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Flow management using natural instabilities∗
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Accidental introduction of a small disturbance into an unstable flow leads to a
large change in the form of the motion, e.g., laminar-turbulent transition. We wish
to explore this phenomenon in the design of flow management strategies. We want
to modulate the flow using a small input of external energy in such a way that the
flow evolves through a natural instability process to a new, more desirable form. This
presentation is focused on the use of distributed surface roughness for such purposes.

1. Introduction

We wish to explore the use of surface roughness for modulation/rearran-
gements of different classes of flows. Our strategy relies on taking advantage
of various instability mechanisms, so that the flow may evolve to a new form
in a natural manner and this process can be started with only a small input of
external energy. Success of this strategy relies on our understanding of the mech-
anisms driving the instability and the possible forms of the resulting motions.
Different strategies may have to be developed depending on whether the drag re-
duction/increase, or increased/reduced mixing, or flow separation manipulation,
or something else represent the main objective. Successful use of surface rough-
ness for such purposes crucially depends on the understanding of the possible
flow responses to various forms of the roughness.

Flows over rough walls have been studied since the early works of Hagen [1]
in 1854 and Darcy [2] in 1857, which were focused on turbulent regimes.
Reynolds [3] was the first to pose the problem in the context of laminar-
turbulent transition in 1883. The fundamental questions that were considered
are: (i) what effects the distributed surface roughness can induce in a flow and
(ii) when rough wall can be considered as being hydraulically smooth. While
both questions are of considerable practical importance in several application
areas, e.g. design of large Reynolds number laminar airfoils, small Reynolds nu-
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mber turbulent airfoils, compact heat exchangers, laminar electrostatic precipi-
tators, etc., their rational resolution is still lacking.

The original investigations involved measurements of flows in open chan-
nels and in pipes. Various possible roughness forms were classified using the
concept of “equivalent roughness” [4]. Phenomenological effects of the “equiva-
lent roughness” were summarized in the form of friction coefficient [5–7]. These
and other similar investigations show that surface roughness contributes directly
to the dynamics of the flow only if the wall is hydraulically rough. The con-
cept of hydraulic smoothness is conceptually very appealing, however no pre-
cise criterion exists that would allow predicting whether a given surface can
be considered as being hydraulically smooth for the flow conditions of interest.
While the modelling concepts of this type have been continuously re-evaluated
[8, 9], they failed so far to uncover the mechanisms that govern the complex,
flow-condition-dependent interaction between the roughness geometry and the
moving fluid.

We shall now limit our discussion to the role played by roughness in the
laminar-turbulent transition process. Experiments provide phenomenological de-
scription in the form of correlations between the height of the roughness, the flow
conditions and the critical Reynolds number for certain classes of geometrical
forms of the roughness [10–14]. The range of applicability of these correlations is
not certain because they are based on limited experimental data and have been
determined for, in essence, artificially created roughness forms. These correla-
tions form a basis of all roughness-sensitive designs, nevertheless.

Generally speaking, the presence of roughness favors transition in the sense
that under otherwise identical conditions, transition occurs at a lower Reynolds
number on a rough wall rather than on a smooth wall. If the roughness height is
sufficiently small, it has no effects on the transition process and the corresponding
wall is considered to be hydraulically smooth. A frequently used criterion is that
the roughness Reynolds number Rek = Ukk/ν < 25 [15], where k is the roughness
height, Uk is the undisturbed velocity at height k and ν the kinematic viscosity.
Such a criterion does not address the issue of shape and distribution of the
roughness.

The transition mechanisms activated by an isolated two-dimensional rough-
ness, such as span-wise trip wire, are associated with inflectional separated veloc-
ity profiles and are considered to be understood at least on qualitative level [16].
Theoretical studies of such configurations lead to the determination of eN tran-
sition criteria [17, 18]. The characteristic feature of the flow around an isolated,
three-dimensional roughness element is the presence of the horseshoe vortex that
generates streamwise vortices on the downstream side [15]. The mechanism gov-
erning transition is partially understood [15] and is thought to be associated
with the strong instabilities of inflectional shear layers set up by the stream-
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wise vortices, similarly as in the case of Görtler instability [19]. Experiments
of Radeztsky et al. [20] indirectly confirm this view. The mechanisms asso-
ciated with distributed surface roughness are not understood [15]. Various ex-
periments indicate that when the roughness is operative, the departure from
the laminar state is explosive [21, 22]. Past attempts to explain roughness ef-
fect in terms of Tollmien–Schlichting waves have failed [15, 22], however, more
general recent formulations [23, 24] do show such a connection. Concepts based
on the roughness-induced distortion of velocity profile proved to be inconclusive
[25–27], similarly as the concepts based on the roughness-induced additional mix-
ing [28]. Surface roughness may play a large role through amplification of the
transient growth mechanism [29], however, this role remains to be substantiated.
Surface vibrations provide additional complications [30].

