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The considerations are concerned with modelling and analysis of the dynamic
response for micro-laminated two-phased solids. The main attention is focussed on
modelling of the laminates which have a slowly graded microstructure in the direction
normal to the layering (slowly graded laminates, SGL). Periodic and functionally
graded laminates can be treated as special cases of SGL. A new mathematical model
which couples micro- and macro-response of the linear elastic SGL is proposed. It is
shown that for laminates with a weak transversal inhomogeneity, the derived model
equations can be decomposed into asymptotic equations which describe the behavior
of a laminate independently on the macro- and micro-level. This decomposition is
estimated on the example of a specific vibration problem.

1. Introduction

The object of analysis is a dynamic response of two-phase multilayered
solids with microstructure slowly varying in the direction normal to the layer-
ing. The above solids will be referred to as the slowly graded laminates (SGL).
A fragment of a certain SGL from the macroscopic and microstructural view-
points is shown in Fig. 1. The concept of SGL can be treated as a generalization of
the concept of a functionally graded laminate, where we deal with a slow macro-
scopic passage between two distinct materials. It can be seen that in contrast to
the functionally graded materials with irregular (stochastic) microstructure, the
laminates under consideration have a deterministic structure.

Recent literature on the elastic response of the linear-elastic functionally
graded solids is rather extensive. The simplest mathematical model is that of
the locally homogenized medium with material properties described by effective
moduli, slowly varying in space, [4, 5]. On the other hand, it is known that
homogenized models are unable to describe many microstructural phenomena
even for periodically laminated solids, Łaciński, [3]. That is why some higher-
order models were proposed by coupling the local (microstructural) and global
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Fig. 1. A fragment of a certain SGL from the macroscopic and microstructural viewpoints.

(macrostructural) responses of functionally graded solids. We can mention here
the models proposed by Aboudi et al., [1]. However, the models proposed in [1]
are rather complicated involving a large number of unknowns.

The aim of this contribution is twofold. First, we formulate a simple math-
ematical model involving two vector fields representing respectively macro- and
micro-response of linear-elastic SGL. Second, for laminated media with a weak
transversal inhomogeneity (which will be defined in this paper) we decompose
the derived model equations into two asymptotic approximations. These ap-
proximations describe the dynamic response of a laminate independently on the
macro- and micro-levels. The above decomposition will be estimated of a specific
vibration problem of the periodically laminated solid.

Denotations

Small bold-face letters stand for vectors and points in the 3-space, capital
bold-face letters represent the second-order tensors and block letters are used
for the third- and fourth-order tensors. The scalar and double-scalar products of
these objects are denoted by a dot or a double dot between letters, respectively.
We introduce in the physical space the orthogonal Cartesian coordinate system
Ox1x2x3 with the x3-axis perpendicular to the laminae interfaces. The partial
derivatives with respect to xi, i = 1, 2, 3, are denoted by ∂i and the time derivate
by the overdot. We also use differential operators ∇ = (∂1, ∂2, ∂3), ∇ = (∂1, ∂2, 0)
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and introduce the unit vector e = (0, 0, 1) together with notations z = x3, x =
(x1, x2). For an arbitrary integrable function f defined in [−L,L] we define its
mean value by

〈f〉 (z) =
1

l

l/2∫

−l/2

f (z + y) dy, z ∈
[
−L+

l

2
, L− l

2

]
,

where l ≪ L and f can also depend on x = (x1, x2) and time t.

2. Preliminaries

Let Ω = Π × (−L,L), Π ⊂ R2 stand for the region occupied in the physical
space by the laminated solid in its natural configuration. We assume that this
solid consists of a large number 2m of thin layers Λn with a constant thickness
l; here and subsequently n = −m, ...,−1, 1, ...,m. Every layer Λn comprises two
homogeneous laminae Λ′

n, Λ′′
n of thicknesses l′n, l′′n respectively. Laminae Λ′

n are
made of a linear-elastic material with ρ′, C

′ as constant mass density and tensor
of the elastic moduli, respectively. Similarly, by ρ′′, C

′′ we denote the pertinent
material characteristics for laminae Λ′′

n. It is assumed that all adjacent lami-
nae are perfectly bonded and material planes parallel to the interfaces between
laminae are elastic-symmetry planes.

