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of porous materials
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The generalized macroscopic description is formulated in the paper for tetrago-
nal pore space structure of porous materials. The anisotropic pore space is modelled
as Minkowski space, the metric tensor of which plays the fundamental role in descrip-
tion of transport phenomena in such a medium. To describe the metric properties of
the tetragonal space, the fourth order tensor with internal symmetries of the compli-
ance tensor used in the linear theory of elasticity of anisotropic materials has been
applied. Its reduction by the automorphisms group describing point symmetries of
the square net gave the general metrics of tetragonal pore space containing only
two scalar parameters, that represent tortuosities of the pore space in the main and
diagonal directions.

1. Introduction

In the paper the macroscopic description of anisotropic properties of the pore
space is presented for the new generation of porous materials with the tetrag-
onal symmetry of pore structure. The anisotropic properties of such a medium
are predicted by the theory presented in papers [1–3]. They concern the macro-
scopic modelling of a fluid motion in an undeformable porous material with
anisotropic pore space structure, considered as a motion of material continuum
in the Minkowski metric space. This approach results in a description in which
anisotropic properties of the pore space are represented by the properties of its
metric tensor. This tensor defines the value of the pore tortuosity parameter
for each direction of the pore space, that play the fundamental role in dynamic
behaviour of fluid in permeable porous material, (e.g. it strongly influences the
velocity of wave propagation), characterizes anisotropic properties of viscous in-
teraction between fluid and skeleton, [3], and also the resistance of electric current
passage in an electrolyte filling the pore space of the non-conductive skeleton. In
such a description, even slow processes of a fluid flow or a small amplitude wave
propagation are described by equations nonlinearly dependent on the direction
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of that process. It is a direct consequence of independent modelling of the pore
space structure, where the transport process takes place, and the mechanical
behaviour of a fluid in that space. As a result, the linearization of the physical
aspect of the problem does not influence the geometrical non-linearity caused by
the metric tensor of the anisotropic pore space modelled as a Minkowski space,
[1, 6, 7].

Such description is not consistent with the predictions presented e.g. in pa-
pers [4, 5], in which problems of mass, linear momentum and energy transport
are considered in porous media that have the tetragonal symmetry of micro-
scopic structure formed by a bundle of parallel cylindrical fibers arranged in the
square net. It is proved that such a medium is isotropic for processes in the plane
perpendicular to the fibers axes. It results from the assumption of linear depen-
dence between the gradient of potential, which causes the transport process, and
the vector of the flux density of the transported quantity. The coefficient that
relates these two vectors in the general linear case is a symmetric, second order
tensor. It imposes a strong restrictions on the character of anisotropy that can be
described by such a law. Due to the tensor symmetry, in the most general case, it
is orthotropy. Such description applied to the set of fibers arranged in the square
net necessitates consideration of that medium as macroscopically isotropic in
the plane perpendicular to fiber axes, and the whole medium as transversally
isotropic.

This reasoning can be applied to every porous medium with the tetragonal
symmetry of microscopic pore structure, independently of its complexity. It con-
cerns also the media with a stochastic structure of microscopic pore space that
have tetragonal symmetry of the pore structure on the macroscopic level.

The solution of the apparent contradiction between these two descriptions is
the extension of the class of porous materials, the pore space of which is modelled
as the Minkowski metric space. An example of such a medium is shown in Fig.1.
In that case, the material consists of a bundle of parallel fibers with rhomboidal
cross-section which are able to rotate free around the axis formed by one of
their edges. These axes are ordered in the square net. We assume that during
the process (e.g. a fluid flow) the fibers take position of balance minimizing the
resistance to flow. For a transport process in the main directions of the square net
(Fig. 1a, b) the configurations of fibers placement are the same. Therefore, the
properties of such medium in both directions are identical. In turn, for a transport
process in the diagonal direction of the square net (Fig. 1c), the configuration
of fibers placement is essentially different from those for a transport process in
the main direction. Taking into consideration the limit case of the square cross-
section of the fibers, it is evident that such a medium must have anisotropic
properties.
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Fig. 1. Tetragonal architecture of porous medium with rotary rhomboidal fibers.
Configurations of fibers for transport process in the main (a, b) and diagonal (c)

directions of the pore space.