Our interest is in the determination of the role played by distributed surface
roughness in early stages of the transition process through the use of stability
theory. One of the main conceptual difficulties arises in the context of modeling
of the roughness geometry. The intuitive concept of surface roughness is well
understood. One may touch a surface and decide (subjectively) if it is rough.
The mathematical concept of rough surface is ill-defined, since infinitely many
roughness forms are possible. It may appear that a general formulation is not
possible and one must study roughness shapes on the case-by-case basis. This
leads to a paradox, as it is not possible to investigate all possible shapes. This
paradox is fictitious, however, since roughness geometry can be defined is some
generality in the spectral space [23]. Analysis of the effects of different geome-
tries is reduced in such formulation to scans of parameter space formed by the
coefficients of spectral expansions. This concept has been utilized in the analysis
of effects of distributed surface suction [23]. Cabal et al. [24] implemented it in
the analysis of corrugation effects and provided a preliminary assessment of the
effects of corrugation on flow instability.

The present discussion is carried out in the context of channel flow where one
of the walls is rough. Presence of roughness may destabilize Tollmien–Schlichting
waves [23, 24] as well as it may induce new forms of disturbances. The existing
literature documents the existence of streamwise vortices in spatially periodic
configurations. Such vortices may occur in the context of Langmuir circulation
over surface waves [31, 32] where they are driven by the so-called CL1 and CL2
mechanisms. They may also occur in the flows over solid wavy walls [34–37] and
in the flows modulated by suction [23], where centrifugal effect appears to be
the dominant driving mechanism.

This presentation is organized as follows. Section 2 provides description of
the flow in a rough channel. Section 3 summarizes linear stability analysis of
this flow. Section 4 discusses selected results and shows where is the window of
opportunity for flow re-arrangements.
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2. Laminar flow in a channel with rough wall

In this section, we shall determine the form of the steady, two-dimensional
flow in a channel with rough lower wall. This presentation is limited to a short
outline, as details can be found in [23, 35]. We begin with the reference plane
Poiseuille flow confined between flat rigid walls at y = ±1 and extending to
infinity in the x-direction (Fig. 1). Velocity and pressure fields in the form

(2.1)
V0(x) = [u0(x, y), v0(x, y)] = [u0(y), 0] = (1 − y2, 0),

p0(x) = −2x/Re

describe the fluid motion, where the motion is directed towards the positive x-
axis and the Reynolds number Re is based on the half-channel height and the
maximum x-velocity. Assume that the lower wall is replaced by a rough wall
whose location yL(x) is specified as (see Fig. 1)

(2.2) yL(x) = −1 +
n=∞∑

n=−∞

S(n)einαx,

where S(n) = S(−n)∗ and star denotes the complex conjugate. The wall is chara-
cterized by periodicity with the wavelength λ = 2π/α, with the flow domain
bounded by −∞ < x <∞, yL(x) ≤ y ≤ 1.

Fig. 1. Sketch of the flow domain.

The flow in the rough channel can be represented as

V2 = [u(x, y), v(x, y)]

= V0(x, y) + V1(x, y) = [u0(y), 0] + [u1(x, y), v1(x, y)],

(2.3)
p2 = p0(x) + p1(x, y),
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where V1 and p1 are the velocity and pressure modifications due to the presence
of the roughness. Substitution of the above representation of the flow quanti-
ties into the Navier–Stokes and continuity equations, introduction of the stream
function defined as u1 = ∂yΨ, v1 = −∂xΨ , elimination of pressure and repre-
sentation of the unknowns in the form of Fourier expansions, e.g.,

(2.4)

