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Non-isothermal phase-field models and evolution equation
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Phase transitions between two phases are modelled as space regions where
a phase field, or order parameter, changes smoothly. The literature shows a seeming
contradiction in that some papers lead to the use of the reduced chemical potential
through the temperature, others do not. The paper has a threefold purpose. First,
to revise the arguments of known approaches and possibly generalize the associated
schemes. Secondly, to show that a further approach is possible which involves the
phase field as an internal variable. Thirdly, to contrast the various schemes and the
corresponding results. It follows that differences arise because different fields enter the
models and different forms are considered for the balance of energy and the second
law of thermodynamics.

1. Introduction

Phase transitions of a single constituent are often described through a
phase field, or order parameter ϕ, which sometimes is explicitly regarded as
the concentration of one phase. The evolution of the phase field is one of the
main subjects of modelling and of the associated mathematical problems. Quite
naturally, the modelling and the related problems become more involved in non-
isothermal conditions. It is a standard feature in the phase-field modelling that
the constitutive functions (such as the free energy) depend on the phase-field
gradient. This dependence is often motivated physically as a model for a smeared-
out interfacial energy [1], though also the interpretation of the gradient term as a
kinetic energy content has been given [2]. Mathematically it is such a dependence
which may lead to the motivation for the rescaled free energy.

The literature shows a variety of approaches to phase-field models. Different
settings and fields, within continuum thermodynamics, result in different state-
ments of thermodynamic compatibility and evolution equations. Hence it is of
interest to examine the effective differences between the approaches.

For definiteness, following the description of more phases with a non-uniform
concentration, a macroscopic diffusion occurs and the corresponding mass flux
is often assumed to be determined by the gradient of the chemical potential
(difference). A question arises about the effect of a non-uniform temperature θ.
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Since the work of Alt and Pawlow [3], a wide literature on non-isothermal
phase field models follows the view that the chemical potential (difference) µ of
isothermal models should be replaced with the reduced chemical potential µ/θ
and, moreover, that µ/θ arises from the variational derivative of a rescaled free
energy density, namely 1/θ times the free energy density. This in turn leads to the
view that the pertinent (equilibrium and evolution) equations are derived from
a Landau–Ginzburg functional which is the space integral of an appropriately
rescaled free energy density [4].

Other approaches to the phase field do not involve the rescaled free energy
or the reduced chemical potential. In such cases, a non-uniform temperature θ
looks less effective and we naturally ask for the more correct or plausible model.
Mathematically it is the dependence on ∇ϕ which determines the occurrence in
the evolution equation of the variational derivative of the (possibly rescaled) free
energy.

The purpose of this paper is threefold. First to revise the arguments of known
approaches and possibly to generalize the associated schemes. Secondly, to show
that a further approach is possible which involves the phase field as an internal
variable. Thirdly, to contrast the various schemes and the corresponding results.
As we see, different conclusions arise because different fields enter the models
and different forms are applied for the balance of energy and the second law of
thermodynamics.

Notation and preliminaries

Let Ω ⊂ R3 be the region occupied by the body and x ∈ Ω be a position
vector. Symbol ρ denotes the mass density, x the position vector, v the velocity,
T the Cauchy stress tensor, b the body force (per unit mass), e the internal
energy density (per unit mass), q the heat flux vector, r the heat supply, θ the
absolute temperature, η the entropy density, ψ the free energy density, and L
is the velocity gradient. Partial differentiations are denoted by subscripts; for
example, ψθ stands for ∂ψ/∂θ. Also, ∇ is the gradient operator, ∂t denotes the
partial time differentiation and the superposed dot the total or material time
differentiation. Hence, for any function g(x, t),

ġ = ∂tg + v · ∇g,

where · denotes the inner product. In addition, ∇· stands for the divergence and
∆ for the Laplacian. A superposed T means transpose. The gradient operator
and the total time differentiation do not commute. Indeed, by

∇̇g = ∂t∇g + (v · ∇)∇g
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it follows that

(1.1) ∇̇g = ∇ġ − LT∇g.

