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The object of considerations are micro-laminated two-phase solids having
macroscopic properties continuously varying in the direction normal to the layering
(functionally graded laminates, FGL). The main question posed in this contribution
is how to investigate both micro- and macro- dynamic response of the linear-elastic
FGL. To answer this question, a new approximate mathematical model of FGL is
proposed. This model is represented by a certain refined homogenized equation of
motion for averaged displacements and a boundary-layer equation for intrinsic dis-
placement fluctuations. Main attention is given to the investigations of near-initial
and near-boundary dynamic phenomena in FGL, which are related to the specific
form of initial and boundary conditions. For a periodically laminated medium the
obtained results reduce to those derived in [7].

1. Introduction

The object of considerations is the dynamic behavior of multilayered lami-
nated media made of two linear-elastic components. Every layer has the constant
thickness l and consists of two homogeneous laminae. Moreover, thicknesses of
laminae in different layers are different, so that the apparent (effective) ma-
terial characteristics of the laminate can be treated on a macroscopic level as
continuously varying in the direction normal to the layering. Under the above
condition, the laminated solid will be referred to as the functionally graded lam-
inate (FGL). Obviously, FGL represents a special case of a functionally graded
material (FGM), cf. [5] and the extensive list of references therein. Fragments of
two FGL solids from the macroscopic point of view are shown in Fig. 1.

It is known that due to a large number of interfaces between laminae, in-
vestigations of both periodic and functionally graded laminates on a micro-
scopic level can lead to ill-conditioned and complicated computational problems
(cf. [2], p.VII). Hence the first aim of this contribution is to formulate a certain
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Fig. 1. Fragments of two FGL solids from the macroscopic point of view with different
distributions of the effective material characteristics.

averaged mathematical model for the analysis of both macro- and micro-dynamic
behavior of FGL. Here and subsequently, terms “macro” and “micro” are related
to the overall behavior of FGL and to the behavior of its arbitrary single two-
component layer, respectively. In contrast to the known asymptotic models, cf.
[2–4], the modelling technique proposed in the contribution is rather simple and
can be formulated on different levels of accuracy.

The second aim of the contribution is to apply the obtained mathematical
model of FGL to the microvibration analysis. It will be shown that if vibration
frequencies are not very high then the displacement fluctuations, caused by the
heterogeneity of FGL, strongly decay in a certain near-boundary layer. This
situation does not take place for higher vibration frequencies where we can also
deal with a certain intrinsic resonance of displacement fluctuations. This problem
for periodic laminates was studied in [7].

Considerations will be carried out in the framework of the linear elasticity
theory. Moreover, lamina materials are assumed to have elastic symmetry planes
parallel to the lamina interfaces. We also assume the perfect bonding between
adjacent laminae.

Denotations. By 0x1x2x3 we denote the Carthesian orthogonal coordinate
system in the physical space. Let Π × (−L,L), Π ⊂ R2, be the region in this
space occupied by the laminated solid in the reference configuration in which the
x3-axis is normal to the lamina interfaces. We denote e ≡ (0, 0, 1), x ≡ (x1, x2),
z ≡ x3 and t stands for the time coordinate. The partial differentiation with
respect to arguments xk, k = 1, 2, 3, is denoted by ∂k and time differenti-
ation by the overdot. We introduce gradient operators ∇ = (∂1, ∂2, ∂3) and
∇ = (∂1, ∂2, 0). Throughout Secs. 2 and 3 the tensor notation is used with “dot”
and “double dot” as the scalar and the double scalar products, respectively. In
Sec. 4 we apply the index notation where subscript k is related to the coordinate
xk, k = 1, 2, 3.