Ψ(x, y) =
n=+∞∑

n=−∞

Φ(n)(y)einαx,

u1(x, y) =
n=+∞∑

n=−∞

f (n)
u (y) einαx,

v1(x, y) =
n=+∞∑

n=−∞

f (n)
v (y)einαx,

where Φ(n) = Φ(−n)∗ , f (n)
u = f

(−n)∗

u , f (n)
v = f

(−n)∗

v , lead to a system of non-linear
ordinary differential equations for the functions Φ(n), n ≥ 0, in the form

(2.5)
[
D2

n − inαRe(u0Dn −D2u0)
]
Φ(n)

− iαRe
k=+∞∑

k=−∞

[

kDΦ(n−k)DkΦ
(k) − (n− k)Φ(n−k)DkDΦ

(k)
]

= 0 ,

where D = d/dy, Dn = D2 − n2α2. The boundary conditions at the channel
walls are expressed in the form

(2.6)
u0(yL(x)) + u1(x, yL(x)) = 0, v1(x, yL(x)) = 0,

u1(x, 1) = 0, v1(x, 1) = 0.

The above formulation requires one arbitrary closing condition [23]. The
reader may note that introduction of the roughness increases the resistance to
the flow. Thus, if the flow is driven by the same mean pressure gradient, the
volume flux has to decrease. Alternatively, if one wants to maintain the same
volume flux, the mean pressure gradient must increase. All results presented in
this paper have been obtained with the fixed volume flux condition.

The field equations have been solved using spectral methods based on the
Chebyshev expansions. The boundary conditions on the smooth wall have been
implemented using a variant of the tau technique [23], while the immersed bound-
ary conditions method has been used to enforce the boundary conditions at the
rough wall [38].
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3. Linear stability

The natural change in the form of a flow begins with the growth of small
disturbances. We wish to investigate how the introduction of distributed surface
roughness can assist in promoting the growth of disturbances of desirable form
and what is the required geometry of the roughness that is needed to promote
such disturbances for the flow conditions of interest. The required information
can be extracted with the help of the linear stability analysis of the roughness-
modified flow.

Detailed description of the development of the linear stability equations for
spatially modulated flows can be found in [23]. The following presentation is
limited to a short outline. We begin with the governing equations in the form of
vorticity transport and continuity equations. Unsteady, three-dimensional dis-
turbances are superimposed on the mean part in the form

(3.1) ω = ω2(x, y) + ω3(x, y, z, t), V = V2(x, y) + V3(x, y, z, t),

where subscripts 2 and 3 refer to the mean flow and the disturbance field, respec-
tively. Equation (3.1) is substituted into the field equations, the mean part is
subtracted and the equations are linearized. The resulting disturbance equations
have the form

∇ · V3 = 0, ω3 = ∇× V3,

(3.2)1
∂ω3

∂t
+ (V2 · ∇)ω3 − (ω3 · ∇)V2 + (V3 · ∇)ω2

− (ω2 · ∇)V3 = Re−1∇2
ω3,

and are subject to the homogeneous boundary conditions

(3.2)2 V3(x, 1, z, t) = 0, V3(x, yL(x), z, t) = 0,

where yL is given by Eq. (2.2). These boundary conditions are, in general, in-
complete [39] and require an additional closing condition. All results presented
in this paper have been obtained with the constant mass flux constraint.

Determination of the character of disturbance evolution requires solution of
the initial value problem for Eqs. (3.2). The growth of disturbances, which is
of interest for us, may have either a transient or a permanent character, de-
pending on the flow conditions and the character of the initial disturbance field.
This growth must be large enough to trigger nonlinear effects that are necessary
in order to produce permanent change in the flow. The transient growth relies
on the non-orthogonality between the modes resulting in a growth of a distur-
bance, even when all modes decay individually. This process always occurs in
shear layers, but is relevant in the case of noisy environment where the initial
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disturbance amplitudes are large enough so that the transient growth can reach
the level necessary to trigger permanent change. One should note that the am-
plitudes and phases of the initial disturbances need to be adjusted properly in
order to produce a significant transient effect. The permanent (or asymptotic)
growth guarantees transition to a new state of the flow, but is more difficult to
achieve since the required flow conditions are more restrictive as compared with
the transient growth. The properly shaped surface roughness could be used to
amplify transient growth and to expand the range of flow conditions that produce
asymptotic growth. We begin the discussion with the asymptotic growth.