2. Phase field with diffusion flux

This section parallels and generalizes the approach of Alt and Pawlow [3].
The generalization is due to a nonzero mass production of the constituent, a more
general form of the free energy and account for the macroscopic motion.

The phase transition is framed within a mixture of two phases. The transition
is viewed as a reaction between the two phases. The balance equations for the
mixture as a whole are written in the standard form for a single body:

(2.1) ρ̇ + ρ∇ · v = 0,

(2.2) ρv̇ = ∇ ·T + ρb,

(2.3) ρė = −∇ · q + T · L + r.

The concentration c of one of the phases is governed by the equation

(2.4) ρċ +∇ · J = τ,

where J is the diffusion flux and τ is the mass production of the constituent, per
unit time and unit volume, due to the transition.

In this section we identify the concentration c with the order parameter ϕ,

ϕ := c,

and hence ϕ is subject to Eq. (2.4).
The free energy density ψ is assumed to be given by a function of the form

ψ = ψ(ρ, ϕ, θ,∇ϕ)

and the entropy density η is taken to be related to ψ by

η = −ψθ.

Hence the time differentiation of η and e = ψ − θψθ provides

η̇ = −(ψθρρ̇ + ψθϕϕ̇ + ψθθθ̇ + ψθ∇ϕ∇̇ϕ)
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and

ė = ψρρ̇ + ψϕϕ̇ + ψ∇ϕ∇̇ϕ− θ(ψθρρ̇ + ψθϕϕ̇ + ψθθθ̇ + ψθ∇ϕ∇̇ϕ)

= ψρρ̇ + ψϕϕ̇ + ψ∇ϕ∇̇ϕ + θη̇.

Let γ be an unknown function of ρ, ϕ, θ,∇ϕ and ∇ρ,∇θ,∇∇ϕ. Upon evaluation
of ρ(γϕ̇− ė/θ), we obtain

ρ

(
γϕ̇− 1

θ
ė

)
= −ρ

θ
ψρρ̇ + ρ

(
γ − 1

θ
ψϕ

)
ϕ̇− ρη̇ − ρ

θ
ψ∇ϕ∇̇ϕ.

By means of (1.1) we can replace ∇̇ϕ and write

ρ

(
γϕ̇− 1

θ
ė

)
= −ρ

θ
ψρρ̇ + ρ

[
γ − (ρψϕ/θ −∇ · (ρψ∇ϕ/θ))

]
ϕ̇− ρη̇

−∇ ·
(ρ

θ
ψ∇ϕϕ̇

)
+

ρ

θ
∇ϕ · Lψ∇ϕ.

This suggests that we let

(2.5) γ := ρψϕ/θ −∇ · (ρψ∇ϕ/θ).

Hence, also by means of (2.1), we have

(2.6) ρ

(
γϕ̇− 1

θ
ė

)
=

ρ2

θ
ψρ∇ · v − ρη̇ −∇ ·

(ρ

θ
ψ∇ϕϕ̇

)
+

ρ

θ
∇ϕ · Lψ∇ϕ.

Now, by (2.4) and (2.3) we obtain

(2.7) ρ

(
1
θ
ė− γϕ̇

)
=

1
θ

(T · L + r)+q·∇(1/θ)−J·∇γ+∇·
(
−1

θ
q + γJ

)
−γτ.

Comparison of (2.6) with (2.7) provides

(2.8) ρη̇ =
1
θ

(
T + ρ2ψρ1 + ρ∇ϕ⊗ ψ∇ϕ

) · L +
r

θ
+ q · (1/θ)

− J · ∇γ − γτ +∇ ·
(
−1

θ
q + γJ− ρ

θ
ψ∇ϕϕ̇

)
.
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This means that, for any region P moving with the continuum, upon integration
we have

d

dt

∫

P
ρηdv

=
∫

P

[
1
θ

(
T + ρ2ψρ1 + ρ∇ϕ⊗ ψ∇ϕ

) · L +
r

θ
+ q · ∇(1/θ)− J · ∇γ − γτ

]
dv

+
∫

∂P

(
−1

θ
q + γJ− ρ

θ
ψ∇ϕϕ̇

)
· n da.

