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Brief Note

A simple mixture of gases is a mixture of ideal gases

I. SAMOHÝL, P. VOŇKA
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Institute of Chemical Technology

Technická 5, 166 28 Prague 6, Czech Republic

If the thermodynamics of fluid mixture has a classical form, then the simple fluid
mixture (Müller [1, 2]) has the special form of the state equation (see Eq. (3.5)).
Moreover, if such mixture is gaseous, then it is equivalent to the mixture of ideal
gases.

1. Introduction

Truesdell’s theory of mixtures [3, 4] is based on the partial quantities
(which characterize properties of each constituent of mixture) taken as primi-
tives. To obtain the classical thermodynamic results, the mixture of fluids (e.g.
model with linear transport) must be nonsimple, i.e. the starting constitutive
equations must depend (among others) not only on partial densities but also on
density gradients [1, 2, 6, 5, 9]. Less usual results are noted in Sec. 2; details
are described in [6, 5, 9]. Namely, it may be shown, by the so-called mixture in-

variance [5, 6], that an uncertainity of partial thermodynamic quantities may be
removed and they may be identified with those used in classical thermodynam-
ics of mixtures [7, 8]. Then, for fluid mixtures, such partial quantities may be
calculated explicitly from the dependence of (obtainable) properties of mixture
on the composition (see Eqs. (2.2), (2.3)).

In Sec. 3 we restrict this model to the simple fluid mixture (where dependence
on density gradients is removed). Constitutive equations for free energies are then
simplified to (3.1) (Müller [1, 2], cf. [6] § 25)1). Here we show that the classical
thermodynamic structure leads in a simple fluid mixture to the special form of
state equation (3.5). If such simple mixture is gaseous, it is not only sufficient
but also necessary that this should be the mixture of ideal gases (for this we
use the approaching to ideal gas behaviour at decreasing density, cf. postulate
(3.6)).

1)Note that the simple mixture is generally different from ideal mixture [7, 8] but in mixture
of ideal gases both definitions coincide, see [6] § 25.
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2. Mixture of fluids

The rational thermodynamic theory of mixtures of fluids (i.e. gases or liquids)
[1, 2, 3, 4] containing n constituents (α = 1, 2, ..., n) achieves ([6] Ch.IV, [5]§ 8,
[9]Ch.IV) the classical form with the specific partial thermodynamic quantities
yα (internal energy uα, entropy sα, volume vα, enthalpy hα, free energy fα,
Gibbs energy gα (chemical potential)). They are functions of temperature T
and all partial densities ργ or temperature T , pressure P and independent mass
fractions wβ (denoted by hat or tilde respectively)

(2.1) yα = ŷα(T, ρ1, ρ2, .., ρn) = ŷα(T, ργ)

= ỹα(T, P, w1, w2, .., wn−1) = ỹα(T, P, wβ),

α, γ = 1, 2, .., n; β = 1, 2, ..., n − 1,

(note the shortened writing of independent variables). Corresponding specific
thermodynamic quantities for the mixture y (denoted by u, s, v, h, f, g) are de-
fined by y =

∑n
α=1

wαyα = ŷ(T, ργ) = ỹ(T, P, wβ). We prefer specific quan-
tities, namely, mass fractions instead of molar ones [7, 8], because of their
possible application to nonequilibrium processes. Therefore the usual relations
∑n

α=1
wα = 1, wα = ρα/ρ with density of mixture ρ =

∑n
α=1

ρα are valid.
Mixture (or form) invariance [5, 6, 9] permits to calculate all partial quantities

yα from the mixture quantities y and their dependence on the mass fractions by
(e.g. vα from density ρ = 1/v, cf. Eqs. (5), (6) in [10])

yn = y −

n−1
∑

β=1

wβ
∂ỹ

∂wβ

,(2.2)

yβ = yn +
∂ỹ

∂wβ

, β = 1, 2, ..., n − 1,(2.3)

which may be identified with those in classical texts [7, 8] in molar units. Here the
special case of uniform (homogeneous) mixture is usually treated; then, instead
of (2.2), (2.3) simpler relations are used, e.g. Eq. (8.41) in [5].

Thermodynamic quantities are related by the usual relations like

(2.4) fα = uα − Tsα, hα = uα + Pvα, gα = fα + Pvα,

by analogous relations for thermodynamic quantities of mixture, Gibbs and
Gibbs-Duhem relations, etc. Less usual is the expression for chemical potential

(2.5) gα =
∂ρf̂

∂ρα
, α = 1, 2, ..., n.
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Because of (2.4) the generalized partial pressures Pα and Dalton law may be
introduced [6, 9, 5]

Pα = ραvαP, α = 1, 2, ..., n,(2.6)

n
∑

α=1

Pα = P = P̂ (T, ργ).(2.7)

Equations (2.1), (2.7), (2.4) and other classical relations (like ∂g̃α/∂T = −sα,
∂g̃α/∂P = vα) then gives (cf. [5]§8, [6] §23, [9] §45)

Pα =
n

∑

γ=1

ραργ
∂f̂γ

∂ρα
,(2.8)

−sα =
∂f̂α

∂T
+ P

∂v̂α

∂T
,(2.9)

ρ
∂ĝα

∂ργ
= ρvα

∂P̂

∂ργ
+

n−1
∑

β=1

∂g̃α

∂wβ

(δβγ − wβ)(2.10)

(δβγ is Kronecker’s delta, δβn ≡ 0, α, γ = 1, 2, .., n; β = 1, 2, ..., n − 1).
From (2.5) we have ∂ĝη/∂ρn = ∂ĝn/∂ρη which gives (by (2.10), (2.6), Gibbs

and Gibbs–Duhem equations

(2.11)
ρη

Pη

∂P̂

∂ρη
=

ρn

Pn

∂P̂

∂ρn
, η = 1, 2, ..., n − 1.

