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Brief Note

Stability of stratified elastico-viscous Walters’ (Model B′)
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and rotation in porous medium
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Combined effect of magnetic field and rotation is considered on the stability of
stratified visco-elastic Walters’ (Model B′) fluid in porous medium. In contrast to
the Newtonian fluids, the system is found to be unstable at stable stratification for
low values of permeability or high values of kinematic viscoelasticity. Magnetic field
is found to stabilize the small wavelength perturbations for unstable stratification.
Variation of growth rate in the case of unstable stratification is depicted graphically
with the variation in viscosity, viscoelasticity and permeability. It has been found that
the growth rate increases with the increase in kinematic viscosity and permeability,
whereas it decreases with the increase in kinematic viscoelasticity.

Notations

Ω (Ω, 0,0) rotation vector having components (Ω,0,0),

ρ density of fluid,

µ coefficient of viscosity,

µ′ coefficient of viscoelasticity,

µe magnetic permeability,

ε medium porosity,

∂ curly operator,

∇ del operator,

β a constant,

π constant value,

δ perturbation in the respective physical quantity,

φ the angle between the horizontal component

of wave number kx and wave number k,

ν kinematic viscoelasticity (µ/ρ),
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ν′ kinematic viscoelasticity (µ′/ρ),

ι square root of (−1),

k1 medium permeability,

p pressure,

g (0, 0,−g) acceleration due to gravity,

H (H, 0, 0) magnetic field vector having components (H, 0, 0),

δρ perturbation in density ρ(z),

δp perturbation in pressure p(z),

q (u, v, w) perturbations in fluid velocity q (0, 0, 0),

h (hx, hy, hz) perturbations in magnetic field H (H, 0, 0),

kx, ky wave numbers in x and y directions respectively,

k = (k2
x + k2

y)1/2 wave number of the disturbance,

n growth rate of the disturbance,

V 2
A square of the Alfve’n velocity (V 2

A = µeH
2/4πρ),

d depth of the fluid layer,

ρ0, µ0, µ′
0, ε0, k10, ν0, ν′

0 constants,

m an integer,

D derivative with respect to z (= d/dz),

(u, v, w) components of velocity after perturbation.

1. Introduction

A comprehensive account of the Rayleigh–Taylor instability has been given
by Chandrasekhar [1], wherein the effects of uniform rotation and uniform
magnetic field, separately, have also been studied. Reid [2] studied the ef-
fects of surface tension and viscosity on the stability of two superposed fluids.
Oldroyd [3] proposed a theoretical model for a class of viscoelastic fluids. The
problem of convective instability in a rotating viscoelastic fluid has been consid-
ered by Bhatia and Steiner [4]. Sharma and Kumari [5] studied thermoso-
lutal instability in a Maxwellian viscoelastic fluid in a porous medium. There
are many elastico-viscous fluids which cannot be characterized by Maxwell’s or
Oldroyd’s constitutive relations. One such class of fluids is Walters’(Model B′)
fluid. Walters [6] has proposed a theoretical model for such elastico-viscous
fluids. Sharma and Kumar [7] have studied the stability of two superposed
Walters’ (Model B′) viscoelastic liquids.

The flow through porous medium has been of considerable interest in recent
years, particularly in geophysical fluid dynamics. When we consider flow in a
porous medium, some additional complexities arise which are principally due
to the interactions between the fluid and the porous material. Here, we will
consider those fluids for which Darcy’s law is applicable, which states that the
gross effect, as the fluid slowly percolates through the pores of rock, is that the
usual viscous term in the equation of elastico-viscous fluid motion will be replaced

by the resistance term

[
− 1

k1

(
µ− µ′

∂

∂t

)
q

]
, where µ and µ′ are the coefficients



Stability of stratified elastico-viscous Walters’s ... 189

of viscosity and viscoelasticity of the Walters’ (Model B′) fluid, k1 is the medium
permeability and q is the Darcian (filter) velocity of the fluid. The stability of
flow of a single component fluid through porous medium, taking into account the
Darcy’s resistance, has been studied by Lapwood [8] and Wooding [9]. The
physical properties of comets and meteorites strongly suggest the importance of
porosity in astrophysical context (McDonnel [10]). Sharma [11] has studied
the effect of uniform magnetic field and uniform rotation on the stability of two
superposed fluids in a porous medium. Sharma and Kumar [12] have studied
the steady flow and heat transfer of Walters’ (Model B′) fluid through a porous
pipe of uniform circular cross-section with small suction.

