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On stability of equilibrium in linear thermoviscoelasticity
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We present some results concerning the uniform Lyapunov stability of the gener-
alized solution of an equilibrium problem for thermoviscoelastic materials [9]. These
results are similar to those obtained in [4–7]. The results in [4] were subsequently
developed for exterior domains in [8].
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1. Introduction

Influenced by [1–3], the author obtained in [4–7] some results regarding
the stability and continuous dependence of solution to equilibrium equations of
inhomogeneous anisotropic and non-convolutive linear viscoelasticity. Precisely,
denoting by u the displacement field and by σ, C, and G, respectively, the
stress, elasticity, and relaxation tensor fields, we have considered materials with
the constitutive equation

σ(x, t) = C(x, t)∇u(x, t) +

t
∫

0

G(x, t, s)∇u(x, s)ds.

For such materials it has been proved that the solution u = u(x, t) of the
viscoelastic equilibrium problem, in the case of bounded domains Ω, is uniformly
Lyapunov stable (u.L.s.) with respect to the pairs of measures [1]

µt(u) :=
1

2

∫

Ω

[

ρ(x)|u̇(x, t)|2 + ∇u(x, t) · C(x, t)∇u(x, t)
]

dx, µ0(u)

and

νt(u) :=

t
∫

0

dτ

∫

Ω

∇u(x, s)2dx, µ0(u).



4 G. Gr. CIOBANU

Using this result, some other pairs of measures, with respect to which the
viscoelastic equilibrium is stable, were pointed out.

Among other hypotheses assuring the existence of viscoelastic equilibrium,
the obtained stability results heavily depend on the dissipation condition

td
∫

0

dτ

∫

Ω

σ(v)(x, τ) · ∇u̇(x, τ)dx ≥ 0,

where σ(v)(x, τ) =

τ
∫

0

C(x, τ, s)∇u(x, s)ds is the viscoelastic part of the stress

tensor.
The stability problems for materials of the “creep” or “relaxation” type, are

subsequently studied in [8], for the exterior of a bounded region, by using the
two above pairs of measures for the initial and current perturbations.

In this paper we get some results concerning the u.L.s., (uniform Lyapunov
stability) similar to those obtained in [4–7], for the generalized solution of
a Boundary-Initial Value Problem, called the Problem (P ) in what follows, for
linear thermoviscoelastic materials.

The constitutive equations of the linear thermoviscoelastic materials under
consideration are presented in Sec. 2. The constitutive equations are those es-
tablished by Navarro in [9].

The functional framework of the Problem (P ), the definition of the general-
ized solution of this problem and sufficient conditions guaranteeing its existence,
are briefly discussed in Sec. 3.

An energy equation, in fact a Lagrange–Brun-type identity [10] for thermo-
viscoelastic equilibrium solution, is derived in Sec. 4. This energy equation is
actually the essential ingredient in our stability analysis of the solution to Prob-
lem (P ) (thermoviscoelastic equilibrium).

In Sec. 5, the core of the paper, sufficient conditions are given for the Lya-
punov stability of thermoviscoelastic equilibrium. In fact we present the pairs
of measures [1] in comparison with which the stability is defined. All the results
of this section rely on the dissipation condition (5.1)1 which extends to thermo-
viscoelastic materials the above-mentioned condition in the case of viscoelastic
materials. A special attention is paid in this section to the dimensional analysis
of the material constants appearing in the pairs of measures, against which the
u.L.s. of thermoviscoelastic equilibrium is defined.

2. Linear thermoviscoelastic materials

We consider an inhomogeneous anisotropic linear thermoviscoelastic material
which, in a reference configuration with zero stress and absolute temperature
θ0 > 0, occupies the Lipschitzian domain Ω ⊂ IR3 with boundary ∂Ω [11].
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We denote by u(t) := u(x, t) the displacement vector, by ϑ(x, t) the absolute
temperature, and by θ(t) := ϑ(x, t) − θ0 the temperature variation fields at
position x ∈ Ω and time t ∈ IR.