We assume that FGL is divided into 2m layers along its thickness 2L. The
thickness of every layer is the same and will be denoted by l. Hence L = ml, where
m has to satisfy condition m−1 ≪ 1, cf. Fig. 2. Thicknesses of lamina in the n-th
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layer, n = −m, ...,−1, 1, ...,m, are denoted by l′n, l′′n. A cross-section of the FGL
solid and a fragment of its n-th layer are shown in Fig. 2, where ρ′, ρ′′ and C

′, C
′′

stand for mass densities and tensors of elastic moduli in every pair of adjacent
laminae, respectively. By ν ′ (·), ν ′′ (·) we denote smooth functions defined on
[−L, L] representing distributions of mean volume fractions of lamina materials,
ν ′ (z) + ν ′′ (z) = 1, z ∈ [−L,L]. It means that ν ′ (zn) = l′n/l and ν ′′ (zn) = l′′n/l
either for some zn ∈ [(n− 1) l, nl], n = 1, ...,m or for some zn ∈ [nl, (n+ 1) l],
n = −m, ...,−1. Diagrams of mean volume fractions ν ′, ν ′′ related to two solids
are shown in Fig. 3. We introduce also function ν (·) defined on [−L,L] in the
form ν =

√
ν ′ν ′′ which will be called phase distribution function.

Fig. 2. A cross-section of the FGL solid and a fragment of its n-th layer.

Fig. 3. Diagrams of mean volume fractions ν′, ν′′ of lamina materials for two FGL solids.
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For an arbitrary integrable function f defined in (−L,L) (f can also depend
on x and t) the averaging of this function is denoted by

〈f〉 (z) =
1

l

z+l/2∫

z−l/2

f (ζ) dζ.

Vectors and vector fields are denoted by small boldface letters, second-order
tensors and tensor fields by capital boldface letters and higher-order tensors and
tensor fields by block letters.

2. Modelling technique

The modelling question that we are going to answer in this section is how
to describe dynamic behavior of the linear-elastic FGL by means of PDEs with
smooth functional coefficients. Moreover, the proposed model has to describe
this behavior also on the microstructural level by taking into account the effect
of lamina thickness on the averaged characteristics of FGL. At last, the model
equations should have a relatively simple form which makes it possible to obtain
also analytical solutions to selected benchmark problems.

So far, modelling techniques for laminated media were restricted mainly to
periodic laminates and two main lines of modelling can be mentioned. The first
one is based on the asymptotic techniques, cf. [2, 3], which even for relatively
simple micro-dynamic problems leads to rather lengthy computations, [4]. The
second line of modelling takes into account certain heuristic assumptions; we can
mention here the effective stiffness theories, [1], for the analysis of wave propa-
gation problems and various applications of the tolerance averaging technique.
The review of recent papers on this subject can be found in [6].

In this contribution we deal with non-periodic laminates and the proposed
modelling technique will be based on a certain generalization of the procedure
discussed in [6]. To this end we shall introduce two important notions.

Function F ∈ C1 ([−L,L]) of argument x3 = z (F can also depend on x

and t) will be called slowly varying (with respect to length l, l ≪ L, and within
tolerance ε assigned to F , 0 < ε ≪ 1) if functions l∂3F and εF are of the same
order O (ε) related to ε. If this condition holds also for all derivatives of F which
occur in the problem under consideration then we shall write F ∈ SVε (l), where
ε is called a tolerance parameter. For a detailed discussion of this concept the
reader is referred to [6].

By g : [−L,L] → R we denote a continuous function the diagram of which
in every n-th interval [(n− 1) l, nl], n = 1, ...,m, is shown in Fig. 4. In intervals
[nl, (n+ 1) l], n = −1, ...,−m the form of function g (·) is similar to that given
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by Fig. 4. Function g (·) will be referred to as the fluctuation shape function
and represents a certain generalization of the saw-like function, well known in
modelling of periodic laminates, [6].

Fig. 4. A diagram of the fluctuation shape function in the n-th layer.

We begin the modelling procedure with the statement that in every FGL mean
volume fractions are slowly varying, i. e. they are restricted by conditions ν ′ (·) ∈
SVε (l), ν ′′ (·) ∈ SVε (l). We also assume that for every slowly varying function
F , F ∈ SVε (l), terms l∂3F which are of an order O (εF ) can be neglected
as small when compared to F . This assumption is referred to as the tolerance
approximation.

Let us denote by w (x, z, t), x = (x1, x2) ∈ Π, z ∈ [−L,L] the displacement
field at time t. The subsequent analysis will be restricted to problems in which
distributions of displacements w (x, ·, t) across the thickness of every lamina can
be approximated (within a certain tolerance ε) by linear functions. Using the
notion of the fluctuation shape function and that of the slowly-varying function,
we conclude that the aforementioned restriction can be assumed in the form of
the decomposition

(2.1) w (x, z, t) = u (x, z, t) + g (z)v (x, z, t)
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where u, v are slowly varying functions of argument z :

(2.2) u (x, ·, t) ∈ SVε (l) , v (x, ·, t) ∈ SVε (l) .

