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In the present paper the classical point symmetry analysis is extended from partial
differential to functional differential equations. In order to perform the group analysis
and deal with the functional derivatives, we extend the quantities such as infinitesi-
mal transformations, prolongations and invariant solutions. For the sake of example,
the procedure is applied to the functional formulation of the Burgers equation. The
method can further lead to important applications in continuum mechanics.

1. Introduction

The purpose of the symmetry analysis based on the Lie group theory is
to analyse, simplify and find solutions of partial differential equations (PDE)
(cf. [1, 2, 3, 4]). The method gives a deep insight into the underlying physical
problems described by PDE. Examples of its applications include problems of
fluid mechanics, where a broad range of invariant solutions for turbulence statis-
tics were found [5, 6]. The group method is also used to analyse and construct
new turbulence models satisfying the required symmetries of the Navier–Stokes
equations [7].

The present work concerns an application of the Lie group theory to func-
tional differential equations. The description of turbulence in terms of func-
tional equations has been first introduced in a seminal work of E. Hopf [8] and
later presented in the book of Monin and Yaglom [9]. In statistical mechanics
the system of N particles can be described by the probability density function
P (x1, · · · ,xN ,v1, · · · ,vN , t), where the phase space of this function contains the
positions x and velocities v of all the particles. In the continuum limit (e.g., in
hydromechanics), the elements of the phase space v1, · · · ,vN become a contin-
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uous function of spatial variable v = v(x). In this case the system is described
by the probability density functional P ([v(x)], t).

So far little attention has been paid to the symmetry analysis of functional
equations. Some of the previous works concern integro-differential equations
([10, 11]), integro-differential equations with moving range of integration
([12, 13]) and delay differential equations ([14, 15]). However, to the best of
the authors’ knowledge, the equations with functional derivatives considered in
the present paper, have not been studied so far in terms of the symmetry analy-
sis. Hence, in the present work we extend the classical symmetry analysis to
functional equations which contain functional derivatives. The new method is
further applied to the Hopf formulation of the Burgers equation. The Burgers
equation is often considered as a “toy model” of the Navier–Stokes equations.
Functional formulation of the Burgers equation is also studied in [16] and [17].
From the transformation groups we find a particular, invariant solution of this
equation. Analogous solution was found by Hopf in [8] for the functional for-
mulation of the Navier–Stokes equations in the inviscid and stationary case. In
our work, however, the group theory allows us to find solutions by a strictly
determined procedure where no guessing is necessary. The new method can lead
to significant applications in fluid dynamics, e.g. finding new invariant solutions
for multipoint turbulence statistics. The method can also be applied in other
areas of physics, where the description in terms of functional equations is used.

The structure of the paper is the following: first, we introduce the neces-
sary notation to study functional differential equations. Next, we present the
application of functional theory to describe turbulence, as it was introduced by
Hopf [8]. In the third section we extend classical Lie group methods to func-
tional differential equations by extending quantities such as infinitesimal trans-
formations, prolongations or invariant solutions. Next, as an example, the new
method is applied to the Hopf formulation of the Burgers equation. This leads
to the transformation groups as well as to the invariant solution of the consid-
ered functional equation. Finally, we present conclusions and perspectives for
a future work.

2. Functional equations

2.1. Notations

In the paper we consider such functional differential equations which can be
regarded as the extensions of partial differential equations. The key idea is that
the discrete set of independent variables (v1, v2, . . . , vn) in a partial equation is
replaced by a continuous set of variables denoted by [v(x)], [18]; partial deriva-
tives over vi are replaced by functional derivatives, denoted by δ/δv(x). In order
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to illustrate this extension we introduce the example

(2.1)
∂f

∂t
=

n∑

i=1

vi
∂f

∂vi
,

where f = f(v1, v2, . . . , vn, t). Taking the continuum limit we obtain

(2.2)
∂f

∂t
=

∫

l

v(x)
δf

δv(x)
dx,

where f = f([v(x)], t) is a given functional. The exact definition of the functional
derivative is presented, e.g., in [18, 19]; this definition can be also written in
another form, which is particularly suitable for calculations

(2.3)
δf([v(x)])

δv(x′)
=
∂f([v(x)])

∂v(x′) dx′
= lim

ǫ→0

f([v(x) + ǫ δ(x− x′)]) − f([v(x)])

ǫ
,

where f([v(x)]) is a functional and δ(x − x′) is the Dirac delta. For the sake of
example we use the above definition to compute the derivative of the following
functional f([v(x)]) =

∫
A(x)v(x)dx where A(x) is a given function. According

to Eq. (2.3), the functional derivative of f reads

(2.4)
δf([v(x)])

δv(x′)
= lim

ǫ→0

1

ǫ

[∫

A(x)(v(x) + ǫ δ(x− x′))dx

−
∫

A(x)v(x)dx

]

= A(x′).

In the present work we study the extension of the partial differential equation
for a scalar function Φ(v1, . . . , vn, t) of n+ 1 independent variables. The general
form of the differential equation describing Φ reads:

(2.5) F (v1, . . . , vn, t,Φ,Φ
1
,Φ

2
, . . . ,Φ

q
) = 0,

where Φ
k

denote the k-th derivatives of the function Φ with respect to any possi-

ble combination of independent variables and q is the highest order of derivative
present in Eq. (2.5). In the continuum limit v becomes a function of the contin-
uous variable x.