Another application of the result of flow through porous medium in the pres-
ence of magnetic field is in the geothermal region. The rotation of the Earth
distorts the boundaries of a hexagonal convection cells in fluid through a porous
medium and the distortion plays an important role in the extraction of en-
ergy in the geothermal regions. Keeping in mind the growing importance of
non-Newtonian fluids in modern technology, industry, chemical technology and
dynamics of geophysical fluids and considering the conflicting tendencies of mag-
netic field and rotation while acting together, we are motivated to study the sta-
bility of stratified elastico-viscous Walters’ (Model B′) fluid in a porous medium
in the presence of magnetic field and rotation.

2. Formulation of the problem and perturbation equations

The initial stationary state whose stability we wish to examine is that of
an incompressible, infinitely conducting Walters’ (Model B′) fluid of variable
density, kinematic viscosity and kinematic viscoelasticity, arranged in horizon-
tal strata in a porous medium of variable porosity and medium permeability.
We are considering little unusual configuration in which not only the magnetic
field is parallel to the layer but rotation is also oriented in the same direc-
tion, i.e. the elastico-viscous fluid is acted on by gravity force g(0, 0,−g), a uni-
form horizontal rotation Ω (Ω, 0, 0) and a uniform horizontal magnetic field
H,(H, 0, 0). The same type of configuration has been considered by Sharma [13]
while studying the stability of a stratified fluid in porous medium in the presence
of horizontal magnetic field and rotation. Chandrasekhar [1] also discussed
in brief the problem of thermal instability for the case when rotation parameter
Ω and acceleration due to gravity g act in different directions.

Consider an infinite horizontal layer of thickness d bounded by the planes
z = 0 and z = d. The character of the equilibrium of this stationary state is
determined by supposing that the system is slightly disturbed and then, following
its further evolution.
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Let ρ, µ, µ′, p and q (u, v, w) denote, respectively, the density, the viscosity,
the viscoelasticity, the pressure and the filter velocity of fluid (initially zero).
∈ is the medium porosity and µe is the magnetic permeability. Then the hydro-
magnetic equations relevant to the problem are

(2.1)
ρ

∈

[
∂q

∂t
+

1

∈ (q.∇) q

]
= −∇ p+ gρ− 1

k1

(
µ − µ′

∂

∂t

)
q

+
2ρ

∈ (q × Ω) +
µe

4π
[ (∇× H) × H] ,

∇.q = 0,(2.2)

∈ ∂ρ

∂t
+ (q.∇) ρ = 0,(2.3)

∇.H = 0,(2.4)

∈ ∂H

∂t
= (H .∇) q .(2.5)

Equation (2.3) represents the fact that the density of a particle remains
unchanged as we follow it with its motion.

Let δρ, δp, q (u, v, w) and h (hx, hy, hz) denote, respectively, the perturba-
tions in density ρ(z), pressure p(z), velocity (0, 0, 0) and horizontal magnetic
field H (H, 0, 0). Then the linearized perturbation equations become

(2.6)
ρ

∈
∂q

∂t
= −∇δp+ gδρ− 1

k1

(
µ − µ′

∂

∂t

)
q

+
2ρ

∈ (q × Ω) +
µe

4π
[ (∇× h) × H] ,

∇.q = 0,(2.7)

∈ ∂δρ

∂t
+ (q.∇) ρ = 0,(2.8)