3.1. Asymptotic instability

In the case of asymptotic instability, the t and z dependence can be separated
in the usual manner leading to the solution in the form

(3.3) v3(x, y, z, t) = [u3(x, y), v3(x, y), w3(x, y)] e
i(δx+βz−σt) + CC,

where δ and β are real and account for the streamwise and spanwise periodicity of
the disturbance field, respectively. The exponent σ is complex and its imaginary
and real parts describe the rate of growth and the frequency of disturbances, re-
spectively, (u3, v3, w3) stand for the amplitude of the disturbance velocity vector,
and the eigenvalue problem for (δ, β, σ) for the corresponding partial differential
equations can be easily derived. Rather than solving this problem numerically,
we represent the disturbance amplitude in the form of Fourier expansions

(3.4)

u3(x, y) =
m=+∞∑

m=−∞

g(m)
u (y)eimαx,

v3(x, y) =
m=+∞∑

m=−∞

g(m)
v (y)eimαx,

w3(x, y) =

m=+∞∑

m=−∞

g(m)
w (y)eimαx

leading to the final form of the disturbance velocity vector

(3.5) v3(x, y, z, t) =
m=+∞∑

m=−∞

[

g(m)
u (y), g(m)

v (y), g(m)
w (y)

]

ei[(δ+mα)x+βz−σt] + CC

and, eventually, to an eigenvalue problem for the ordinary differential equations
describing functions g(m)

u , g
(m)
v , g

(m)
w . Equation (3.3) may the viewed as the first

step in the Fourier–Chebyshev method for the solution of the partial differential
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equations for (u3, v3, w3). Equation (3.5) provides a form of solution that is
more convenient for the analysis.

Substitution of (3.5) into the disturbance Eqs. (3.2)1 and separation of Fourier

components result in a system of ordinary differential equations governing g(m)
u ,

g
(m)
v , g

(m)
w in the form

S(m)
(
tmg

(m)
w − βg(m)

u

)
+ Cg(m)

v

= iRe
n=∞∑

n=−∞

(

W (m,n)
u g(m−n)

u +W (m,n)
v g(m−n)

v +W (m,n)
w g(m−n)

w

)

,

(3.6)

T (m)g(m)
v = −R

n=∞∑

n=−∞

(

B(m,n)
u g(m−n)

u +B(m,n)
v g(m−n)

v +B(m,n)
w g(m−n)

w

)

,

itmg
(m)
u +Dg(m)

v + iβg(m)
w = 0,

where −∞ < m+∞ and the explicit forms of the operators T, S,C,W,B are given
in Appendix A. Operators S, C and T are referred to as the Squire [40] coupling
and Orr–Sommerfeld operators [41, 42], respectively, due to their analogy with
the similar operators in the smooth wall case [23].

The boundary conditions at the smooth wall can be set up in terms of indi-
vidual modes, i.e.,

(3.7)1 g(m)
u (1) = g(m)

v (1) = g(m)
w (1) = 0, −∞ < m < +∞

while boundary conditions at the rough wall involve complete modal functions,
i.e.,

(3.7)2 u3(x, yL(x)) = v3(x, yL(x)) = w3(x, yL(x)) = 0.

Equations (3.6) with boundary conditions (3.7) have nontrivial solutions only for
certain combinations of parameters δ, σ and β. The required dispersion relation
has to be determined numerically. For the purposes of calculations, the problem
is posed as an eigenvalue problem for σ. Equations (3.6) are discretized with
spectral accuracy using Chebyshev expansions. Boundary conditions at the upper
wall are implemented using a version of the tau technique [23] while boundary
conditions at the rough lower wall are implemented using the immersed boundary
conditions concept [34].
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The reader may note that the asymptotic analysis does not require the solu-
tion of an initial values problem. The information about the disturbance growth
is deduced from an eigenvalue problem and negative values of the imaginary
part of the complex growth rate σ identify growing disturbances as well as flow
conditions when such growth is possible. One is interested in the determination
of the changes in critical stability conditions induced by different forms of the
roughness and in the form of disturbances that are most efficiently destabilized
by the roughness.