If

(2.9)
1
θ

(
T + ρ2ψρ1 + ρ∇ϕ⊗ ψ∇ϕ) · L + q · ∇(1/θ

)− J · ∇γ − γτ ≥ 0

then

(2.10)
d

dt

∫

P
ρηdv ≥

∫

P

r

θ
dv +

∫

∂P

(
−1

θ
q + γJ− ρ

θ
ψ∇ϕϕ̇

)
· n da.

The result (2.10) holds for any region P ⊆ Ω. If we assume that

J · n = 0, n · ψ∇ϕϕ̇ = 0, on ∂Ω,

then we have the standard form of the second law,

(2.11)
d

dt

∫

Ω

ρη dv ≥ −
∫

∂Ω

q
θ
· n da +

∫

Ω

r

θ
dv,

for the whole body.
The results so obtained are of intlimitserest in many respects. First, the func-

tion γ is usually viewed as the reduced chemical potential, µ/θ. The condition
(2.5) means that γ = µ/θ is the variational derivative of the rescaled free energy
density ρψ/θ. This in turn extends the definition of µ, given e.g. in [3] and [4],
to the case when the mass density ρ is not a constant.

Secondly, the validity of the second law in the global form (2.11) and in the
local form corresponding to (2.10), is proved with a generic dependence of ψ
on ∇ϕ and on ρ, for a moving continuum with reacting phases (τ 6= 0). These
aspects are not considered in [3].

Thirdly, the dependence of ψ on ∇ϕ induces a stress term ρ∇ϕ⊗ψ∇ϕ. Such
a term, with ρ in place of ϕ, occurs in Korteweg’s theory of gradient fluids
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(see [5]). Lately this term has been re-examined by [6] for two-phase binary
fluids, by [7] for thermoelastic materials and by [8, 9] for phase transitions in
solids.

Fourthly, the inequality (2.8) is very close to that obtained within the mix-
ture theory (see [2]). A direct comparison shows that differences involve the
corrections u2 to µ, u being the diffusion velocity, and peculiar quantities of the
constituents which do not enter the balance of energy (2.3).

The inequality (2.9) may be viewed as the reduced dissipation inequality.
It is a consequence of a natural assumption leading to the form (2.10) of the
second law of thermodynamics. We now look at it by considering appropriate
constitutive assumptions.

2.1. Restrictions placed by the reduced inequality

If the motion is disregarded, then the (dissipation) inequality (2.9) reduces to

q · ∇(1/θ)− J · ∇γ − γτ ≥ 0.

The simplest way to satisfy this inequality is to assume that q and J are linear
in ∇(1/θ), −∇γ and that the corresponding matrix is positive semidefinite (see
[10], Ch. 5; [3]) and moreover that γτ ≤ 0. If T is independent of ∇θ and ∇γ
then (2.9) implies that

(T + ρ2ψρ1 + ρ∇ϕ⊗ ψ∇ϕ) · L ≥ 0.

If, further, T = T(ρ, ϕ, θ,∇ϕ) then the inequality holds only if

T = −ρ2ψρ1− ρ∇ϕ⊗ ψ∇ϕ.

The first term in the right-hand side is just the standard pressure contribution,
the second term is a new effect due to the dependence on ∇ϕ. For isotropic
bodies, ψ depends on ∇ϕ through |∇ϕ|2 and hence

∇ϕ⊗ ψ∇ϕ = 2ψ|∇ϕ|2∇ϕ⊗∇ϕ

thus making T apparently symmetric. If, instead, T depends also on L as for
viscous fluids then, depending on the form of the function T, we can divide T
into the non-dissipative part just examined and in a dissipative one, T̂, such
that T̂ · L ≥ 0.