The constitutive equations of the linear thermoviscoelastic material under
consideration are those proposed in [9], namely

(2.1) T(t) = G(0)∇u(t) − θ(t)L(0) +

t
∫

−∞

Ġ(t− τ)∇u(τ)dτ

−

t
∫

−∞

θ(τ)L̇(t− τ)dτ,

(2.2) ρη(t) = L(0)·∇u(t) + ρ
c(0)

θ0
θ(t) +

t
∫

−∞

L̇(t− τ) · ∇u(τ)dτ

+
ρ

θ0

t
∫

−∞

ċ(t− τ)θ(τ)dτ,

where ρ := ρ(x), T(t) := T(x, t), and η(t) := η(x, t) are, respectively, the mass
density, the Cauchy stress, and the specific entropy fields, while

G(s) := G(x, s), L(s) := L(x, t), c(s) := c(x, s), s ≥ 0,

are the relaxation tensor fields of the fourth, second and zero orders, respec-
tively. Suppose that Gijkl and Lij , the components of G and L in the Cartesian
coordonate system, satisfy the following symmetry properties on Ω×(−∞,+∞):

Gijkl = Gklij = Gjikl, Lij = Lji, i, j, k, l = 1, 2, 3.

These assumptions do not follow from the Claudius–Duhem inequality within
the framework of the theory of simple materials with fading memory.

Fourier’s law for the heat flux vector q(t) := q(x, t)

(2.3) q(t) = −K∇θ(t),

where K := K(x) is the thermal conductivity tensor field, completes the consti-
tutive equations of the linear thermoviscoelastic material. A sufficient condition
for the Claudius–Duhem inequality to be fulfilled is the uniform positive semi-
definiteness of the second order field K, i.e.

(2.4) v · K(x)v ≥ 0, ∀x ∈ Ω, ∀v ∈ IR3.
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The local equations of motion and coupled heat conduction are

(2.5)
ρü(t) = divT(t) + ρb(t),

θ0ρη̇(t) = div(K∇θ(t)) + ρr(t), on Ω × (0,∞),

where b(t) := b(x, t) is the specific externally applied body force and r(t) :=
r(x, t) is the specific external heat supply.

3. The boundary-initial value problem

We assume that

(3.1) b(x, t) = 000, r(x, t) = 0, (x, t) ∈ Ω × (0,∞),

and that the displacement and temperature difference fields are known up to the
initial time t = 0, i.e.

(3.2) u(x, t) = u(1)(x, t), θ(x, t) = θ(1)(x, t), (x, t) ∈ Ω × (−∞, 0],

where u(1) and θ(1) are given functions.
Using (2.1), (2.2), (3.1), and (3.2), the Eqs. (2.5) can be written in the form

(3.3)

ρü(t) = div[G(0)∇u(t) − θ(t)L(0) + T(v)(t)] + b0(t),

d

dt

[

L(0) · ∇u(t) +
1

θ0
ρc(0)θ(t) + ρη(v)(t)

]

=
1

θ0
div(K∇θ(t)) + r0(t),

where T(v)(t) — the viscous part of the stress — and η(v)(t) — the viscous part
of the entropy — are defined as follows:

(3.4)

T(v)(t) :=

t
∫

0

Ġ(t− τ)∇u(τ)dτ −

t
∫

0

θ(τ)L̇(t− τ)dτ,

ρη(v)(t) :=

t
∫

0

L̇(t− τ) · ∇u(τ)dτ +
1

θ0
ρ

t
∫

0

ċ(t− τ)θ(τ)dτ

and

(3.5)

b0(t) := div





0
∫

−∞

Ġ(t− τ)∇u(1)(τ)dτ −

0
∫

−∞

θ(1)(τ)L̇(t− τ)dτ



 ,

r0(t) := −
d

dt





0
∫

−∞

L̇(t− τ) · ∇u(1)(τ)dτ +
1

θ0
ρ

0
∫

−∞

ċ(t− τ)θ(1)(τ)dτ
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are the body force term and heat supply term, resulting from the history of strain
and temperature.

Consider the following Boundary-Initial Value Problem (in short Problem
(P )):

Find a pair of functions

(u, θ) : Ω × (0, T ) → IR3 × IR, T ∈ (0,∞)

satisfying (3.3) on Ω × (0, T ), the null boundary condition

(3.6) (u(x, t), θ(x, t)) = (000, 0) on ∂Ω × [0, T ),

and the initial condition

(3.7) (u(x, 0), u̇(x, 0), θ(x, 0)) = (u(0)(x),v(0)(x), θ(0)(x)) on Ω,

where

(3.8) (u(0)(x),v(0)(x), θ(0)(x)) = (u(1)(x, 0), u̇(1)(x, 0), θ(1)(x, 0)) on Ω.