Let ε > 0 be a small parameter, ε ≪ 1. The leading role in the definition of
SGL play the smooth functions ν ′ (·), ν ′′ (·) defined on [−L,L], such that:

(i) ν ′ (z) + ν ′′ (z) = 1, z ∈ [−L,L],
(ii) |ν ′ (z) − l′n/l| ≤ ε for every z ∈ Λ′

n, n = −m, ...,−1, 1, ...,m,

(iii) l

∣∣∣∣
dν ′ (z1)

dz
− dν ′ (z2)

dz

∣∣∣∣ ≤ ε for every z1, z2 ∈ [−L,L] such that |z1 − z2| ≤ l.

Obviously, restrictions of the form (ii), (iii) are also imposed on function
ν ′′ (·). Under conditions (i)–(iii) a laminated medium will be referred to as the
slowly graded laminate (SGL). Functions ν ′, ν ′′ determine (with a tolerance ε)
the distribution of mean volume fractions across thickness 2L of the SGL. Setting
ν =

√
ν ′ν ′′ we introduce also function ν (·) defined on [−L,L], which represents

the phase distribution in SGL.

3. Modelling concepts and assumptions

The general line of the proposed modelling technique is an extension of that
based on the tolerance averaging, cf. Woźniak and Wierzbicki, [7], and the
list of references therein. In contrast to the known homogenisation method, [2],
the tolerance averaging results in a certain coupling macro- and micro-response
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of a composite solid. The basic concepts of the tolerance averaging technique are
those of a slowly varying function and a fluctuation shape function, [7]. Let F (·)
be an arbitrary function defined on Ω× [0,∞) such that F (x, ·, t) ∈ C1 ([−L,L])
for every x ∈ Π, t ≥ 0. Function F (x, ·, t) will be called slowly varying (related
to the length l within tolerance ε, 0 < ε ≪ 1) if for every |∆z| ≤ l it satisfies
the conditions

|F (x, z + ∆z, t) − F (x, z, t)| ≤ εF0,

|∂3F (x, z + ∆z, t) − ∂3F (x, z, t)| ≤ εF1,

where F0, F1 are certain known a priori unit measures for F and ∂3F , respec-
tively. Under the above conditions we shall write F (x, ·, t) ∈ SV 1

ε (l). It can be
seen that ν ′, ν ′′ ∈ SV 1

ε (l). To every phase distribution function ν (·) we assign a
continuous function g (·) of argument z, z ∈ [−L,L] such that

g (nl) = l
√

3ν (nl) , g
(
nl + l′n

)
= −l

√
3ν (nl) ,

g ((n+ 1) l) = −l
√

3ν ((n+ 1) l) , n = ±1,±2, ...,±m
and linear in every interval

[
ln, ln+ l′n

]
and

[
ln+ l′n, (n+ 1) l

]
, n = ±1,±2, ...,±m.

The function g (·) is referred to as the fluctuation shape function for the SGL
under consideration and it represents a generalization of the saw-like function,
well-known in the tolerance averaging technique of periodic laminates, [7]. It can
be seen that function g takes into account the microstructure length dimension.

Let us observe that for every slowly varying function F ∈ C1 ([−L,L]), every
fluctuation function g and every integrable function f defined in [−L,L], we
obtain

(i) 〈fF 〉 (z) = 〈f〉 (z)F (z) +O (ε) ,

(ii) 〈f∂ (gF )〉 (z) = 〈f∂g〉 (z)F (z) +O (ε) , z ∈ [−L,L] .

The continuum model of SGL will be based on two assumptions. The first
of them states that terms O (ε) in the above formulas can be neglected. This
assumption will be referred to as the tolerance averaging approximation, TAA.

Let us denote by w = w (x, z, t), x ∈ Π, z ∈ [−L,L], the displacement field
at time t. The second modelling assumption states that the distribution of dis-
placement across the thickness of every lamina can be approximated by linear
functions. Using the concepts of the slowly varying and fluctuation shape func-
tions and applying TAA, the aforementioned assumption can be written in the
form

(3.1)
w (x, z, t) = u (x, z, t) + g (z)v (x, z, t) ,

u (x,·, t) ∈ SV 1
ε (l) , v (x,·, t) ∈ SV 1

ε (l) , x ∈ Π, z ∈ [−L,L]
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and will be referred to as the kinematical assumption (KA). Functions u and
v are the basic kinematical unknowns. Using TAA we obtain from (3.1) that
u = 〈w〉. Hence u is the averaged displacement and gv represents displacement
fluctuations of the SGL solid. This is why v will be referred to as the fluctuation
amplitude. Let us observe that in the case of limit passage with the cell dimension
tending to zero, the function v plays a similar role as the gradient of displacement
u in the asymptotic homogenization approach. Hence the components of field v

are dimensionless.
It can be seen that the proposed line of modelling in fact causes an increase

of the number of unknown functions, but the resulting equations do not involve
highly oscillating and discontinuous coefficients in model equations. Moreover,
this procedure – in contrast to the homogenization approach – enables us to
describe the fluctuations of displacement field in the boundary zone.