For more involved constitutive assumptions the appropriate analysis of (2.9)
may be technically cumbersome but, conceptually, it is a standard problem (see
[11, 12]).
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3. An internal-variable approach

The phase transition is described by letting the body occur in two phases but
regarding the two phases as a single body to which an additional variable, the
phase field ϕ, is ascribed. The balance equations for mass, momentum and energy
are then taken in the classical form (2.1), (2.2), (2.3) of continuum mechanics.
Possible nonlocal effects associated with the phase field are incorporated by
letting an entropy extra-flux k occur in the second law. As the statement of the
second law, we say that the inequality

(3.1) ρη̇ ≥ −∇ ·
(q

θ
+ k

)
+

r

θ

holds at each position x ∈ Ω and time t ∈ R for all pertinent fields, of x and t,
compatible with the balance equations. The extra-flux k is regarded as unknown
and has to be determined so that the second law is satisfied. It is subject to the
boundary condition

k · n|∂Ω = 0

so that the second law for the whole body takes the standard form (2.11). In
terms of ψ = e− θη we can write the inequality (3.1) in the form

(3.2) −ρ(ψ̇ + ηθ̇) + T · L− 1
θ
q · ∇θ + θ∇ · k ≥ 0.

The constitutive properties are specified by saying that T,q, ψ, η,k are functions
of a collection Γ of independent variables,

Γ = (ρ, θ, ϕ,∇θ,∇ϕ).

Moreover, and this is the peculiar constitutive assumption, the evolution of ϕ is
governed by

(3.3) ϕ̇ = f(Γ ).

In this sense, the two phases are regarded as a material with an internal variable
[13].

Proposition 1. The functions f,T,q, ψ, η,k, of Γ , are compatible with the
second law of thermodynamics, in the form (3.2), if and only if

(3.4) ψ∇θ = 0, η = −ψθ, T = −ρ2ψρ1− ρ∇ϕ⊗ ψ∇ϕ,

(3.5) −ρψϕf − 1
θ
q · ∇θ + θ∇ · k− ρψ∇ϕ · ∇f ≥ 0.
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P r o o f. Differentiation of ψ(Γ ) and substitution in (3.2) gives

−ρ[(ψθ +η)θ̇+ψϕf +ψ∇θ ·∇̇θ+ψ∇ϕ ·∇̇ϕ+(T+ρ2ψρ1) ·L− 1
θ
q ·∇θ+θ∇·k ≥ 0.

By applying the identity (1.1) to ϕ we have

∇̇ϕ = ∇f − LT∇ϕ.

Hence we can write

− ρ[(ψθ + η)θ̇ + ψϕf + ψ∇θ · ∇̇θ] +
(
T + ρ2ψρ1 + ρ∇ϕ⊗ ψ∇ϕ

) · L

− 1
θ
q · ∇θ + θ∇ · k− ρψ∇ϕ · ∇f ≥ 0.

The linear dependence on θ̇, ∇̇θ,L and the arbitrariness of their value imply that
(3.2) holds only if (3.4) and (3.5) hold. The sufficiency is obvious. 2

As in other models, for the sake of simplicity we now look at sufficient con-
ditions for compatibility with thermodynamics. Since

θ∇ · k− ρψ∇ϕ · ∇f = ∇ · [θk− ρψ∇ϕf ]− k · ∇θ + f∇ · (ρψ∇ϕ),

the inequality (3.5) can be written in the form

1
θ
q · ∇θ −∇ · [θk− ρψ∇ϕf ] + k · ∇θ + f [ρψϕ −∇ · (ρψ∇ϕ)] ≤ 0.

This suggests that we let

(3.6) θk− ρψ∇ϕf = 0.