∇.h = 0,(2.9)

∈ ∂h

∂t
= (H .∇) q.(2.10)

Analyzing the disturbances in normal modes, we seek solutions whose depen-
dence on x, y, z and time t is given by

(2.11) f(z) exp(ikxx+ ikyy + nt),

where f(z) is some function of z and kx, ky are the wave numbers in the x and
y directions, k = (k2

x + k2
y)

1/2 is the resultant wave number and n is the growth
rate of the disturbance which is, in general, a complex constant.
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Equations (2.6)–(2.10), using expression (2.11) in the Cartesian coordinates
become

ρ

∈nu = −ikxδp−
1

k1

(
µ− µ′n

)
u,(2.12)

ρ

∈nv = −ikyδp−
1

k1

(
µ− µ′n

)
v +

µeH

4π
(ikxhy − ikyhx) +

2

∈ρΩw,(2.13)

ρ

∈nw = −Dδp− 1

k1

(
µ− µ′n

)
w +

µeH

4π
(ikxhz −Dhx) − 2

∈ρΩv − gδρ,(2.14)

ikxu+ ikyv +Dw = 0,(2.15)

∈ nδρ+ w (Dρ) = 0,(2.16)

ikxhx + ikyhy +Dhz = 0,(2.17)

∈ nhx = ikxHu,(2.18)

∈ nhy = ikxHv,(2.19)

∈ nhz = ikxHw,(2.20)

where D stands for d/dz.
Eliminating u, v and δ p from Eqs. (2.12)–(2.14) and using Eqs. (2.15)–(2.20),

after little algebra, we get

(2.21) ρ

[
n2 +

∈ n

k1

(
ν − ν ′n

)
+ k2

xV
2
A

]
D2w + n2 (Dρ) (Dw)

−
[
k2

(
n2 +

∈ n

k1

(
ν − ν ′n

)
+ k2

xV
2
A

)
ρ

+
4ρn2Ω2k2

x

n2 +
∈ n

k1

(
ν − ν ′n

)
+ k2

xV
2
A

− g k2 (Dρ)

]
w

+ 2 i n kyΩ (Dρ) w = 0,

where ν = µ/ρ, ν′ = µ′/ρ and V 2
A = µeH

2/4πρ (square of the Alfve’n velocity).
Equation (2.21) is the general equation to consider the stability of stratified

Walters’ (Model B′) fluid in a porous medium in the presence of horizontal
magnetic field and uniform rotation. In the absence of viscoelasticity i.e. (ν ′ = 0),
Eq. (2.21) reduces to the result by Sharma [11].
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3. The case of exponentially varying stratifications

Let us assume the stratifications in density, viscosity, viscoelasticity, medium
porosity and medium permeability of the forms

(3.1) ρ = ρ0e
βz, µ = µ0e

β z, µ′ = µ′0e
β z, ∈=∈0 e

β z, k1 = k10e
β z,

where ρ0, µ0, µ
′

0, ∈0, k10 and β are constants. Equation (3.1) implies that

the kinematic viscosity ν0

(
=
µ

ρ
=
µ0

ρ0

)
and the kinematic viscoelasticity

ν ′0

(
=
µ′

ρ
=
µ′0
ρ0

)
are constant everywhere. Using stratifications of the form (3.1),

Eq. (2.21) transforms to

(3.2)

[
n2 +

∈0 n

k10

(
ν0 − ν ′0n

)
+ k2

xV
2
A

]
D2w + n2β (Dw)

−
[(

n2 +
∈0 n

k10

(
ν0 − ν ′0n

)
+ k2

xV
2
A

)
k2

+
4Ω2 n2 k2

x

n2 +
∈0 n

k10

(
ν0 − ν ′0n

)
+ k2

xV
2
A

− g β k2

]
w = 0.