4. Model equations

Now, we are going to present the averaged governing equations for u and v.
These equations will be derived from the principle of stationary action with the
averaged Lagrangian given by

〈L〉 =
1

2
〈ρẇ · ẇ〉 − 1

2
〈E : C : E〉 ,

where E =
1

2

(
∇w+ (∇w)T

)
and w is taken in the form (3.1). By applying (KA)

and (TAA), and denoting

〈ρ〉 = ν ′ (z) ρ′ + ν ′′ (z) ρ′′, 〈C〉 = ν ′ (z) C
′ + ν ′′ (z) C

′′,

[C] ≡ 2
√

3ν (z)
(
C
′′ − C

′
)
· e, [C]T ≡ 2

√
3ν (z) e·

(
C
′′ − C

′
)
,

{C} ≡ 12e·
(
C
′ν ′′ (z) + C

′′ν ′ (z)
)
· e, z ∈ [−L,L] ,

the Euler–Lagrange equations will take the form

(4.1)
〈ρ〉 ü−∇ · (〈C〉 : ∇u + [C] · v) = 0,

l2ν2 〈ρ〉 v̈−l2ν2∇ ·
(
〈C〉 : ∇v

)
+ {C}v+ [C]T : ∇u = 0.

Equations (4.1) have to be considered together with the proper boundary and
initial conditions imposed on fields u and v. The boundary conditions for u

have to be prescribed on ∂Π × (−L,L) and Π × {−L,L} while the boundary
conditions for v – only on ∂Π × (−L,L). The form of boundary and initial
conditions for Eqs. (4.1) is restricted by formulae (3.1) for total displacement w.
In order to simplify the considerations, we have neglected the body forces. For an
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arbitrary linear elastic SGL the above model equations, by means of conditions
ν ′, ν ′′ ∈ SV 1

ε (l), have slowly varying smooth coefficients. If volume fractions ν ′,
ν ′′ are strongly monotone functions, then Eqs. (3.1), (4.1) describe the model of a
functionally graded laminate. If ν ′, ν ′′ are constant then Eqs. (4.1) have constant
coefficients and represent a model of the periodically laminated medium, [7]. In
this contribution formulae (3.1), (4.1) are the starting point for the subsequent
analysis.

5. Macro-micro coupling of the model equations

Now we shall transform Eqs. (4.1) to the form which couples the macro- and
micro-response of the linear-elastic SGL. To this end we shall derive an alterna-
tive form of the model equations (4.1). In this form, instead of the fluctuation
amplitude v, we shall deal with a new kinematical unknown r defined by

(5.1) r = {C}−1 · [C]T : ∇u + v,

where {C}−1 represents a transformation inverse to the non-singular linear trans-
formation {C}. Neglecting in Eqs. (4.1) the terms depending on the microstruc-
ture length l, we obtain r = 0. This is why r is referred to as the intrinsic
fluctuation amplitude, i.e., the amplitude independent of the averaged displace-
ment field u. At the same time, from (3.1) and (5.1) we obtain

(5.2) w (x, z, t) = u (x, z, t) − g (z) {C}−1 · [C]T : ∇u (x, z, t) + g (z) r (x, z, t)

where gr represents the intrinsic fluctuation of displacements. The part of re-
sponse of the linear elastic SGL described by the averaged displacement u will
be referred to as the macro-response, while that described by the intrinsic fluc-
tuation amplitude r will be called the micro-response.

In order to formulate the governing equations for functions u and r, we shall
use the notion of the homogenized tensor of elastic moduli, defined by

C
h ≡ 〈C〉 − [C] · {C}−1 · [C]T .