Hence

k · ∇θ + f [ρψϕ −∇ · (ρψ∇ϕ)] = fθ[ρψϕ/θ −∇ · (ρψ∇ϕ/θ)] = θfγ,

γ being the reduced chemical potential (see (2.5)). This is the proof of the fol-
lowing

Proposition 2. Upon the assumption (3.6), the inequality (3.5) holds if
and only if

(3.7)
1
θ2

q · ∇θ + fγ ≤ 0.

Again as a sufficient condition, (3.7) holds if q · ∇θ ≤ 0 and

(3.8) fγ ≤ 0.
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Remark 1. Without any conceptual change, we may obtain the same results,
and hence (3.8), by starting from a free energy ψ(Γ ) but letting f depend on
ρ, θ, ϕ,∇θ,∇ϕ and their spatial derivatives of any order.

The simplest way to satisfy (3.8) is to set

f = −f̂(Γ )γ, f̂(Γ ) > 0,

possibly letting f̂ be a constant. In such a case the evolution equation (3.4)
becomes

(3.9) ϕ̇ = −f̂(Γ )[ρψϕ/θ −∇ · (ρψ∇ϕ/θ)].

More involved models and evolution equations are allowed by weakening the
statement of the second law, that is by considering a global condition as in (2.11).
A relevant example is provided by the function

(3.10) f = ν∇ · (α∇(νγ))− f̂γ,

where ν, α and f̂ are functions of Γ . Hence we find that

fγ = ∇ · [ανγ∇(νγ)]− α|∇(νγ)|2 − f̂γ2.

Of course ∫

Ω

∇ · [ανγ∇(νγ)]dv =
∫

∂Ω

ανγn · ∇(νγ) da.

If
n · ∇(νγ)|∂Ω = 0,

then (3.8) holds, to within a globally zero divergence, provided only that α and
f̂ are positive-valued.

4. A model involving configurational forces

Models for phase transitions are developed by having recourse to configura-
tional forces [9, 14, 15]. For homogeneity of presentation we let the constituents
be fluids. By analogy with [9], a (configurational) vector field ξ and a scalar field
π are supposed to balance each other in the form

(4.1) ∇ · ξ + π = 0.

The rate of work, in addition to the customary mechanical terms, is assumed to
be given by ξ · (ϕ̇n) per unit area with normal n. Hence, because ∇ · ξ = −π,
the balance of energy is written as

(4.2) ρė = −∇ · q + T · L + ξ · ∇ϕ̇− πϕ̇ + r.
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The second law is adopted in the classical form of the Clausius-Duhem inequality,

(4.3) ρη̇ ≥ −∇ · q
θ

+
r

θ
.

Assume the constitutive equations to be such that ψ and η,T,q,ξ, π are
functions of the form

ψ = ψ(ρ, θ, ϕ,∇θ,∇ϕ,L).

Substitution in the Clausius–Duhem inequality (4.3) and use of the identity (1.1)
provides

(4.4) − ρ(η + ψθ)θ̇ − (π + ρψϕ)ϕ̇− ρψ∇θ · ∇̇θ − (ρψ∇ϕ − ξ) · ∇̇ϕ− ρψL · L̇

+
(
T + ρ2ψρ1 +∇ϕ⊗ ξ

) · L− 1
θ

q · ∇θ ≥ 0.

The arbitrariness of θ̇, ∇̇θ and L̇ implies that (4.1) holds only if

η = −ψθ, ψ∇θ = 0, ψL = 0.

Now, without any appeal to the possible arbitrariness of ∇̇ϕ, we simply require
that the corresponding coefficient vanish, whence

(4.5) ξ = ρψ∇ρ.

The stress tensor T is written in the form

T = −ρ2ψρ1−∇ϕ⊗ ξ + T̂,

where T̂ is viewed as the possible dissipative part of T. Hence the inequality
(4.4) becomes

T̂ · L− (π + ρψρ)ϕ̇− 1
θ
q · ∇θ ≥ 0.

Again we assume that each term has the appropriate sign per se and hence we
let

(4.6) (π + ρψρ)ϕ̇ ≤ 0.