The purpose of this paper is to formulate the general form of a macroscopic
metrics for the two-dimensional, tetragonal pore space of a porous material mod-
elled as the anisotropic Minkowski space, the exemplary pore space of which is
shown in Fig. 1.

To describe the metric properties of the tetragonal space, the fourth order
tensor with internal symmetries of the compliance tensor used in the linear theory
of elasticity of anisotropic materials has been applied. After spectral decomposi-
tion of this tensor and application of the automorphisms group describing point
symmetries of the square net, the general metrics of tetragonal pore space was
obtained. It contains only two scalar parameters that represent tortuosities of
the pore space in the main and diagonal directions. The limit values of their
ratio have been determined. They confine the domain for which the indicatrix
of pore space is convex.

2. Minkowski metrics of the anisotropic pore space

To describe the macroscopic structure of the anisotropic pore space of perme-
able material, we assume that this space can be modelled as a Minkowski metric
space (see Appendix). In such an approach the pore space forms the real space
in which (e.g.) a fluid motion takes place and therefore, from the macroscopic
point of view, it can be considered as a motion of material continuum in the
anisotropic metric space.

In this section we formulate the general form of macroscopic metrics LA(r)
for two-dimensional pore space V (r ∈ V ; dim (V) = 2). In these considera-
tions we apply the fourth order tensor C ∈ ⊗V⋆4 with internal symmetries of
the compliance tensor used in the linear theory of elasticity of anisotropic solid
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materials. The metrics takes the form, [1, 2],
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r
)
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r
)
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that have to be satisfied for any vectors u,v,x,y ∈ V . The applied notations
and basic definitions are contained in the Appendix.

Tensor C we will call the structure tensor of the anisotropic pore space.
Components of this tensor, besides the conditions of symmetry (2.2), will also
be restricted by assuming the function (2.1) to be positively definite and convex.
The last condition is equivalent to requirement of convexity of the indicatrix
generated by the metrics (2.1). Norm (2.1) uniquely defines the form of metric
tensor MA(r). We have, [1],

(2.3) MA(r) =
1

2

∂2L2
A(r)

∂r ∂r

=
1

L6
A(r)

r ·
{
L4

A(r) (2C + CT ) − 2C :
(r r
r r
)

: C
}
· r .

An interesting form of (2.1) we obtain for the spectral decomposition of
tensor C. For this purpose, in the space of symmetric second order tensors
S⋆ = sym{⊗V⋆2} we define the scalar product U⋄V of any tensors U, V ∈ S⋆.
We take

(2.4) U ⋄ V = U :
(
M−1

M−1

)
: V,

where M−1 is the metric tensor of dual vector space V⋆. Space S⋆ is three-
dimensional. Therefore, any three linearly independent tensors of this space form
its base. Since the scalar product has been defined in the space S⋆, among all
possible bases we can distinguish orthogonal bases, e.g. {Km} (m = 1, 2, 3) that
satisfy the conditions

(2.5) Km ⋄ Kn = δmn (m,n = 1, 2, 3).

Then, any tensor T ∈ S⋆ has the representation

(2.6) T = TmKm ,

where Tm = T ⋄ Km are components of tensor T in the base {Km}.
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Using the space S⋆ of second order symmetric tensors, we can define the nine-
dimensional space S⋆ ⊗S⋆ of fourth order tensors. Then, the structure tensor C

will be an element of this space (C ∈ S⋆ ⊗ S⋆) and can be represented in the
form, [8, 9],

(2.7) C = α1K1 ⊗ K1 + α2K2 ⊗ K2 + α3K3 ⊗ K3 ,

if the base tensors Kn ∈ S⋆ (n = 1, 2, 3) are the eigentensors of C. In that case,
coefficients in formula (2.7) are eigenvalues of tensor C and they satisfy the
conditions

(2.8) C :
(
M−1

M−1

)
: Kn = αnKn .

Taking into consideration (2.7), definition of the metrics (2.1) reduces to the
form

(2.9) L4
A(r) = α1

(
K1 :

(r
r
))2

+ α2

(
K2 :

(r
r
))2

+ α3

(
K3 :

(r
r
))2

.

From the formula (2.9) it results that the norm L4
A(r) will be positively definite

for all positive eigenvalues αn.
Expression (2.9) define the general form of the norm LA(r) and due to (2.3),

also of the metric tensor MA(r) for the two-dimensional pore space in materials,
the macroscopic pore structure of which can be described by the fourth order
tensor.