3.2. Transient growth

In the case of asymptotic instability, the disturbances grow continuously in
time. In general, disturbance may grow over a certain period of time even if all
individual modes decay [47]. The maximum magnitude that the disturbances
may achieve during transient growth could be sufficient to trigger transition
to a new state. The analysis begins with the same formulation as used in the
previous section. Details are given in [48]. The disturbances are assumed in the
form

(3.8) v3(t, x, y, z) = [u3(x, y, t), v3(x, y, t), w3(x, y, t)]e
i(δx+βz)

=
m=+ ∞∑

m= −∞

[

g(m)
u (t, y), g(m)

v (t, y), g(m)
w (t, y)

]

ei[(δ+mα)x+βz] + CC

where β and δ are real and denote spanwise and streamwise wave numbers, re-
spectively, and (u3, v3, w3) stand for the disturbance amplitude modulated by
the corrugation and being thus periodic in x. Equations (3.8) and (2.4) are substi-
tuted into (3.2) and re-arranged, and the Fourier modes are separated resulting in

the following form of disturbances equations for g(m)
v , θ(m) = −βg(m)

u + γmg
(m)
w ,

i.e.,

(3.9)1
(
D2 − k2

m

)
∂tg

(m)
v

− Re−1
{(
D2 − k2

m

) 2 − iReγm

[
u0

(
D2 − k2

m

)
−D2u0

] }

g(m)
v

= Re−1
∞∑

n=1

(

Ĝ(m,n)
v g(m+n)

v +G(m,n)
v g(m−n)

v

+ Ĝ
(m,n)
θ θ(m+n) +G

(m,n)
θ θ(m−n)

)

+G(0)
v g(m)

v ,
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(3.9)2 ∂tθ
(m) − Re−1

[
D2 − k2

m − iRe γmu0

]
θ(m) + β Du0 g

(m)
v

= Re−1
∞∑

n=1

(

Ŝ(m,n)
v g(m+n)

v + S(m,n)
v g(m−n)

v + Ŝ
(m,n)
θ θ(m+n)

+S
(m,n)
θ θ(m−n)

)

+ S(0)
v g(m)

v + S
(0)
θ θ(m),

where −∞ < m < +∞, γm = δ + mα. The explicit forms of the operators
Gv, Gθ, Ĝv, Ĝθ, Sv, Sθ, Ŝv, Ŝθ are given in the Appendix B. It can be shown that
boundary conditions (3.2)2 take the form analogous to (3.7), i.e.

(3.10)
u3(x, yL(x), t) = v3(x, yL(x), t) = w3(x, yL(x), t) = 0,

g(m)
u (t, 1) = g(m)

v (t, 1) = g(m)
w (t, 1) = 0.

The boundary conditions at the upper wall are implemented using a version of
the tau technique, while boundary conditions at the lower wall are implemented
using the immersed boundary conditions concept.

Problem (3.9)–(3.10) has to be supplemented by initial conditions and thus
one needs to consider all possible initial disturbances before making predictions
regarding the growth process. This leads to an optimization problem where one
seeks the form of disturbance leading to the largest possible growth at a given
time, or the largest possible growth at all times, i.e., the optimal disturbance,
as well as the magnitude of possible growth. The additional information that is
being sought includes the identification of the form of the roughness that gives
the largest possible transient growth, i.e. the optimal roughness.

4. Results and discussion

4.1. Traveling wave instability

The ideal Poiseuille flow (i.e. flow in a channel with smooth walls) becomes
linearly unstable at Re = 5772.22 and the critical disturbance has the form
of a two-dimensional wave traveling in the streamwise direction with the wave
number δ = 1.02. Such waves are typically referred to as the Tollmien–Schlichting
(TS) waves [43, 44]. We wish to determine how the presence of surface roughness
affects the evolution of TS waves. Since roughness can have many forms, we
illustrate the results with the simplest possible form, i.e, roughness in the form
of a single Fourier harmonic. This shape provides a convenient reference point
for studies of more complicated roughness shapes and is described by Eq. (2.2)
with S(1) = S(−1) = S, S(n) = 0 for n 6= ±1. The analysis is focused on the
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asymptotic instability governed by the eigenvalues; issues related to transient
growth are not addressed. The results presented are relevant to a flow system
operating in a low-disturbance environment and have been obtained under the
constant mass-flux constraint.