This suggests that, at the lowest order in ϕ̇, we should set

π + ρψρ = −βϕ̇,

where β is a positive-valued function. In view of (4.1) and (4.5) we replace π to
obtain

(4.7) βϕ̇ = −[ρψϕ −∇ · (ρψ∇ϕ)].

Equation (4.7) may be viewed as the evolution equation for the order pa-
rameter ϕ. It is worth remarking that this approach is based on the configu-
rational forces ξ, π associated with the equilibrium condition (4.1), the rate of
work ξ · (ϕ̇n) and the zero entropy extra flux.
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5. Configurational forces and entropy balance

Another approach to phase field models involves the entropy balance instead
of the energy balance. Here we investigate the phase-field model of heat conduc-
tors. To fix the ideas we refer to [16] (see also refs. therein) but, for simplicity,
the dependence on the history of ∇θ is ignored also because it is inessential to
the present purpose.

Apart from different notation (ξ → H, π → −B) and viewpoint, the balance
of energy has the same form as that for the approach through configurational
forces of [15, 9]. Since the macroscopic motion is disregarded then we write the
balance of energy in the form

(5.1) ė = Bϕ̇ + H · ∇ϕ̇−∇ · q + r,

where B and H are subject to the equilibrium condition

(5.2) B −∇ ·H = 0.

Here e, as well as η, ψ and r, are densities per unit volume, ρ is a constant and
L = 0 so that ∇̇g = ∇ġ.

Again the second law is taken to be expressed by the Clausius–Duhem in-
equality (4.3). Let

ψ = ψ(θ, ϕ,∇ϕ).

Hence (4.3) becomes

(ψθ + η)θ̇ + (ψϕ −B)ϕ̇ + (ψ∇ϕ −H) · ∇ϕ̇ +
1
θ
q · ∇θ ≤ 0.

We let
η = −ψθ.

Upon the representations

(5.3) B = ψϕ + Bd, H = ψ∇ϕ + Hd,

we have

(5.4) −Bdϕ̇−Hd · ∇ϕ̇ +
1
θ
q · ∇θ ≤ 0.

The inequality (5.4) is satisfied by letting

(5.5) Bd = ωϕ̇, Hd = 0, q = −λ∇θ,

where ω, λ ≥ 0. Hence by (5.2) and (5.3) we have

(5.6) ωϕ̇ = −(ψϕ −∇ · ψ∇ϕ).
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The new idea is to set up an entropy balance (equation) through an approxi-
mation and to apply it to determine the evolution of θ and ϕ. By means of (5.1),
(5.3) and the observation that

η̇ =
1
θ

(
ė− ψ̇ − ηθ̇

)

we find that

(5.7) η̇ +∇ ·
(q

θ

)
− r

θ
=

1
θ

(
Bdϕ̇ + Hd · ∇ϕ̇− 1

θ
q · ∇θ

)
.

By (5.5), the right-hand side of (5.7) becomes

1
θ

(
Bdϕ̇ + Hd · ∇ϕ̇− 1

θ
q · ∇θ

)
=

1
θ

(
ωϕ̇2 +

1
θ
λ|∇θ|2

)
,

namely a quadratic form in ϕ̇ and ∇θ. Hence [16], by the assumption of small
perturbations, the right-hand side of (5.7) is neglected relative to the left-hand
side and hence we have the entropy balance (approximation)

(5.8) η̇ +∇ ·
(q

θ

)
− r

θ
= 0.

Moreover we find that

η̇ +∇ ·
(q

θ

)
− r

θ
= c(ln θ). +

l

θ0
ϕ̇− λ∆ln θ − r

θ
.

For definiteness we take ψ in the form [16]

ψ = −cθ ln θ − l
θ − θ0

θ0
ϕ +

ν

2
|∇ϕ|2

whence

(5.9) η = c(1 + ln θ) +
l

θ0
ϕ,

where c is the specific heat and l is the latent heat. Hence (5.8) becomes

(5.10) c(ln θ). +
l

θ0
ϕ̇− λ∆ ln θ − r

θ
= 0.