The general solution of Eq. (3.2) is given by

(3.3) w = A1e
q
1

z +A2e
q
2

z,

where A1, A2 are two arbitrary constants and q1, q2 are the roots of the equation

(3.4)

[
n2 +

∈0 n

k10

(
ν0 − ν ′0n

)
+ k2

xV
2
A

]
q2 + n2β q

−
[(

n2 +
∈0 n

k10

(
ν0 − ν ′0n

)
+ k2

xV
2
A

)
k2

+
4Ω2 n2 k2

x

n2 +
∈0 n

k10

(
ν0 − ν ′0n

)
+ k2

xV
2
A

− gβk2

]
= 0.

Here we consider the fluid to be confined between two rigid planes at z = 0 and
z = d.

The boundary conditions for the case of two rigid surfaces are

(3.5) w = 0 at z = 0 and z = d.
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The vanishing of w at z = 0 is satisfied by the choice

(3.6) w = A (eq1
z − eq2

z) ,

while the vanishing of w at z = d requires e (q
1
−q

2) d = 1, i.e.

(3.7) (q1 − q2) d = 2 imπ,

where m is an integer. Solving Eq. (3.4) we get,

(3.8) q1,2 =
1

2

[
−n2β

L2
±
{
n4 β2

L2
2

+ 4

(
k2 +

4n2Ω2 k2
x

L2
2

− g β k2

L2

)}1/2
]
,

where L2 =

(
n2 +

∈o n

k1o

(
νo − ν ′on

)
+ k2

xV
2
A

)
.

Inserting the values of q1, q2 from Eq. (3.8) in Eq. (3.7), we obtain

(3.9) n4

[
β2 + 4

(
1 − 2 ∈0 ν

′
0

k10

) (
k2 +

m2π2

d2

)
+ 4

∈2
0 ν

′2
0

k2
10

(
k2 +

m2π2

d2

)]

+ 8n3

[∈0 ν0

k10

(
1 − ∈0 ν

′
0

k10

) (
k2 +

m2π2

d2

)]
+ n2

[
4
∈2

0 ν
2
0

k2
10

(
k2 +

m2π2

d2

)

+ 2k2
xV

2
A

(
k2 +

m2π2

d2

) (
1 − 4 ∈0 ν

′

0

k10

)
+ 4Ω2V 2

A − gβ k2

(
1 − 4 ∈0 ν

′
0

k10

)]

+ n

[
4
∈0 ν0

k10

{
2k2

xV
2
A

(
k2 +

m2π2

d2

)
− g β k2

]

+ 4 k2
xV

2
A

{
k2

xV
2
A

(
k2 +

m2π2

d2

)
− g β k2

}
= 0.

Equation (3.9) is biquadratic in n, therefore, it must give four roots and
it is the dispersion relation for studying the effects of rotation and horizontal
magnetic field on the stability of stratified elastico-viscous (exponentially varying
density) fluid in a porous medium.

4. Results and discussion

(a) Case of stable stratification (i.e. β < 0). If β < 0 and k10 > 4 ∈0 ν
′

0,
Eq. (3.9) does not admit any positive real root or complex root with positive
real part; therefore, the system is stable for disturbances of all wave numbers.
However, the system is unstable for k10 < 4 ∈0 ν

′

0. Thus for stable stratification,
the system is stable for k10 > 4 ∈0 ν

′

0 and unstable for k10 < 4 ∈0 ν
′

0. This is
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in contrast to the Newtonian fluids where the system is always stable for stable
stratification (Chandrasekhar [1]).

(b) Case of unstable stratification (i.e. β > 0). If β > 0 and k10 > 4 ∈0 ν
′

0,
the system is stable or unstable according to whether

k2
xV

2
A

(
k2 +

m2π2

d2

)
> g β k2 or k2

xV
2
A

(
k2 +

m2π2

d2

)
< gβk2.

The system is clearly unstable in the absence of magnetic field. However, the

system can be stabilized if V 2
A >

g β k2

(
k2 +

m2 π2

d2

)
k2

x

and k10> 4 ∈0 ν
′

0 .