We also introduce the following differential operators:

Au ≡ 〈ρ〉 ü −∇·
(
C

h : ∇u
)
,

Dr ≡ l2ν2
[
〈ρ〉 r̈−∇∇ ·

(
〈C〉 : ∇r

)]
+ {C} · r,

Fu ≡ l2ν2
[
〈ρ〉 {C}−1 · [C]T : ∇ü−∇∇ ·

(
〈C〉 : ∇ ·

(
{C}−1 · [C]T : ∇u

))]
.

Combining Eqs. (4.1) with formula (5.1) we obtain finally the system of equations

(5.3)
Au = [C]T : ∇r,

Dr = Fu,
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representing coupling between the macro- and micro-response of SGL. It has to
be emphasized that Eqs. (5.3) have a physical sense only if u and r are slowly
varying functions of argument z. From Eqs. (5.3) it follows that boundary con-
ditions for u have to be prescribed both on ∂Π × (−L,L) and Π × {−L,L} ,
while the boundary conditions for r – only on ∂Π×(−L,L). The form of bound-
ary and initial conditions for Eqs. (5.3) is restricted by formulae (5.2) for total
displacement w.

6. Asymptotic approximations

Now we are to show that under certain conditions, the coupled macro-micro
Equations (5.3) can be decomposed into approximate model equations describing
independently the macro- and micro-response of the laminated solid.

Let us denote by ‖·‖n an arbitrary but fixed norm in the linear space of all
n-th order tensors related to space E3. We define

η = sup
z∈[−L,L]

( ‖[C]‖3

‖〈C〉‖4

)

as a transversal inhomogeneity parameter of the laminated solid under consider-
ation. This solid is said to have a weak transversal inhomogeneity provided that
η satisfies the condition 0 < η ≪ 1. This kind of inhomogeneity takes place for
laminae reinforced by long high-strength fibres. In this case, the components of
the elastic moduli tensor C which are related to the Ox1x2-plane are strongly
different in adjacent laminae; the remaining components attain only small jumps
across the lamina interfaces. The above condition holds true for many laminated
materials used in civil and mechanical engineering.

The subsequent analysis will be restricted to laminated solids with a weak
transversal inhomogeneity, where η is treated as a certain small parameter. No-
tice that the values [C]T : ∇r and Fu are of orders O (rη), O (uη), respectively.
Moreover, Au and Dr are of the same order as u and r, respectively. Let us
assume that the solutions to Eqs. (5.3) can be represented in the form

(6.1)
u = u0 + u∆,

r = r0 + r∆,

where u0 ∈ O
(
η0
)
, r0 ∈ O

(
η0
)
, u∆ ∈ O (η), r∆ ∈ O (η). Bearing in mind (6.1)

and applying the limit passage η → 0 to Eqs. (5.3), we obtain the following
system of equations for u0, r0:

(6.2)
Au0 = 0,

Dr0 = 0.
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We shall assume that u0, r0 satisfy the boundary/initial conditions which co-
incide with those imposed on u and r, respectively. From (5.3), (6.1), (6.2) we
conclude that u∆, r∆ have to satisfy the equations

(6.3)
Au∆ = [C]T : ∇ (r0+r∆) ,

Dr∆ = F (u0 + u∆) ,

as well as the corresponding homogeneous boundary/initial conditions. It has
to be emphasized that Eq. (6.2)1 represents the model obtained by the homog-
enization technique, which for periodic structures reduces to the form detailed
in [2]. Equation (6.2)2 describes the phenomena related to the fluctuations of
boundary and initial displacements, which for periodic laminates were examined
in [6]. Equations (6.2) will be referred to as the first order approximation model
for slowly graded laminates with a weak transversal inhomogeneity. In the frame-
work of this model the basic kinematic unknowns u, r are approximated by u0,
r0, respectively. In this case formula (6.1) yields

u = u0 +O (η) , r = r0 +O (η)

i.e. we deal with an asymptotic approximation of order O (η).
Now we assume that u∆, r∆ can be written in the form

u∆= u1 + o (η) , r∆= r1 + o (η)

where u1, r1 are assumed to be linear functions of η. Applying the limit passage
η → 0 to Eqs. (6.3) we obtain the following system of equations for u1, r1:

(6.4)
Au1 = [C]T : ∇r0,

Dr1 = Fu0.