Applying the tolerance approximation we also obtain

u (x, z, t) = 〈w〉 (x, z, t)

for every (x, z) ∈ Π × [−L+ l/2, L− l/2] and every time t. It follows that u is
the averaged displacement and gv represent fluctuations of displacements. That
is why function v will be referred to as the fluctuation amplitude. Subsequently
we are going to show that the above displacement fluctuations are caused by the
heterogeneous structure of the solid under consideration.

Conditions (2.1), (2.2) constitute the kinematic assumption which introduces
averaged displacement u and fluctuation amplitude v as the basic kinematic
unknowns.

The governing equations for kinematic unknowns will be derived from the
principle of stationary action. The Lagrange function is assumed in the form

L =
1

2
〈ρẇ · ẇ〉 − 1

2
〈∇w : C : ∇w〉 ,

where displacement field w is restricted by conditions (2.1), (2.2). Using the
tolerance approximation and recalling that e = (0, 0, 1), we shall approximate
∇w by ∇u + g′ (z) e ⊗ v + g (z)∇v. Similarly we conclude that

(2.3)
〈ρ〉 = ν ′ (z) ρ′ + ν ′′ (z) ρ′′,

〈C〉 = ν ′ (z) C
′ + ν ′′ (z) C

′′.

We shall also introduce denotations

(2.4)

[C] ≡ 2
√

3ν (z)
(
C
′ − C

′′
)
· e,

[C]T ≡ 2
√

3ν (z) e ·
(
C
′ − C

′′
)
,

{C} ≡ 12e ·
(
C
′ν ′′ (z) + C

′′ν ′ (z)
)
· e.

After rather lengthy manipulations, the Euler–Lagrange equations for L lead
to the following equations of motion

(2.5)
〈ρ〉 ü −∇ · S = 0,

l2ν2 〈ρ〉 v̈ − l2ν2∇ ·
(
〈C〉 : ∇v

)
+ h = 0
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and constitutive equations

(2.6)
S = 〈C〉 : ∇u+ [C] · v,
h = {C} · v+ [C]T : ∇u.

Equations (2.5), (2.6) with coefficients defined by (2.3), (2.4) and formulae
(2.1), (2.2) represent an averaged mathematical model of the FGL solid under
consideration. The basic unknowns are: averaged displacement u and fluctuation
amplitude v. Equations (2.5), (2.6) have to be considered together with the
appropriate initial and boundary conditions for u and v. It can be seen that for
a homogeneous solid and under homogeneous initial-boundary conditions for v,
the model equations reduce to the well-known equations of the linear elasticity
theory where v ≡ 0.

The main characteristic features of the model equations (2.5), (2.6) are:
1◦ functional coefficients in these equations are slowly varying smooth func-

tions of argument z;
2◦ the model equations depend on the microstructure size l;
3◦ solutions to model equations have a physical sense only if u, v together

with their derivatives are slowly varying functions of argument z;
4◦ the model equations are deprived of the second derivatives of v with respect

to x3 and hence the boundary conditions for v have to be formulated only
on ∂Π × (−L,L).

Let us observe that after the formal limit passage l → 0, from (2.5), (2.6) we
obtain

(2.7) v = −{C}−1 · [C]T : ∇u

and after introducing the following tensor of effective elastic moduli

(2.8) C
h ≡ 〈C〉 − [C] · {C}−1 · [C]T

we obtain equation

(2.9) 〈ρ〉 ü −∇ ·
(
C

h : ∇u
)

= 0.

The above equations together with formulae (2.1), (2.2) where v is defined by
(2.7), represent what will be called the locally homogenized model of the linear-
elastic FGL.