Variations of the amplification rate Im(σ) and frequency Re(σ) of distur-
bances as a function of the roughness wave number α and the disturbance
wave number δ for the flow Reynolds Re = 6000 and the roughness amplitude
S = 0.0085 are displayed in Fig. 2. The same figure also shows the range of
unstable disturbance wave numbers in the case of a smooth channel. It can be
seen that presence of roughness leads to flow destabilization. Roughness with
shorter wavelength is more effective, resulting in larger amplification rates as
well as wider range of unstable δ. The frequency of disturbances appears to
be not affected by the presence of roughness in the range of roughness wave
numbers studied. Existence of such disturbances and the accuracy of theoretical
predictions have been confirmed experimentally [45].

Fig. 2. Curves of constant amplification Im(σ) for the flow Reynolds number Re = 6000 and
the roughness amplitude S = 0.0085 as a function of the roughness wave number α and the
disturbance wave number δ for the wavy wall roughness model. Dash lines correspond to Re(σ).
Shaded area corresponds to the range of δ that is unstable in the case of smooth channel [39].

Variations of the neutral curves in the (α, δ) plane as a function of the flow
Reynolds number Re for the roughness amplitude S = 0.0085 are illustrated
in Fig. 3. It can be seen that the unstable disturbances can be found even at
Re = 5000, i.e., the presence of the roughness can significantly destabilize the
flow. The two possible reasons for flow destabilization include changed vorticity
dynamics associated with the formation of inflection points and the action of
centrifugal forces. It may be not possible to separate these two effects. The
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Fig. 3. Neutral curves for the roughness amplitude S = 0.0085 and for different values of the
flow Reynolds number Re as a function of the roughness wave number α and the disturbance

wave number δ for the wavy wall roughness model [39].

Fig. 4. The critical stability conditions for disturbances in the form of traveling waves for
the wavy wall roughness model [39].

roughness ability to destabilize TS waves strongly depends on the roughness
wave number α. We shall refer to the roughness wave numbers that destabilize
the flow as the “active” wave numbers. The range of the “active” roughness wave
numbers at Re = 5000 is rather small and concentrates around α ∼ 10. This
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range rapidly expands in the direction of small and large α as Re increases
to Re = 5000. Further increase of Re causes a very characteristic expansion
in the direction of small α with the constant amplification curves forming a
characteristic “bulge” pointing to the small-α direction. The case of Re = 5772 is
of special interest. This value of Re corresponds to the critical Reynolds number
in the case of smooth walls; the unstable zone shrinks to a single line δ(α) =

1.02 in the absence of roughness. Introduction of roughness expands this single
line into a finite range of unstable δ for most of the range of the roughness
wave numbers except for the roughness of sufficiently long wavelength, which
actually stabilizes the flow. The stabilization in the case of Re = 5772 occurs
for α < 0.02. The stabilizing effect is rather weak; an increase of Reynolds
number from Re = 5772 to Re = 5780 (not shown) extends the range of active
α practically to α = 0. Further increase of Re expands the range of unstable
disturbance wave numbers δ and increases the amplification rates. It is worth
pointing out that the maximum amplification always occurs at α ∼ 10 for this
value of S.

Results discussed in the previous paragraphs permit identification of the criti-
cal stability conditions by carrying out studies similar to those illustrated in Figs.
2–3. It is convenient for presentation of the results to introduce a global criti-
cal Reynolds number Reg,cr that defines the critical conditions for the onset of
instability for a given roughness amplitude S regardless of its wave number α.
Variations of the global critical conditions, including Reg,cr, the corresponding
critical roughness wave number αg,cr and the wave number of the critical distur-
bance δg,cr as a function of the roughness amplitude S are illustrated in Fig. 4.
The area below the curve Reg,cr(S) defines the flow the conditions and rough-
ness geometry where roughness is not operative in the sense that it does not
destabilize the traveling wave disturbances. The area above this curve defines
flow conditions where there exists at least one active roughness wave number.
The reader should note that the flow does not automatically become unstable
for Re > Reg,cr; the instability occurs if and only if the particular rough wall of
interest contains an active roughness wave number.

4.2. Vortex instability

It has been determined that the presence of surface roughness gives rise
to instability that results in the amplification of disturbances in the form of
streamwise vortices. The amplification rates of such disturbances are illustrated
in Fig. 5 for the flow Reynolds number Re = 5000 and the roughness amplitude
S = 0.0075. It can be seen that the range of the “active” roughness wave numbers
extends from α ≈ 1.4 to α ≈ 7. Each “active” roughness wave number gives
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rise to a band of vortices whose wavelength is bounded from above and from
below. The amplified vortex wave numbers are always contained in the interval
∼ 1.2 < β <∼ 3.7 but the vortices that are actually amplified are contained
in a smaller subinterval whose length and location change as a function of the
roughness wave number. The magnitude of the amplification rate is similar to
that found in the case of traveling waves.

