(j))(α̂

(j)
2 + (β̂

(j)
× â(j))2) − l(j)φII(y

(j)
3 /l(j))β̂

(j)
1 ,

v̂
(j)
3 (y

(j)
3 ) = (1 − y

(j)
3 /l(j))(α̂

(j)
3 + (β̂

(j)
× â(j))3),

v̂
(j)
4 (y

(j)
3 ) = (1 − y

(j)
3 /l(j))β̂

(j)
3 ,

with
φI(t) = (t− 1)2(2t+ 1), φII(t) = (t− 1)2t.

Hence, Eqs. (A.9) and (A.10) can be written explicitly as

(A.11)

F̂
(j)
1 = −C

(j)
1

{

12
[

α̂
(j)
1 + (β̂

(j)
× â(j))1

]

/l(j)
3
+ 6β̂

(j)
2 /l(j)

2
}

,

F̂
(j)
2 = −C

(j)
2

{

12
[

α̂
(j)
2 + (β̂

(j)
× â(j))2

]

/l(j)
3
− 6β̂

(j)
1 /l(j)

2
}

,

F̂
(j)
3 = −C

(j)
3

[

α̂
(j)
3 + (β̂

(j)
× â(j))3

]

/l(j),

M̂
(j)
1 = C

(j)
2

{

6
[

α̂
(j)
2 + (β̂

(j)
× â(j))2

]

/l(j)
2
− 4β̂

(j)
1 /l(j)

}

,

M̂
(j)
2 = C

(j)
1

{

−6
[

α̂
(j)
1 + (β̂

(j)
× â(j))1

]

/l(j)
2
− 4β̂

(j)
2 /l(j)

}

,

M̂
(j)
3 = −C

(j)
4 β̂

(j)
3 /l(j).

Appendix B.

We note that R(j),T(j), j = 1, . . . ,K are diagonal matrices. In addition, the
relationship (A(j))⊤ = −A(j) holds true for the matrix A(j) (see (3.21)). Hence,
it is straightforward to show that

(Φ1,1)
⊤ = Φ1,1, Φ2,1 = (Φ1,2)

⊤, (Φ2,2)
⊤ = Φ2,2.

Therefore, the matrix Φ is symmetric.
To prove that the matrix Φ is positive definite, we consider the following

expression

(B.1) e = F · α + M · β,
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which is equivalent to (see (3.23) and (3.35))

(B.2) e = Φθ · θ.

In addition, using the balance relations (3.14) we can write

(B.3) e = F · α + M · β = −
K
∑

j=1

F (j) · α −
K
∑

j=1

(M(j) + a(j) × F) · β

= −

K
∑

j=1

F̂
(j)

·
(

α̂
(j) − â(j) × β̂

(j)
)

−

K
∑

j=1

M̂
(j)

· β̂
(j)
.

Now, using the formulae (A.9) and (A.10), Eq. (B.3) can be rewritten as

(B.4) e =
K
∑

j=1

2
∑

i=1







C
(j)
i





d3v̂
(j)
i

dy
(j)
3

3

∣

∣

∣

y
(j)
3 =0

v̂
(j)
i

∣

∣

∣

y
(j)
3 =0

−
d2v̂

(j)
i

dy
(j)
3

2

∣

∣

∣

∣

∣

y
(j)
3 =0

dv̂
(j)
i

dy
(j)
3

∣

∣

∣

∣

∣

y
(j)
3 =0





−C
(j)
i+2

dv̂
(j)
i+2

dy
(j)
3

∣

∣

∣

y
(j)
3 =0

v
(j)
i+2

∣

∣

∣

y
(j)
3 =0

}

.

It can be shown that e can be also represented as

(B.5) e =

K
∑

j=1

l(j)
∫

0

2
∑

i=1



C
(j)
i





d2v̂
(j)
i

dy
(j)
3

2





2

+ C
(j)
i+2

(

dv̂
(j)
i+2

dy
(j)
3

)2


 dy
(j)
3 .

To be able to show the equivalence of (B.4) and (B.5), one has to use integration
by parts for the right-hand side of equation (B.5) and employ the differential
equations (see (A.5)) and boundary conditions on Sε posed for the functions

v̂
(j)
i , i = 1, 2, 3, 4, j = 1, . . . ,K (see (A.8)).

It follows that e > 0. Hence, for an arbitrary vector θ 6= 0 (see (B.2)),

Φ > 0, provided that at least one of the functions v̂(j)
i is not identically zero.

This completes the proof.
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