With regard to the null boundary condition (3.6) it is observed that the
stability of every solution belonging to a linear problem is determined by the
stability of null equilibrium solution.

Results concerning the uniqueness, existence, smoothness, and asymptotic
behavior of the generalized solution of the Problem (P ) are obtained in [9]. In
fact, the generalized solution (u, θ) of the Problem (P ), when formulated in a
dimensionless form, is an element (u, θ) of the Hilbert space, obtained as the
completion of the space

{(v, α) : (v, α) ∈ C∞([0, T );W1,2
0 (Ω)) × C∞([0, T );W 1,2

0 (Ω))}

with respect to the norm induced by the inner product

〈(v1, α1), (v2, α2)〉

=

T
∫

0

dτ

∫

Ω

[

v̇1(τ) · v̇2(τ)∇v1(τ) · ∇v2(τ) + α1(τ)α2(τ)

+

t
∫

0

∇α1(s) · ∇α2(s)ds

]

dx,

and satisfying the variational problem (4.15) of [9] (see Def. 4.4).
Here W

1,2
0 (Ω) is the space of vectorial functions u = (u1, u2, u3) : Ω → IR3

with uk : Ω → IR, k = 1, 2, 3, belonging to the Sobolev space W 1,2
0 (Ω) [11, 12].
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It is proved (see Theorem 4.2 of [9]) that if the initial data and supply terms
satisfy the conditions:

(3.9) (v(0),v(0), θ(0)) ∈ W
1,2
0 (Ω) × L2(Ω) × L2(Ω)

and

(3.10) (b0, r0) ∈ L2([0, T );W−1,2(Ω) × L2(Ω)), ḃ0 ∈ L2([0, T );W−1,2(Ω)),

where W−1,2(Ω) is the dual space of W
1,2
0 (Ω) and L2(Ω) is the space of IR3-

valued functions with components in L2(Ω), then there exists a unique general-
ized solution of the Problem (P ).

We suppose that all conditions, imposed in [9] upon the density and re-
laxation tensor fields of the thermoviscoelastic material guaranteeing (3.9) and
(3.10) and therefore the existence and uniqueness of generalized solution of the
Problem (P ), are satisfied.

Concluding this section we remind that the application

(3.11) v 7→ ‖∇v‖0 :=

(∫

Ω

|∇v(x)|2dx

)1/2

∈ [0,∞), v ∈ W
1,2
0 (Ω),

is a norm on W
1,2
0 (Ω) and, on the basis of Poincaré’s inequality [12, 14], this

norm is equivalent to the norm

(3.12) v 7→ ‖v‖1,2 := ‖v‖0 + ‖∇v‖0 ∈ [0,∞), v ∈ W
1,2
0 (Ω),

where

(3.13) v 7→ ‖v‖0 :=

(∫

Ω

|v(x)|2dx

)1/2

∈ [0,∞), v ∈ L2(Ω),

is the norm on L2(Ω).

4. A preliminary energy equation

Summing the scalar product of (3.3)1 by u̇(t) and the product of (3.3)2 by
θ(t), integrating the result over Ω, applying the divergence theorem and taking
into account the boundary condition (3.6), we obtain

(4.1)
1

2

d

dt

∫

Ω

[

ρ(|u̇(t)|2 +
1

θ0
c(0)θ2(t)) + ∇u(t) · G(0)∇u(t)

]

dx

= −
1

θ0

∫

Ω

∇θ(t) · K∇θ(t)dx + π(t).
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Here

(4.2) π(t) = P0(t) − P (v)(t), t ∈ [0, T ),

where

(4.3) P0(t) =

∫

Ω

[b0(t) · u̇(t) + r0(t)θ(t)]dx

is the total power of the body force and heat supply resulting from the past history
of the strain and temperature, while