From representation (2.7) of the structure tensor C it results that this tensor
will define a metrics of the pore space with the given symmetry, if the distin-
guished base tensors Kn are invariant with respect to the group of rotation
tensors characterizing symmetries of the pore space.

3. Symmetries of tetragonal pore space structure

To obtain the explicit form of the metrics (2.9) suitable for the anisotropic
pore space with the tetragonal symmetries, we determine the group of ortho-
gonal tensors that characterize the point symmetries of the square net. In conside-
rations we apply the general representation of the orthogonal tensor
Q ∈ V ⊗ V⋆ ((M · Q)T = M · Q−1) of the two-dimensional vector space V
by the tensor

(3.1) W = E2 · M ∈ V ⊗ V⋆

where E2 ∈ V2 is the normed skew-symmetric tensor (ET
2 = −E2) representing

the surface element of unit area measured with respect to the Euclidean metrics,
[1]. This representation has the form

(3.2) Q = I cos(α) + W sin(α) ,
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where I ∈ V ⊗ V⋆ is the identity tensor of the vector space V, and α is the
rotation angle of tensor Q .

Denoting by e1 and e2 any two versors that form the orthonormal basis in
the space V (ei · M · ej = δij) , tensor W can be represented as

(3.3) W = e2 ⊗ e1 − e1 ⊗ e2,

where ei = M · ej are versors dual to ei .
Now, we assume that versors e1 and e2 correspond to principal axes of sym-

metry of the square net (Fig.1). Since the basic symmetry of the square net
results from its invariance under rotation by an angle of π/2 , from (3.2) we
have

(3.4) Q = W .

Taking into account that

W2 = −I , W3 = −W, W4 = I ,

the automorphisms

(3.5) W , I , −I ,

will belong to the group of symmetries of the square net. Tensor I is the identity
automorphism, whereas −I is the central symmetry of the square net.

The full group of symmetries of the square net we obtain determining ad-
ditionally the automorphisms that represent its axial symmetries. To this end,
we use the general form of tensor Vm representing axial symmetry in the two-
dimensional space V with respect to an axis determined by versor m . It can be
written as

Vm = m ⊗ m · M − n ⊗ n · M ∈ V ⊗ V⋆,

where n = W ·m is the versor orthogonal to m . Then, tensor of symmetry with
respect to the axis e1 has the form

V1 = e1 ⊗ e1 − e2 ⊗ e2 ,

and such tensor for axis e2 is given by

(3.6) V2 = e2 ⊗ e2 − e1 ⊗ e1 = −V1 .

Taking into account that versors:

(3.7) k1 =
(e1 + e2)√

2
, k2 =

(e2 − e1)√
2

,
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determine the diagonal axes of symmetry of the square net, the corresponding
tensor V of symmetry takes the form

(3.8) V = e1 ⊗ e2 + e2 ⊗ e1 .

Tensors V, V1 and (3.5) characterize the symmetry of the square net. However,
the full group of symmetry is composed only of the following linearly independent
elements:

(3.9) I , V , V1 , W ,

and tensors V and V1 form the set of the group generators.

4. Macroscopic metrics of tetragonal pore space

We use tensors (3.9) that characterize symmetry of the square net to reduce
the general form of metrics (2.9) to the form describing macroscopic structure of
pore space with tetragonal symmetry. For this purpose we transform the tensors:
I, V and V1 to the symmetrical form and create an orthonormal base in the
space S⋆ of symmetric tensors. Multiplying I , V and V1 by the metric tensor
M we obtain the tensors:

(4.1) M = M · I , V = M · V , V1 = M · V1 ,

that are elements of space S⋆. Since this space is three-dimensional, and tensors
M , V, V1 are linearly independent, they form a base in the space S⋆. It is easy
to verify that these tensors are orthogonal with respect to the scalar product
defined by the formula (2.4),

M ⋄ V1 = M ⋄ V = V1 ⋄ V = 0 .