Let us observe that for a periodically laminated solid, the coefficients in
Eqs. (2.5)–(2.9) are constant. In this case we deal with equations derived and
discussed in [6].
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3. Boundary-layer equation

Following the approach proposed in [7] let us decompose the fluctuation am-
plitude v in Eqs. (2.5), (2.6) into the sum

(3.1) v = v0 + r + r∗,

where v0 is defined by

(3.2) v0 = −{C}−1 · [C]T : ∇u

and r is assumed to satisfy equation

(3.3) l2ν2 〈ρ〉 r̈ − l2ν2∇ ·
(
〈C〉 : ∇r

)
+ {C} r = 0

together with initial conditions and boundary condition on ∂Π× (−L,L), which
coincide with the boundary conditions imposed on v. Substituting the right-hand
side of (3.1) into Eqs. (2.5), (2.6) we conclude that

(3.4) 〈ρ〉 ü −∇ ·
(
C

h : ∇u
)

= [C] : ∇ (r + r∗) ,

where r∗ has to satisfy the equation

(3.5) l2ν2 〈ρ〉 r̈∗ − l2ν2∇ ·
(
〈C〉 : ∇r∗

)
+ {C} r∗

= l2ν2
[
〈ρ〉 {C}−1 · [C]T : ∇ü −∇ ·

(
〈C〉 : ∇ ·

(
{C}−1 · [C]T : ∇u

))]

together with the homogeneous initial conditions and homogeneous boundary
conditions on ∂Π × (−L,L). The aforementioned requirement implies that r∗ ∈
O
(
l2
)
. On the other hand we shall assume that in the general case, the pertinent

initial and boundary conditions for r can be not homogeneous and hence their
values for t = 0 and on ∂Π × (−L,L) are independent of l. In this case we
shall introduce the extra approximation neglecting in (3.1) term r∗ as small
when compared to r. Under the above approximation we obtain from (3.4) the
simplified equation

(3.6) 〈ρ〉 ü −∇ ·
(
C

h : ∇u
)

= [C] : ∇r,

which will be referred to as the locally homogenized equation of motion. Thus we
jump to the conclusion that the system of Eqs. (2.5), (2.6) can be approximated
by Eqs. (3.3) and (3.6). At the same time using (2.1), (3.1), (3.2) and neglecting
in (3.1) term r∗ as small when compared to r, we obtain the formula

(3.7) w (x, z, t) = u (x, z, t) − g (z) {C}−1 · [C]T : ∇u (x, z, t) + g (z) r (x, z, t) ,

which determine distribution of displacements in terms of u and r.
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Equations (3.3) and (3.6) together with formula (3.7) constitute the proposed
simplified mathematical model for the analysis of elastodynamic response of
the functionally graded laminate. For periodically laminated media this model
reduces to the form which was derived independently in [7]. Let us also observe
that applying the formal asymptotic approximation l → 0 to Eq. (3.3) we obtain
r = 0. In this case, for a periodically laminated medium, Eq. (3.6) coincides
with the well-known homogenized equation where C

h is the effective tensor of
elastic modulae, [6]. It follows that the characteristic feature of Eq. (3.3) is that
it describes the effect of the period length on the behavior of the functionally
graded laminates. In the subsequent section it will be shown that Eq. (3.3)
also describes certain near-initial and near-boundary phenomena strictly related
to the initial and boundary conditions (on the part of boundary intersecting
interfaces between laminae) imposed on r. That is why Eq. (3.3) will be referred
to as the boundary-layer equation where the term “boundary” is related both to
time and space. Following [7], unknown r will be called the intrinsic displacement
amplitude.

4. Application to the microvibration analysis

For the sake of simplicity let us restrict consideration to the plane problem
setting u = u (x2, x3, t), r = r (x2, x3, t), x2 ∈ [0, H], x3 ∈ [−L,L]. Let us recall
that material planes x3 = const are elastic symmetry planes, cf. Fig. 1. In this
case shear problems, in which u2 = u2 (x2, x3, t), r2 = r2 (x2, x3, t) are the basic
unknowns, are described by separate equations. After denotations G ≡ C2323,
E ≡ C2222 and

[G] = 2
√

3
(
G′ −G′′

)
ν (x3) ,

{G} = 12
(
G′ν ′′ (x3) +G′′ν ′ (x3)

)
,

Gh =
G′G′′

G′ν ′′ (x3) +G′′ν ′ (x3)
,

Eqs. (3.3), (3.6) for unknowns u2, r2 reduce to the form

(4.1)
〈ρ〉 ü2 − ∂3

(
Gh∂3u2

)
= [G] ∂3r2,

l2ν2 〈ρ〉 r̈2 − l2ν2 〈E〉 ∂2∂2r2 + {G} r2 = 0.