(4.4) P (v)(t) =

∫

Ω

[T(v)(t) · ∇u̇(t) + ρη̇(v)(t)θ(t)]dx

is the total viscous power, i.e. the sum of the total viscous stress power

(4.5)
∫

Ω

T(v)(t) · ∇u̇(t)dx =

t
∫

0

dτ

∫

Ω

∇u̇(t) · [θ(t)L̇(t− τ) − Ġ(t− τ)∇u(τ)]dx

and the total viscous entropy power

(4.6)
∫

Ω

ρη̇(v)(t)θ(t)dx=

∫

Ω

θ(t)
d

dt

{

t
∫

0

[

L̇(t− τ)
1

θ0
ρċ(t−τ)θ(τ)

]

dτ

}

dx

=

∫

Ω

θ(t)

[

L̇(0) · ∇u(t) +
1

θ0
ρċ(0)(t)

]

dx

+

t
∫

0

dτ

∫

Ω

θ(t)

[

L̈(t− τ) · ∇u(τ) +
1

θ0
ρc̈(t−τ)θ(τ)

]

dx.

If we integrate over [0, t] ⊂ [0, T ), we get

(4.7) Et(u, θ) = E0(u, θ) −
2

θ0

t
∫

0

dτ

∫

Ω

∇θ(τ) · K∇θ(τ)dx + 2

t
∫

0

π(τ)dτ,

where

(4.8) Et(u, θ) :=

∫

Ω

[

ρ(|u̇(t)|2 +
1

θ0
c(0)θ2(t)) + ∇u(t) · G(0)∇u(t)

]

dx.
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5. Stability of the thermoviscoelastic equilibrium

In this section we point out some uniform Lyapunov stability (u.L.s.) results
of the thermoviscoelastic equilibrium, i.e. the solution of the Problem (P ). We
have in view generalized solutions of the Problem (P ) corresponding to different
initial conditions (3.7) which satisfy also the dissipation condition

(5.1)1

t
∫

0

π(τ)dτ ≤ 0 ⇐⇒

t
∫

0

P0(τ)dτ ≤

t
∫

0

P (v)(τ)dτ, t ∈ [0, T ).

This hypothesis is most important for obtaining all the results of this section. It
means that, in any time interval [0, t] ⊂ [0, T ), the total work done by the body
force and heat supply arising from the past history of strain and temperature,
does not exceed the total work corresponding to the viscous parts of stress tensor
and entropy.

In the particular case

u(1)(x, t) = 000, θ(1)(x, t) = 0, on Ω × (−∞, 0],

we have P0(τ) = 0, τ ∈ [0, t], and the dissipation condition (5.1)1 becomes

(5.1)2

t
∫

0

P (v)(τ)dτ ≥ 0.

Remark 1. The analogue of this hypothesis for linear viscoelasticity is es-
sential in deriving the sufficient condition assuring u.L.s. of the viscoelastic equi-
librium [4, 7].

Theorem 1. The solution of the Problem (P ) satisfying the dissipation con-
dition (5.1)1 is u.L.s. with respect to the measures [9, Secs. 6–8].

(5.2) Et(u, θ) and E0(u, θ),

that is

(5.3) ∀ ε > 0,∃δ = δ(ε)(= ε) : E0(u, θ) < δ =⇒ Et(u, θ) < ε, t ∈ [0, T ).

P r o o f. Taking into account (2.4) and (5.1)1, from (4.7) we obtain

(5.4) Et(u, θ) ≤ E0(u, θ), t ∈ [0, T ),

and therefore we have (5.3).
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Remark 2. Lyapunov stability of the thermoviscoelastic equilibrium implies
its continuous dependence on the initial data, whereas the continuous depen-
dence of the thermoviscoelastic equilibrium on the initial data does not imply
its Lyapunov stability [9] (Sec. 8). On the other hand, from (4.7) it follows that
(5.1)1 implies (5.4) and therefore follows the continuous dependence of thermo-
viscoelastic equilibrium on the initial data. Thus the dissipation condition (5.1)1
of the solution of the Problem (P ) is a sufficient condition for the continuous
dependence of this solution on the initial data.