The above equations are assumed to hold together with homogeneous boundary
and initial conditions. These conditions are assumed to have the same form as
the pertinent homogeneous conditions for u∆, r∆, respectively. Equations (6.1)
together with (6.3) will be referred to as the second order approximation model.
In this case we deal with an asymptotic approximation of order o (η) given by

u = u0 + u1 + o (η) , r = r0 + r1 + o (η) .

It can be seen that the right-hand sides of Eqs. (6.4) are known provided that
the boundary/initial value problem for Eqs. (6.2) has been previously solved.

Summarizing the obtained results we state that model equations (5.3) for u

and r can be decomposed to the simplified asymptotic form given by equations
(6.2) and (6.4). It can be seen that the presented modelling line leads to the for-
mulation of higher-order approximation models. These problems will be studied
in a separate paper.



Continuum modelling of laminates ... 453

7. Illustrative example

The aim of this section is twofold. Firstly, we are to illustrate on a certain
benchmark problem the general results obtained in Secs. 3–5. Secondly, for the
above mentioned problem we are to compare the results obtained in the frame-
work of model Eqs. (5.3) with those obtained by the first and the second order
approximation models.

The object of our analysis is the plane strain problem of the infinite peri-
odically laminated medium bonded by planes x2 = 0, x2 = H normal to the
interfaces between the laminae. A scheme of a fragment of the medium and a
diagram of the shape function g are given in Fig. 2. The considerations will be
restricted to the class of deformations of the form

w (x2, x3, t) = u (x2, t) + g (x3)v (x2, t)

where u1 = v1 = 0.
For periodic laminates, Eqs. (4.1) yield

〈ρ〉 ü3 − 〈C2323〉 ∂2
2u3 − [C2323] ∂2v2 = 0,

l2 〈ρ〉 v̈2 − l2 〈C2222〉 ∂2
2v2 + {C2323} v2 + [C2323] ∂2u3 = 0,

〈ρ〉 ü2 − 〈C2222〉 ∂2
2u2 − [C2233] ∂2v3 = 0,

l2 〈ρ〉 v̈3 − l2 〈C2323〉 ∂2
2v3 + {C3333} v3 + [C2233] ∂2u2 = 0.

Fig. 2. A fragment of a periodic laminate and a shape function g.

It can be seen that for the above system of equations we can formulate
two independent problems: the shear strain problem with unknowns u3, v2 and
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the longitudinal strain problem with u2, v3. The subsequent analysis will be
restricted to the shear strain problem. Denote u = u3, v = v2, G = C2323,
E = C2222 and (·)′ = ∂ (·) /∂x. Using these denotations, Eqs. (5.3) yield

(7.1)

〈ρ〉 ü−Ghu′′ = [G] r′,

l2
(
〈ρ〉 r̈ − 〈E〉 r′′

)
+ {G} r = l2

[G]

{G}
(
〈ρ〉 ü′ − 〈E〉u′′′

)
.

Let T be a certain time constant. Denoting ξ =
x

H
, τ =

t

T
and setting ul instead

of u we arrive at the dimensionless form of Eqs. (7.1)

(7.2)

ü− GhT 2

〈ρ〉H2
u′′ =

[G]T 2

Hl 〈ρ〉r
′,

l2
(〈ρ〉
T 2

r̈ − 〈E〉
H2

r′′
)

+ {G} r = l3
[G]

{G}

( 〈ρ〉
HT 2

ü′ − 〈E〉
H3

u′′′
)
.

We shall investigate the problem of forced vibrations setting

u (ξ, τ) = u (ξ) cosωτ, r (ξ, τ) = r (ξ) cosωτ

with ω as a dimensionless vibration frequency. Hence from (7.2) we obtain

(7.3)
u′′ + α2Ω2u = −ηβr′,

r′′ − κ2
(
1 −Ω2

)
r = ηγΩ2u′ + ηδu′′′,

where we have denoted

α2 =
{G}H2

Ghl2
, η =

[G]

〈G〉 , β =
〈G〉H
Ghl

,

κ2 =
{G}H2

〈E〉 l2 , Ω =
l

H
ω, γ =

〈G〉H
〈E〉 l , δ =

〈G〉 l
{G}H

and assumed that
H2

T 2
=

{G}
〈ρ〉 .