Thus for unstable stratification, if V 2
A <

g β k2

(
k2 +

m2 π2

d2

)
k2

x

, Eq. (3.9) has

at least one positive root and thus the system is unstable for all wave-numbers
satisfying the inequality

(4.1) k2 <
gβ sec2 φ

V 2
A

− m2π2

d2
,

where φ is the angle between kx and k (i.e. kx = k cosφ).
The behavior of growth rates with respect to kinematic viscosity ν0, kinematic

viscoelasticity ν ′0 and permeability k10 satisfying Eq. (3.9) has been examined
numerically using the Newton–Raphson method through the software Mathcad.
Figure 1 shows the variation of growth rate nr (positive real value of n) with
respect to the wave number k satisfying Eq. (3.9) for fixed permissible values of

β = 2, m = 1, d = 6 cm, Ω = 6 rotations/minute, k10 = 6, ν0 = 4,

g = 980 cm/sec2, V 2
A = 15, kx = k cos 45◦ and ∈0= 0.5,

for four values of ν ′0 = 1, 2, 3 and 4 respectively. The various parameter values
satisfy the inequality (4.1), which provides the wave-number range for which the
system is unstable. These values are the permissible values for the respective
parameters and are in good agreement with the corresponding values used by
Chandrasekhar [1] while describing various hydrodynamic and hydromagnetic
stability problems. The graph shows that for fixed wave-numbers, the growth rate
decreases with the increase in kinematic viscoelasticity ν ′0, which indicates the
stabilizing effect of viscoelasticity for the given range of wave-numbers. Figure 2
shows the variation of growth rate nr (positive real value of n) with respect to
wave-number k for fixed permissible values of

β = 2, m = 1, d = 6 cm, Ω = 6 rotations/minute, k10 = 6, ν ′0 = 1,

g = 980 cm/sec2, V 2
A = 15, kx = k cos 45◦ and ∈0= 0.5,
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Fig. 1. Vibration of nr (positive real part of n) with wave-number k for fixed permissible
values of β = 2, m = 1, d = 6 cm, ε0 = 0.5, k10 = 6, ν0 = 4, Ω = 6 revolutions per minute,

g = 980 cm/sec2, kx = k cos 45◦ and V 2
A = 15, for four values of ν′

0 = 1, 2, 3 and 4.

Fig. 2. Variation of nr (positive real part of n) with wave-number k for fixed permissible
values of β = 2, m = 1, d = 6 cm, ε0 = 0.5, k10 = 6, ν′

0 = 1, Ω = 6 revolutions per minute,
g = 980 cm/sec2, kx = k cos 45◦ and V 2

A = 15, for three values of ν′
0 = 2, 4 and 6.

for three values of ν0 = 2, 4 and 6 respectively. The graph shows that for fixed
wave-numbers, the growth rate increases with the increase in kinematic viscosity
ν0 which indicates the destabilizing influence of kinematic viscosity for the given
range of wave-numbers. Figure 3 shows the variation of growth rate nr (positive
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real value of n) with respect to wave-number k for fixed permissible values of

β = 2, m = 1, d = 6 cm, Ω = 6 rotations/minute, ν0 = 4, ν ′0 = 2,

g = 980 cm/sec2, V 2
A = 15, kx = k cos 45◦ and ∈0= 0.5,

for four values of k10 = 4,6,8 and 12 respectively. The graph shows that for fixed
wave-numbers, the growth rate increases with the increase in medium perme-
ability k10 which indicates the destabilizing influence of medium permeability
for the given range of wave-numbers.

Fig. 3. Variation of nr (positive real part of n) with wave-number k for fixed permissible
values of β = 2, m = 1, d = 6 cm, ε0 = 0.5, ν′

0 = 2, ν0 = 4, Ω = 6 revolutions per minute,
g = 980 cm/sec2, kx = k cos 45◦ and V 2

A = 15, for four values of k10 = 4, 6, 8 and 12.
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