We shall use the following assumptions [9] belonging to the set of hypothesis
assuring the existence of the generalized solution of the Problem (P ):

0 < ρ0 = ess inf
Ω

ρ(x) ≤ ess sup
Ω

ρ(x) = ρ1 <∞,(5.5)

0 < c0 = ess inf
Ω

c(x, 0) ≤ ess sup
Ω

c(x, 0) = c1 <∞.(5.6)

Supposing that G(0) is a positive definite tensor, uniformly with respect to
x ∈ Ω, [13, Section 29], on Lin (the space of second order tensors) [14], it results
that there exists the constant g0 > 0 such that

(5.7)
∫

Ω

∇u(t) · G(0)∇u(t)dx ≥ g0‖∇u(t)‖2
0, t ∈ [0, T ),

and we obtain

(5.8) g0‖∇u(t)‖2
0 ≤

∫

Ω

∇u(t) · G(0)∇u(t)dx ≤ g1‖∇u(t)‖2
0, t ∈ [0, T ),

where

0 < g1 = ess sup
Ω





n
∑

i,j,k,l=1

G2
ijkl(0)





1/2

<∞.

We notice that the material constants ρ0, ρ1, c0, c1, g0, g1, have the physical
dimensions

(5.9)
dim ρ0 = dim ρ1 = ML−3; dim c0 = dim c1 = L2T−2Θ−1;

dim g0 = dim g1 = ML−1T−2.

From (5.5), (5.6), (5.8), and (4.8) we obtain

(5.10) ρ0µt(u, θ) ≤ Et(u, θ) ≤ E0(u, θ) ≤ ρ1µ0(u, θ), t ≥ 0,
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where

(5.11)
µt(u, θ) := ‖u̇(·, t)‖2

0 + α0‖θ(·, t)‖
2
0 + β0‖∇u(·, t)‖2

0,

µ0(u, θ) := ‖u̇(·, 0)‖2
0 + α1‖θ(·, 0)‖2

0 + β1‖∇u(·, 0)‖2
0.

Here α0 = c0/θ0 > 0, α1 = c1/θ0 > 0, β0 = g0/ρ0 > 0, β1 = g1/ρ1 > 0 are
material constants with

(5.12) dimα0 = dimα1 = L2T−2Θ−2, dimβ0 = dimβ1 = L2T−2.

Thus we have the following

Theorem 2. The solution of the Problem (P ) satisfying the dissipation con-
dition ((5.1)1) is u.L.s. with respect to the measures

µt(u, θ) and µ0(u, θ).

If we write Poincaré’s inequality for the displacement u(·, t) ∈ W 1,2
0 (Ω),

t ∈ [0, T ), in the dimensional form [14]

(5.13) γδ‖u(·, t)‖0 ≤ ‖∇u(·, t)‖0,

where γ > 0 is a dimensionless (genuine) constant depending only on Ω and δ
is the unit having dim δ = L−1; then, owing to the equivalence of norms (3.11)
and (3.12) on W 1,2

0 (Ω), we have

(5.14) γ0[]u(·, t)[]21,2 ≤ ‖∇u(·, t)‖2
0 ≤ γ1[]u(·, t)[]21,2, t ∈ [0, T )

where γ0 > 0, γ1 > 0 are genuine constants and

(5.15) []u(·, t)[]1,2 := δ‖u(·, t)‖0 + ‖∇u(·, t)‖0, t ∈ [0, T ),

is the dimensional form of (3.12).
From (5.11) and (5.14) we obtain

(5.16)
νt(u, θ) := ‖u̇(·, t)‖2

0 + α0‖θ(·, t)‖
2
0 + γ0β0[]u(·, t)[]21,2 ≤ µt(u, θ),

µ0(u, θ) ≤ ‖u̇(·, 0)‖2
0 + α1‖θ(·, 0)‖2

0 + γ1β1[]u(·, 0)[]21,2 := ν0(u, θ).

From here it results that the thermoviscoelastic equilibrium (the solution of
Problem (P )) is u.L.s. with respect to the measures

νt(u, θ) and ν0(u, θ).

Now we point out a partial stability result of thermoviscoelastic equilibrium
with respect to the displacement u(x, t).
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Theorem 3. If (5.1)1 holds, then the displacement component of the solution
(u, θ) of the Problem (P ) is u.L.s. with respect to the measures

‖u̇(·, t)‖2
0 + a0‖u(·, t)‖2

0 and ν0(u, θ),

where a0 = γ0β0δ
2 > 0, dim a0 = T−2.

The result follows from (5.16)1 and (5.15).