Let us observe that r2 = r2 (x2, x3, t) in Eqs. (4.1) depends on x3 as a pa-
rameter. Equation (4.1)1 has the well-known form of equation of motion for the
linear-elastic heterogeneous solid with volume forces − [G] ∂3r2. That is why we
shall restrict subsequent analysis to Eq. (4.1)2. Let us transform this equation
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to the dimensionless form by introducing time constant T and dimensionless
arguments

η =
x2

H
, ξ =

x3

L
, τ =

t

T
.

Let us also define
ϕ (η, ξ, τ) ≡ r2 (Hη,Lξ, Tτ)

where η ∈ [0, 1], ξ ∈ [−1, 1] and introduce dimensionless parameters

γ ≡ H

νl
, κ ≡ {G}

〈E〉 .

Under the assumption that
H2

T 2
=

{G}
〈ρ〉

and using the above denotations, the intrinsic fluctuation equation (4.1)2 takes
the form

(4.2)
∂2ϕ

∂τ2
− 1

κ

∂2ϕ

∂η2
+ γ2ϕ = 0,

where ϕ = ϕ (η, ξ, τ), η ∈ [0, 1] and where ξ ∈ [−1, 1] is a parameter. We shall
investigate the problem of harmonic microvibrations by setting

ϕ = Φ (η, ξ) cosωτ

with ω as a dimensionless vibration frequency. Hence

∂2Φ

∂η2
− κ

(
γ2 − ω2

)
Φ = 0.

Let the boundary conditions for Φ have the form Φ (1, ξ) = 0, Φ (0, ξ) = f (ξ). It
can be shown that f (·) is a slowly varying function, f ∈ SVε (l/L). The following
special cases of microvibrations take place:
1. If ω = 0 then we deal with a stationary problem and after setting k2 ≡ κγ2

we obtain
ϕ (η, ξ, τ) = f (ξ) exp (−kη) .

Because of k ≫ 1 we deal here with strongly decaying intrinsic fluctuations.
2. If 0 < ω ≪ γ2 then under notation

k2 (ω) ≡ κ
(
γ2 − ω2

)

we obtain
ϕ (η, ξ, τ) = f (ξ) exp (−k (ω) η) cosωτ.
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In this case microvibrations are strongly decaying.
3. If 0 ≪ ω < γ then

ϕ (η, ξ, τ) = f (ξ)

[
exp (−k (ω) η)

1 − exp (−2k (ω))
+

exp (k (ω) η)

1 − exp (2k (ω))

]
cosωτ

and microvibrations are not decaying.
4. If ω = γ then

ϕ (η, ξ, τ) = f (ξ) (1 − η) cosωτ

and we deal with the linear distribution of microvibrations.
5. If ω > γ and

λ2 ≡ κ
(
ω2 − γ2

)
6= n2π2, n = 1, 2, ...

then

ϕ (η, ξ, τ) =
f (ξ)

sinλ
sinλ (1 − η) cosωτ.

We deal here with higher microvibration frequencies.
6. If ω > γ and

λ2 ≡ κ
(
ω2 − γ2

)
= n2π2

then we obtain resonance microvibrations with resonance frequencies

ω2
n =

n2π2

κ
+ γ2, n = 1, 2, ...

From the above results it follows that if microvibrations are strongly decaying
then the values of function ϕ (·, ξ, τ), ξ ∈ [−1, 1], for ξ not very small when
compared to 1, can be neglected. It means that the intrinsic fluctuations r can
be treated as equal to zero outside a certain narrow layer near boundary x2 = 0.
Outside this layer we can assume that r2 = 0 and Eqs. (4.1) reduce to the
asymptotic model equation.

5. Numerical results

In this section we present some numerical results. To this end we introduce
dimensionless coefficients

Γ 2 = κγ2, Ω2 =
ω2

γ2
.