Moreover, upon disregarding l(θ − θ0)/θ0, Eq. (5.6) reduces to

(5.11) ωϕ̇− ν∆ϕ = 0.
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The evolution problem for θ and ϕ is then investigated through the system of
equations (5.10), (5.11).

The remark is in order about (5.10). The exact equation (5.7) takes the form

c(ln θ). +
l

θ0
ϕ̇− λ∆ln θ − r

θ
=

1
θ

(
µϕ̇2 +

1
θ
λ|∇θ|2

)
.

Since
∆ ln θ =

1
θ
∆θ − 1

θ2
|∇θ|2

then we have
c(ln θ). +

l

θ0
ϕ̇− λ

1
θ
∆θ − r

θ
=

1
θ
µϕ̇2.

If the (quadratic) right-hand side is neglected, then the entropy balance results
in

(5.12) c(ln θ). +
l

θ0
ϕ̇− λ

1
θ
∆θ − r

θ
= 0.

Hence, if the quadratic terms are neglected, the system of evolution equations is
given by (5.11) and (5.12).

6. Comments and conclusions

Some comments are now provided along with the contrast of the forms of the
evolution equation which follow from the phase-transition models examined in
this paper.

According to the (generalization of) Alt and Pawlow model, the evolution
equation is just the Eq. (2.4) for the concentration. As in [3], let

J = −l11∇γ + l12∇(1/θ),

q = l21∇γ + l22∇(1/θ),

where γ is defined by (2.5) and l11 ≥ 0, l22 ≥ 0, 4l11l22 ≥ (l21 − l12)2. Moreover,
to satisfy γτ ≤ 0 we let

τ = −kγ, k ≥ 0.

Hence (2.4) becomes

(6.1) ρϕ̇ = ∇ · {l11∇[ρψϕ/θ −∇ · (ρψ∇ϕ/θ)]− l12∇(1/θ)}
− k[ρψϕ/θ −∇ · (ρψ∇ϕ/θ)].

Equation (6.1) is a nonlinear fourth-order equation in ϕ. If ρ is a constant
and L = 0 then, along with the energy balance (2.3), (6.1) constitutes a system
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of two partial differential equations in the unknowns θ, ϕ. Otherwise (2.1)–(2.3)
and (6.1) are the system of equations for ρ,v, θ, ϕ.

The result (3.8) obtained with the internal variable allows various possibili-
ties. The simplest one is given by (3.9) in which case

(6.2) ϕ̇ = −k[ρψϕ/θ −∇ · (ρψ∇ϕ/θ)]

provides the same effect as the mass production τ does in (6.1). The choice (3.10)
provides the strict analogue of (6.1) except for l12∇(1/θ).

In both cases the evolution equation involve the temperature θ through the
rescaled free energy ψ/θ.

The model with configurational forces gives a similar conclusion (4.7). The
main difference is that ξ and hence π do not involve the temperature. In other
words, again the evolution of ϕ is governed by the chemical potential but not in
the rescaled form. In essence this is due to the assumption that there is an extra
energy flux (ξϕ̇), subject to (4.1), but a zero extra entropy flux.

Apart from the specific feature of the approximation associated with the
entropy balance, similar results hold in the last approach and this is related to
the non-conventional energy balance whereas the second law is expressed by the
conventional Clausius–Duhem inequality.

In all of these approaches the value of ϕ̇ is given by a variational derivative
as in (6.2). In the first two approaches this comes out as a mathematical con-
sequence of the second law. In the other two cases this follows because of the
occurrence of the configurational forces subject to (4.1). It is worth mention-
ing that it is customary to write the evolution equations where ϕ̇ is given by
a variational derivative (see [17] and refs. therein). In such cases, though, this is
a direct consequence of the assumption that the variational derivative of the free
energy (possibly rescaled) is a generalized thermodynamic force which causes
the evolution of ϕ (see [4]).
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