However, tensors M, V and V1 are not normed. Taking into account that

M ⋄ M = V1 ⋄ V1 = V ⋄ V = 2 ,

the orthonormal tensors Ki, used in Sec. 2, can be represented by

K1 =
1√
2

M =
1√
2

((
e1

e1

)
+
(

e2

e2

))
,

(4.2) K2 =
1√
2

V1 =
1√
2

((
e1

e1

)
−
(

e2

e2

))
,

K3 =
1√
2

V =
1√
2

((
e1

e2

)
+
(

e2

e1

))
.
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These tensors make it possible to reduce the formula (2.9), defining metrics of
the pore space, to the form suitable for macroscopic structure with the tetragonal
symmetry. We have

(4.3) L4
A(r) = p(r ◦ r)2 + q

(
(r ◦ e1)

4 + (r ◦ e2)
4
)
,

where u ◦ v ≡ u · M · v is the scalar product of vectors in the space V, and

(4.4) p = α3 +
(α1 − α2)

2
, q = α2 − α3 .

Invariance of the metrics (4.3) at the transposition of versors e1 and e2 is showing
symmetry of the assumed structure of pore space.

Scalar parameters p and q that appear in (4.3) can be represented by quanti-
ties of strictly geometrical meaning, if we take into consideration direct relation
of the pore space metrics LA(r) with the tortuosity of pores δ(n) of the porous
medium. This relation, for any direction determined by the Euclidean versor n,
is given by the formula, [1, 2],

(4.5) δ2(n) = n · MA(n) · n = L2
A(n) .

Therefore, metrics (4.3) can be transformed to the form

(4.6) L4
A(r) = δ4o

(
(r ◦ e1)

2 − (r ◦ e2)
2
)2

+ 4 δ4p(r ◦ e1)
2 (r ◦ e2)

2

or

(4.7) L4
A(r) = δ4o

[
(r ◦ r)2 + 4(α− 1)(r ◦ e1)

2 (r ◦ e2)
2
]

where

(4.8) α = (δp/δo)
4 ,

and δo and δp stand for parameters of tortuosity in the main directions of the
pore space, defined by versors e1 and e2 and in the diagonal directions defined
by (3.7), respectively (Fig. 1). From the norm (4.7) it results that it is positively
definite for any values of parameters δo and δp. Parameter α that appears in
formula (4.7) is a measure of anisotropy of the pore space structure. For isotropic
space α = 1, and the domain of this parameter is additionally restricted by the
condition (A.3) of convexity of function LA(r). From this condition we obtain

1/2 < α < 2 .

It means that the maximum degree of anisotropy of the pore space with tetrag-
onal symmetry cannot exceed the value of 4

√
2 .
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Using norm (4.7), the pore tortuosity δ(n) given by the formula (4.5) can be
represented by expression

(4.9) δ4(n) = δ4o
[
1 + 4(α− 1)(n ◦ e1)

2 (n ◦ e2)
2
]
,

and in the polar coordinates it reduces to the form

(4.10) δ4 = δ4o
[
1 + (α− 1) sin2(2ϕ)

]
.

where ϕ is an angle between versors e1 and n .
Taking into consideration that vector

N(n) =
n

δ(n)
,

has a unit length with respect to the Minkowski metrics, its measure with respect
to the Euclidean metrics, i.e. the reciprocal of the pore tortuosity, will describe
the indicatrix of the Minkowski space.

Fig. 2. Limit graphs of convex indicatrices (a) and their functions of pore tortuosity (b) for
the anisotropic pore space with tetragonal symmetry of structure.

The graphs of indicatrices and their functions of pore tortuosity δ(n) for the
limit values of parameter α are shown in Fig. 2a and Fig. 2b, respectively. From
their form it is seen that convexity of the indicatrix of Minkowski metrics does
not induce the convexity of the pore tortuosity function δ(n).

5. Final remarks

In the paper, the general form of the macroscopic metrics has been formu-
lated for tetragonal pore space of permeable porous materials, described as the
anisotropic Minkowski space. This metrics characterizes directional properties
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of the pore space and define its basic macroscopic parameters of structure: the
pore tortuosity and the surface and volume porosity.

To describe the metric properties of the tetragonal pore space, the fourth
order tensor was applied with symmetries of the compliance tensor used in the
linear theory of elasticity of anisotropic materials. The obtained metrics is fully
characterized by two scalar parameters representing the tortuosities of a tetrag-
onal pore space in the main and diagonal directions. It was proved that macro-
scopic tetragonal symmetry has a porous material formed by a bundle of parallel
(e.g.) rhomboidal fibres which can rotate around one of their edges, taking po-
sition dependent on the direction of process in such medium. These edges are
arranged in the nodes of the square net.