Equations (7.3) have to be considered together with the boundary conditions in
the form u (0) = u, u (1) = 0, r (0) = r, r (1) = 0. At the same time, from (6.2)
we obtain

(7.4)
u′′0 + α2Ω2u0 = 0,

r′′0 − κ2
(
1 −Ω2

)
r0 = 0,



Continuum modelling of laminates ... 455

with the boundary conditions

u0 (0) = u, u0 (1) = 0,

r0 (0) = r, r0 (1) = 0,

and correspondingly, from (6.4)

(7.5)
u′′1 + α2Ω2u1 = −ηβr′0,

r′′1 − κ2
(
1 −Ω2

)
r1 = ηγΩ2u′0 + ηδu′′′0 ,

with the homogeneous boundary conditions

u1 (0) = 0, u1 (1) = 0,

r1 (0) = 0, r1 (1) = 0.

Solutions to the boundary value problems (7.4) and (7.5) lead to the first and
second order approximations of u, r given by ũ1 = u0, r̃1 = r0 and ũ2 = u0 +u1,
r̃2 = r0 + r1, respectively. These results are numerically illustrated by diagrams.
To this end we assume that

E = 3G, l′ = l′′, G′ = 34/35G′′, H/l = 20, u = 1, r = 5.

Dimensionless vibration frequency Ω is taken as a parameter and argument
ξ ∈ [0.1001; 0.1002]. Figures 3–8 represent exact solutions to the problem under
considerations, together with the first and the second approximations. The plots
in Figs. 3–8 are made for Ω = 0, Ω = 0.1, Ω = 1.1. From the obtained dia-
grams it follows that for the stationary case and lower vibration frequencies, the
averaged displacement u obtained in the framework of the second order model
nearly coincides with that obtained from the coupled micro-macro model, whilst
the first order model is unable to describe properly the problem under consid-
eration. In the case of the intrinsic fluctuation amplitude r and lower vibration

Fig. 3. The averaged displacement u; Ω = 0.
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frequencies, both the approximate models give satisfactory results. However, for
higher vibration frequencies the asymptotic models may be not sufficient. It has
to be underlined that the general considerations of this paper were carried out
for the slowly graded laminates. The presented example has only an illustrative
character and in order to simplify the calculations, we restricted ourselves to the
periodic structure.

Fig. 4. The intrinsinc fluctuation amplitude r; Ω = 0.

Fig. 5. The averaged displacement u; Ω = 0.1.

Fig. 6. The intrinsinc fluctuation amplitude r; Ω = 0.1
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Fig. 7. The averaged displacement u; Ω = 1.1.

Fig. 8. The intrinsinc fluctuation amplitude r; Ω = 1.1.

8. Conclusions

The following new results and information about SGL can be listed as follows:
1. The coupling of macrostructural and microstructural response for the two-

phase linear elastic SGL was described in the framework of the proposed model
equations. The form of these equations depends on the microstructure length
parameter l. After neglecting the terms containing this parameter, the obtained
model equations reduce to the equations of the locally homogenized laminated
medium.

2. The obtained model equations have a rather simple form and involve only
two independent kinematic vector fields: the macroscopic (averaged) displace-
ment field and the intrinsic displacement fluctuation field. It is shown that in
the framework of the homogenized model, the intrinsic fluctuation cannot be
investigated.

3. The concept of laminates with a weak transversal inhomogeneity was in-
troduced. This concept is based on the proposed definition of the transversal
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inhomogeneity parameter η. This kind of inhomogeneity takes place in the case
of laminae reinforced by long high-strength fibres.

4. It was shown that for laminates with a weak transversal inhomogeneity,
the model equations (5.3) for u and r can be decomposed into successively in-
dependent Eqs. (6.2) and (6.4) for new unknowns u0, r0, u1, r1. Equations (6.2)
for u0, r0 represent the first order approximation model. Equations (6.2) for u0,
r0 together with Eqs. (6.4) for u1, r1 constitute the second order approximation
model.

5. The general results have been illustrated by a simple benchmark prob-
lem of forced vibrations in a periodically laminated solid. Solutions obtained
in the framework of the first and the second-order approximation models were
numerically compared with the exact solution. It has been shown that for the
averaged displacement and lower vibration frequencies the second order approx-
imation model yields reliable results whilst the first-order approximation model
is unable to describe properly the problem under consideration. On the other
hand, for higher vibration frequencies both the first and the second order ap-
proximations may be not sufficient. In this case we have to apply the coupled
macro-micro equations.

Possible applications of the proposed modeling approach to some engineering
problems of functionally graded laminates will be presented in a separate paper.
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