It can be seen that the character of intrinsic microvibrations depends on the
dimensionless vibration frequency Ω. Numerical results describing the boundary-
value problem are computed for Γ = 20 and for vibration frequency Ω = 0, 0.01,
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0.99, 1, 1.1 in Fig. 5ab, 6ab, 7ab, 8ab, 9ab, respectively. It can be observed that if
0 ≤ Ω ≪ 1 then displacement fluctuations are not strongly decaying in a certain
near-boundary layer (Fig. 5ab, 6ab). For 0 ≪ Ω < 1 displacement fluctuations
are not decaying so strongly (Fig. 7ab). If Ω ≥ 1 then fluctuation propagates into
the layer 0 < x2 < H. For Ω = 1 we obtain linear distribution of microvibrations
(Fig. 8ab). It has to mentioned that for 0 ≤ Ω ≪ 1 intrinsic fluctuations decay
so rapidly that differences between diagrams of the dimensionless fluctuation
variable are not noticeable (Fig. 5ab, 6ab).

a) b)

Fig. 5. Diagrams of the dimensionless intrinsic microvibration amplitude for Ω = 0, Γ = 20
and f (ξ) = 0.5

p
1 − ξ2 (Fig. 5a), f (ξ) = 0.5

p
1 − ξ6 (Fig. 5b).

a) b)

Fig. 6. Diagrams of the dimensionless intrinsic microvibration amplitude for Ω = 0.01,
Γ = 20 and f (ξ) = 0.5

p
1 − ξ2 (Fig. 6a), f (ξ) = 0.5

p
1 − ξ6 (Fig. 6b).

In contrast to the periodic laminated medium, [7], in FGL a very important
role plays the function f (ξ) occurring in the boundary conditions. This function
was assumed in the form f (ξ) = 0.5

√
1 − ξ2 (Fig. 5a–9a) or f (ξ) = 0.5

√
1 − ξ6

(Fig. 5b–9b). It can be observed that the choice of function f (ξ) has an important
influence on the character of intrinsic microvibrations. It has to be emphasized
that f has to be a slowly varying function, f ∈ SVε (l/L).
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a) b)

Fig. 7. Diagrams of the dimensionless intrinsic microvibration amplitude for Ω = 0.99,
Γ = 20 and f (ξ) = 0.5

p
1 − ξ2 (Fig. 7a), f (ξ) = 0.5

p
1 − ξ6 (Fig. 7b) .

a) b)

Fig. 8. Diagrams of the dimensionless intrinsic microvibration amplitude for Ω = 1, Γ = 20
and f (ξ) = 0.5

p
1 − ξ2 (Fig. 8a), f (ξ) = 0.5

p
1 − ξ6 (Fig. 8b) .

a) b)

Fig. 9. Diagrams of the dimensionless intrinsic microvibration amplitude for Ω = 1.1,
Γ = 20 and f (ξ) = 0.5

p
1 − ξ2 (Fig. 9a), f (ξ) = 0.5

p
1 − ξ6 (Fig. 9b).

6. Summary of new results

The following new results and information on elastodynamics of the FGL
solids have been obtained in this contribution.

1. A mathematical model for investigations of a linear-elastic behavior of
FGL was derived on the basis of a certain heuristic assumption. The kinematics
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of FGL in the framework of this model is described by two vector fields u and
v which satisfy general model equations (2.5), (2.6). Fields u and v describe
the averaged and fluctuational parts of the displacement field, respectively. In
contrast to the homogenized model equations (2.9) the model equations (2.5),
(2.6) make it possible to analyze the effect of microstructure size of FGL on
its overall behavior. Moreover, the accuracy of the obtained solution to model
equations (2.5), (2.6) can be estimated a posteriori by conditions (2.2).

2. A simplified form (3.6), (3.3) of model equations for averaged displacement
u and intrinsic fluctuation r was formulated. Equation (3.3) for r is independent
of u and describe certain boundary- and initial-layer type phenomena. In the
framework of a homogenized model field r is identically equal to zero. This
result is a generalization of the results obtained for periodic laminates in [7].

3. The aforementioned model was applied to the analysis of intrinsic mi-
crovibrations in a certain functionally graded laminate. It was shown that the
character of intrinsic microvibrations depends on the vibration frequency. For
lower frequencies we observe certain boundary-layer phenomena in which intrin-
sic fluctuations are strongly decaying. For higher frequencies the behavior of
FGL is different and leads to the existence of resonance microvibrations.
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