3. Simple fluid mixture

Fluid mixture of Sec. 2 we now restrict to the simple fluid mixture possessing
the essential simplification (proven by Müller [1, 2], cf. [6] §25): partial free
energy of constituent α depends (besides T ) on the density ρα of this constituent
α only

(3.1) fα = f̂α(T, ρα)

(cf. difference from the general fα = f̂α(T, ργ) in (2.1)). Then from (2.8), (2.5),
(2.4) the same property follows for partial pressures and chemical potentials (and
also for Pvα)

Pα = ρ2
α

∂f̂α

∂ρα
= P̂α(T, ρα),(3.2)

gα = ĝα(T, ρα).(3.3)
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We show, that such a simple fluid mixture has the special form of “state
equation” (3.2).

Indeed, using (3.2) in (2.7) we have ∂P̂/∂ρα = ∂P̂α/∂ρα depending, as well
as Pα, on temperature and only on one density of the respective constituent α.
Therefore from (2.11), we obtain a universal C (possibly a function of tempera-
ture)

(3.4)
ρα

Pα

∂P̂α

∂ρα
= C = C(T ), α = 1, 2, ..., n.

By integration we obtain the following general form of dependence of the partial
pressures on densities in a simple fluid mixture (state equation)

(3.5) Pα = Kα(ρα)C , α = 1, 2, ..., n,

where Kα = Kα(T ) as well as C(T ) are some functions of temperature T .
At last we restrict this simple fluid mixture to the mixture of gases and

we show that this simple gas mixture is equivalent to the mixture of ideal
gases.

We use the Denbigh’s definition of mixture of ideal gases ([8] Eq. (3.18),
cf. Eq. (3.15)) having the state equation of ideal gas mixture for partial volumes
or classical partial pressures (cf. (3.9), (3.8)). Then this definition of ideal gas
mixture gives (3.3), (3.1) (see (2.4)), which prove the sufficiency of the assertion
made above (cf. [1], [2] §6.4): ideal gas mixture is the simple gas mixture.

To prove the necessity we postulate the general property of any gas and gas
mixture, including the simple one:

If, at any given temperature, the density of gas (or all densities in a gas mix-
ture) tends to zero, their properties approach the ideal gas behaviour. Specifi-
cally, for partial volumes the following limits of state equations are valid for all
α = 1, 2, .., n (in the last expression we use (2.6))

(3.6) lim
ρα→+0

Pvα =
RT

Mα
= lim

ρα→+0

Pα

ρα
,

where R is the gas constant and Mα is the molar mass of constituent α.
Inserting (3.5) into (3.6) we obtain for a simple mixture (and chosen α)

(3.7) lim
ρα→+0

(ρα)a = b,

where a ≡ C − 1, b ≡ RT/(Kα Mα).
But (3.7) is valid if and only if a = 0, b = 1 (limits for a > 0 or a < 0

are 0 or +∞ respectively, without physical sense; densities are only positive).
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Therefore C = 1, Kα = RT/Mα and “state equation” (3.5) of the simple gas is
an ideal one

(3.8) Pα = ρα
RT

Mα

valid at any density and pressure (and not only in the limit (3.6)).
Moreover, for such a simple gas mixture it follows by (2.6), (2.7), (3.8) that

molar partial volumes of all constituents are the same

(3.9) vαMα =
RT

P
=





n
∑

γ=1

ργ

Mγ





−1

, α = 1, 2, ..., n.

From this it may be seen that ραvα in the simple gas mixture is the molar
fraction and (2.6), (2.7) are the classical partial pressures and the Dalton law.
It also follows that vα = v̂α(ργ) and by (2.9)

(3.10) −

∂f̂α

∂T
= sα = ŝα(T, ρα) .

Further, partial internal energies and enthalpies are functions only of tempera-
ture in such a simple gas mixture

(3.11) uα = ûα(T ) ,

(3.12) hα = ĥα(T ) .

Equation (3.11) follows from (2.4) and from (3.10) by the differentiation with
respect to ρα . Namely ∂ûα/∂ρα ≡ 0, because it follows from (3.2) and (3.8) that

(3.13)
∂f̂α

∂ρα
=

Pα

ρ2
α

=
RT

Mαρα
.

Equation (3.12) then follows from (3.11) , (3.9).
All these results for a simple gas mixture are the properties of the mixture

of ideal gases. Also the logarithmic dependence of fα, sα, gα on densities (and
therefore on classical partial pressures as a consequence of (3.8)) is valid. E.g.,
by integration of (3.13) and by (3.8), (2.4), (2.6)

fα = f̂0
α(T ) +

RT

Mα
lnρα,(3.14)

gα = ĝ0
α(T ) +

RT

Mα
lnPα.(3.15)

The last one is the Denbigh’s definition of the mixture of ideal gases, [8] Chap. 3.
Therefore a simple gas mixture is necessary and therefore equivalent to the

mixture of ideal gases.
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