Fig. 5. Amplification rates Im(σ) of disturbances in the form of streamwise vortices as
a function of the roughness wave number α and the vortex wave number β for the flow

Reynolds number Re = 5000 and the wavy-wall of amplitude S = 0.0075 [46].

The neutral surface in the (α, β, Re) space for S = 0.007 is shown in Fig. 6.
A rapid increase of the range of “active” roughness wave numbers α and the
resulting vortex wave numbers β as Re increases is clearly visible. The tip of this
surface identifies the global critical stability conditions, which are displayed in
Fig. 7. The area below the critical curve defines the flow conditions when the
roughness does not destabilize the vortex-like disturbances and is in this sense
hydraulically “inactive”, regardless of its wave number. The area above this curve
defines the flow conditions where there exists at least one “active” roughness wave
number. The flow does not automatically become unstable for Re > Reg,cr; the
instability occurs if and only if the particular rough wall contains an “active”
roughness wave number.
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Fig. 6. The neutral surface describing instability giving rise to the vortex-like disturbances for
the roughness amplitude S = 0.007 as a function of the flow Reynolds number Re, the roughness

wave number α and the vortex wave number β for the wavy-wall roughness model [46].

Fig. 7. Variations of the global critical Reynolds number Reg,cr as a function of the roughness
amplitude S for the wavy-wall roughness. The area below and to the left of both curves corre-
sponds to the flow conditions and the wall geometry that do not produce any instability [46].
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4.3. Global picture

The above discussion shows the existence of two independent modes of flow
instability. One of our interests is in identifying the flow conditions where the
flow is always stable, regardless of the form of the roughness and the type of in-
stability. Since the critical roughness wavelength is very different at the onset for
both modes, the general conclusion may be formulated without the need to con-
sider interaction between both types of instability. The critical curves Reg,cr(S)
for both instability modes are shown in Fig. 7 and permit identification of the
flow conditions and wall geometry that do not produce any instability. Such a
wall operating under the specified Reynolds number behaves as the hydraulically
smooth wall. The opportunity for flow re-arrangements lies in the zone where
the roughness is “active”. The results shown in Fig. 7 identify the minimum
roughness amplitude and the related shape that “activate” the roughness in the
hydrodynamic sense.

4.4. Transient growth

Introduction of roughness with geometry identified in Fig. 7 gives rise to an
instability that forces the flow to evolve to a new state. It is possible that the new
state can be achieved with a subcritical roughness through the process of tran-
sient growth. The efficiency of the transient growth can be judged by identifying
the maximum possible growth that can be achieved for the specified roughness
geometry and the form of initial conditions that lead to this growth, i.e., the op-
timal disturbances. Repetition of such an analysis for different roughness forms
leads to the identification of the optimal roughness, i.e., roughness form that
is most efficient in the amplification of disturbances. Detailed analysis of this
problem can be found in [48]. We wish now to focus on the interplay between
the asymptotic instability and the transient growth and on the issue of ma-
nipulation of disturbance growth through change in the roughness amplitude.
Transient growth for Re = 2000, β = 2, δ = 0, α = 3 for different corruga-
tion amplitudes S is illustrated in Fig. 8. In each case the initial conditions have
been selected to maximize the growth at time t = 50. A very rapid initial growth
always occurs regardless of the values of S. This growth eventually either disap-
pears and disturbances decay for subcritical values of S, or asymptotic growth
takes over and disturbances grow without limits for the supercritical values of S.
Asymptotic growth leads to the vortex instability discussed in Sec. 4.2. Onset of
transition requires activation of the nonlinear effects, which will certainly come
into play in the case of modal instability. The transient growth is however so
much stronger initially that it may decide on the fate of the flow even in the
case of supercritical values of S. Results shown in Fig. 8 demonstrate that this



Flow management using natural instabilities 591

growth will amplify the disturbances by a factor of 500–1000 before asymptotic
instability catches up. The same results also show that the roughness amplitude
has to reach a certain critical magnitude to generate large growth. Once such
an amplitude is achieved, the growth becomes very sensitive to any further very
small changes in the roughness amplitude, which provides significant opportuni-
ties for the flow manipulation with very small changes of the controlling agent,
i.e., the roughness size.