If, instead of (2.4), we suppose the thermal conductivity tensor K is positive
definite, uniformly with respect to x ∈ Ω, then we have

(5.17)
∫

Ω

∇θ(t) · K∇θ(t)dx ≥ k‖∇u(·, t)‖2
0, t ∈ [0, T ),

where k > 0 has the dimension of the conductivity tensor K, i.e.

(5.18) dim k = MLT−3Θ−1.

From (5.1)1, (4.7), and (5.17) we get

(5.19) λt(u, θ) := Et(u, θ) +
2k

θ0

t
∫

0

‖∇θ(·, s)‖2
0ds ≤ E0(u, θ), t ∈ [0, T ).

So we have the following:

Theorem 4. Under hypothesis (5.17), the solution of the Problem (P ) sat-
isfying (5.1)1 is u.L.s. with respect to the measures

λt(u, θ) and λ0(u, θ) = E0(u, θ).

We should remember that (5.17) is one of the hypotheses ensuring the exis-
tence of generalized solution to the Problem (P ) [9].

Now we demonstrate the partial stability result of thermoviscoelastic equilib-
rium with respect to temperature θ(x, t).

Theorem 5. If (5.17) and (5.1)1 hold, then the temperature component θ of
the solution (u, θ) of the Problem (P ) is u.L.s. with respect to the measures

(5.20) ϕt(θ) := ‖θ(·, t)‖2
0 + κ

t
∫

0

‖∇θ(·, s)‖2
0ds and E0(u, θ),

where κ = 2k/ρ0α0θ0 > 0 and dimκ = L2T−1.
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Indeed, from (5.10), (5.11)1, and (5.19) we have

(5.21) ‖θ(·, t)‖2
0 + κ

t
∫

0

‖∇θ(·, s)‖2
0ds ≤ hE0(u, θ)

where h = (ρ0α0)
−1 > 0 and dimh = M−1LT 2Θ2.

Remark 3. To some extent this theorem reflects the fact that, in the frame-
work of the theory simple materials with memory, the present value of the tem-
perature gradient does not enter the constitutive equations.

Applying the Poincaré’s inequality to the function θ(·, t) ∈ W 1,2
0 (Ω), t ∈

[0, T ), we obtain

γδ‖θ(·, t)‖0 ≤ ‖∇θ(·, s)‖0, s ∈ [0, T ). (4.13)′

Introducing this result into (5.21) we obtain

(5.22) ‖θ(·, t)‖2
0 + a

t
∫

0

‖θ(·, s)‖2
0ds ≤ hE0(u, θ),

where a = γ2κδ2 > 0 with

(5.23) dim a = T−1.

Multiplying (5.22) by eat (at is dimensionless!) and integrating the result over
the time interval [0, t) ⊂ [0, T ), we get

t
∫

0

‖θ(·, s)‖2
0ds ≤

h

a
(1 − e−at)E0(u, θ), t ∈ [0, T ),

whence we obtain the following global boundedness of temperature

(5.24) lim
t→T

t
∫

0

‖θ(·, s)‖2
0ds :=

T
∫

0

ds

∫

Ω

θ2(x, s)dx ≤
h

a
E0(u, θ),

where h/a > 0 and dim(h/a) = M−1LT 3Θ2.

6. Concluding remarks

The results of Sec. 5. are practically the same if, instead of the null boundary
condition (3.6), we consider the null mixed boundary conditions for components
u and θ of the solution (u, θ) of the system (3.3).
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The solution (u, θ) of the Problem (P ) is completely determined by the initial
history (u(1), θ(1)) and therefore the fact whether a solution (u, θ) satisfies or not
the dissipation condition (5.1)1 depends only on the initial history.

A solution (u, θ) of the Problem (P ) is called a finite energy solution [15] if
there exists a constant M ≥ E0(u, θ) such that

Et(u, θ) +
2

θ0

t
∫

0

ds

∫

Ω

∇θ(s) · K∇θ(s)dx ≤M, t ∈ [0, T ).

Of course, a solution (u, θ) of the Problem (P ) satisfying the dissipation
condition (5.1)1 is a finite energy solution with M = E0(u, θ).

It is my belief that the properties of finite energy solutions of the system (3.3)
are essential in studying the asymptotic partition and equipartition of ener-
gies [15] in linear thermoviscoelastic materials.
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