The explicit form of the obtained metrics for a pore space with a given
microscopic structure, e.g. as that shown in the Fig.1, needs determination of
two parameters appearing in this metrics. It might be done experimentally or
by numerical simulations of a current passage in an electrolyte filling a porous
medium with a non-conductive skeleton. The numerical simulation allows one
to determine the values of both parameters for a wide range of volume porosi-
ties. Conductometric measurements belong to the most common methods used
for determination of the pore tortuosity parameter in porous materials. These
problems will be presented in the separate paper.

Appendix. Notations and basic definitions

Vectors and tensors. We denote by V three-dimensional real vector space, and
by V⋆ the dual vector space of V. If u ∈ V and v ∈ V⋆, then the scalar u · v⋆ =
v⋆ · u ∈ R we will call the dual product of vector u and covector v⋆. By a dot
(·) we will denote the bilinear exterior operation defined on elements of spaces
V and V⋆, and will be called dual multiplication.

The multilinear transformations of vector spaces are called tensors. They
are elements of linear spaces, which are tensor products of vector spaces. For
example, tensor A ∈ V ⊗V⋆ is an endomorphism of spaces V and V⋆. For u ∈ V
and v⋆ ∈ V⋆ we have: A · u ∈ V and v⋆ · A ∈ V⋆.

Since in our considerations we will have to do with tensors of order four,
to simplify the operations on such objects we introduce the new, alternative
notation for tensor products. For u,v,x,y ∈ V we take

(u
v
)
≡ u⊗v ∈ V⊗V = ⊗V2 ,

(
u x
v y

)
≡ u⊗v ⊗x⊗y ∈ ⊗V4 .

For example, for A ∈ ⊗V2 and u,v ∈ V we have the identity

A :
(u
v
)
≡ u · A · v.
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The normed vector spaces. Vector space V is the normed space, if there is defined
a real-valued function u = LA(u), which satisfies the following axioms, [6]:

(A.1) LA(u) > 0 for u 6= 0 and LA(0) = 0 ,

(A.2) LA(k u) = k LA(u) for k > 0 ,

(A.3) LA(u + v) < LA(u) + LA(v)

for linearly independent vectors u,v ∈ V.
Function LA(u) with the above properties is called the norm of vector space

V and due to its positive homogeneity (A.2), in general, it does not have to be
symmetric (LA(−u) 6= LA(u)).

In many applications of the normed vector space it is easier to use its metric
tensor instead of metrics LA(u). This tensor is defined by the formula, [8],

(A.4) MA(u) =
1

2

∂2L2
A(u)

∂u ∂u
∈ V⋆⊗V⋆ ,

and due to (A.2), it has the following properties:

(A.5) u ·MA(u) ·u = L2
A(u) , MA(k u) = MA(u) for k > 0 .

From property (A.2)2 it results that, in general, the metric tensor MA(u) de-
pends on direction of vector u and is independent of its length. This property of
tensor MA(u) defines the anisotropic properties of the normed vector space V.

Affine spaces. The pair (P,V) composed of a point P and a vector space V we
will identify with the affine point space. It is possible, because structures of both
objects are isomorphic. Point P is called the reference point, and V is the space
of placement vectors. Affine space (P,V) is normed if the space V of placement
vectors is normed.

Minkowski and Euclidean point spaces. The normed affine point space, the met-
rics of which is defined by expression d(u,v) ≡ LA(v − u) and has general
properties (A.1)–(A.3), is called Minkowski space, [7]. Its metric tensor is given
by expression (A.4). This space is plane and has the anisotropic properties, and
the possible lack of symmetry of distance determines the peculiar features of its
internal, geometrical structure. Minkowski spaces have been used in papers [1–3]
as a model of the anisotropic pore space of rigid porous materials.
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The Euclidean point space is the simplest special case of the Minkowski space.
The affine space is Euclidean when its norm is given by expression

L2(u) = u · M · u = M :
(u
u
)

where tensor M ∈ V⋆ ⊗ V⋆ is independent of u and is called the metric tensor
of the Euclidean space. Tensor M is a non-singular, symmetric and positively
definite. The Euclidean space is plane, homogeneous and isotropic, and is applied
as a model of the physical space in the classical mechanics.
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