Fig. 8. Transient growth as a function of time for Re = 2000, β = 2, δ = 0, α = 3 for different
values of the corrugation amplitude S. Initial conditions are selected in such a manner that
the growth G at time t = 50 attains maximum for each S. Dash lines illustrate asymptotes

defined by the asymptotic instability [48].

5. Summary

A significant improvement in the understanding of the role played by the
surface roughness in the flow destabilization has been achieved. This knowledge
forms the basis for the design of flow management strategies that utilize natural
instabilities in the re-arrangement of fluid motions. The existing results identify
the changes that can be induced in the flow through the intentional introduction
of surface roughness and thus a design of surface roughness for flow management
can be considered.
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Appendix A.

Operators used in Eqs. (3.6) have the following definitions:

S(m) = D2 − k2
m − iRe (tmu0 − σ) ,(A.1)

T (m) =
(
D2 − k2

m

)2 − iRe
[
(tmu0 − σ)(D2 − k2

m) − tmD
2u0

]
,(A.2)

C = ReβDu0,(A.3)

W (m,n)
u = β(if (n)

v D − tmf
(n)
u ),(A.4)

W (m,n)
v = iβDf (n)

u ,(A.5)

W (m,n)
w = tm(tm−nf

(n)
u − if (n)

v D),(A.6)

(A.7) B(m,n)
u = −t2mDf (n)

u

+ inαk2
mf

(n)
v − t2mf

(n)
u D + itmDf

(n)
u D + itmf

(n)
v D2,

(A.8) B(m,n)
w = β( − tm−2nf

(n)
u D − tm−nDf

(n)
u + if (n)

v D2),

(A.9) B(m,n)
v = ik2

mtm−nf
(n)
u + k2

mDf
(n)
v

+ k2
mf

(n)
v D + itmD

2f (n)
u + itmDf

(n)
u D,

where D = d/dy, tm = mα+ δ and k2
m = t2m + β2.

Appendix B.

Operators used in Eqs. (3.9)1–(3.9)2 are defined as follows:

(B.1) G(m,n)
v = Re

[
i nα

k2
m−n

(

β2 − γmγm−n

)

Df (n)
u D

+
k2

m

km−n

2(

β2 + γm−nγm−2n

)

f (n)
v D +

i

k2
m−n

(

2nαβ2 − γmk
2
m−n

)

f (n)
u D2

+
i

k2
m−n

(

nαγm − k2
m

)

f (n)
v D3 + i k2

mγm−2nf
(n)
u + i γmD

2f (n)
u

]

,
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(B.2) Ĝ(m,n)
v = Re

[
i nα

k2
m+n

(

γmγm+n − β2
) (

Df (n)
u

)∗

D

+
k2

m

k2
m+n

(

β2 + γm+nγm+2n

) (

f (n)
v

)∗

D

+
i

k2
m+n

(

− 2nαβ2 − γmk
2
m+n

) (

f (n)
u

)∗

D2

+
i

k2
m+n

(

− nαγm − k2
m

) (

f (n)
v

)∗

D3

+ i k2
mγm+2n

(

f (n)
u

)∗

+ i γm

(

D2f (n)
u

)∗]

,

G(0)
v = −iγm[f (0)

u (D2 − k(2)
m ) −D2f (0)

u ],(B.3)

Ŝ
(m,n)
θ = Re

[

−iγm

(

f (m)
u

)∗

− 1

k2
m+n

(
β2 + γmγm+n

) (

f (n)
v

)∗

D

]

,(B.4)

S
(0)
θ = −iγmf

(0)
u ,(B.5)

S(0)
v = −βDf (0)

u ,(B.6)

S(m,n)
v = Re

[

β Df (n)
u − inαβ

k2
m−n

f (n)
v D2

]

,(B.7)

Ŝ(m,n)
v = Re

[

β
(

Df (n)
u

)∗

+
inαβ

k2
m+n

(

f (n)
v

)∗
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]

,(B.8)

S
(m,n)
θ = Re

[

−iγmf
(m)
u − 1
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(
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)
f (n)

v D

]

,(B.9)

(B.10) G
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θ = Re
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1
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(
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