The following considerations can be generalised for the vector forms of v, x
and t. However, we do not present this general case here, in order to keep the
notation as simple as possible.
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The considered function Φ becomes a functional Φ = Φ([v(x)], t) and the
partial differential equation (2.5) becomes a functional differential equation:

(2.6) F ([v(x)], t,Φ,Φ
1
,Φ

2
, . . . ,Φ

q
) = 0;

here again, Φ
k

denotes all possible derivatives of order k, which can include partial

derivatives with respect to t and functional derivatives with respect to v(x). The
following, equivalent notation will be used for the first functional derivatives:

(2.7) Φ,v(x) =
δΦ

δv(x)
=

∂Φ

∂v(x)dx
.

Higher order derivatives can be expressed in an analogous way. The latter no-
tations was originally used by Hopf [8] and can be more convenient in some
situations, e.g., to denote a second order derivative, partial with respect to t and
functional with respect to v(x)

(2.8) Φ,v(x)t =
∂2Φ

∂v(x)dx ∂t
.

For further purposes we solve a simple functional equation by the method of
characteristics. For the sake of clarity we will first present the necessary formulae
for the partial differential equation (2.5) and introduce their counterparts in the
continuum limit (2.6). The two approaches will also be called “classical” and
“continuum” formulation, respectively. Let us consider the following hyperbolic
equation in a classical and continuum formulation:

(2.9) Φ
∂F

∂Φ
+

n∑

i=1

∂F

∂vi
= 0 → Φ

∂F

∂Φ
+

b∫

a

δF

δv(x′)
dx′ = 0

where F = F (Φ, v1, . . . , vn) in the classical formulation and F = F (Φ, [v(x)]) in
the continuum limit; vi and v(x) constitute sets of independent variables and Φ
is a dependent variable: Φ = Φ(v1, . . . , vn) or Φ = Φ([v(x)]).

The characteristic equations of (2.9)

(2.10)
dΦ

Φ
= dv1 = · · · = dvn → δΦ

Φ
= δv(x) for each x ∈ (a, b)

determine n integration constants Ci in the classical formulation and an infi-
nite set of integration constants C(x) in the continuum formulation. The con-
stants can be employed as new (dependent and independent) variables of F .
Corresponding solutions of Eqs. (2.9) have the forms F = F (C1, . . . , Cn) and
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F = F (C1, [C(x)]). An example of a possible solution of the characteristic sys-
tem (2.10) is presented below. We can, e.g., consider equations

(2.11)
dΦ

Φ
= dv1, dv1 = dv2, dv2 = dv3, . . . , dvn−1 = dvn

to obtain the following integration constants:

(2.12)
C1 = Φexp [−v1], C2 = v1 − v2, C3 = v2 − v3, . . . ,

Cn = vn−1 − vn,

which have their counterparts in the continuum formulation,

(2.13) C1 = Φexp [−v(x1)], C(x) =
dv(x)

dx
dx

where x1 is a fixed point in the domain x ǫ (a, b).
Hence, a functional that constitutes a solution of Eq. (2.9) in its continuum

limit may be written, e.g., as

(2.14) F = F

(

Φexp [−v(x1)],

[
dv(x)

dx
dx

])

.

2.2. Description of turbulence in terms of the characteristic functional

Many attempts have been made to describe and to model the phenomenon of
turbulence. One of the possible approaches is to treat the turbulent velocity as
a random field and describe it in terms of probability density functions (pdf’s).
If a one-point pdf of velocity is considered, the expression P (v,x, t)dv denotes
the probability that the velocity vector u(x, t) is contained within the bounds

(2.15) v ≤ u ≤ v + dv.

Above, the elements of the sample space are denoted by v to distinguish them
from the physical variable u. One-point moments (or ensemble averages) of any
order can be computed from the pdf by integrating proper formulae over the
sample space. As an example, the triple correlation 〈uαuβuγ〉 at point x and for
time t is found from

(2.16) 〈uαuβuγ〉 =

∫

Ω

vαvβvγP (v,x, t)dv,

where
∫

Ω denotes an integration over the whole sample space. However, to fully
describe the turbulent velocity which is a random vector field, one must also
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take into account correlations between different points in space. The two-point
pdf P (v1,v2,x1,x2, t) carries information about the two-point one-time velocity
statistics, e.g., the correlation 〈uα(x1, t)uβ(x2, t)〉 is given by the formula

(2.17) 〈uα(x1, t)uβ(x2, t)〉 =

∫

Ω

vα1vβ1P (v1,v2,x1,x2, t)dv1dv2.

However, this information content is still insufficient to fully characterise the
turbulent flow. By increasing the number of points in the pdf, the amount of
data carried by this function increases. In the continuum limit the finite set of
the sample space variables becomes a continuous function of the spatial variable
x and we deal with the probability density functional P ([v(x)], t). The average
of any function of velocity is defined by the functional path integral [20] with
respect to v(x)

(2.18) 〈F (u)〉 =

∫

Ω

F (v)P ([v(x)], t)Dv(x).

Since the above formula is cumbersome for a practical use, the characteristic
functional Φ is introduced

(2.19) Φ([y(x)], t) =

∫

Ω

expi(y,v) P ([v(x)], t)Dv(x) = 〈expi(y,u)〉

where (y,u) =
∫

D uαyαdx is the scalar product of two vector fields; integration
is performed over the entire flow domain D. The characteristic functional is a
functional analogue of the characteristic function of a finite-dimensional prob-
ability distribution [21]. Solutions of Φ are admitted only if at any time t the
following conditions are fulfilled Φ∗([y(x)], t) = Φ(−[y(x)], t), Φ(0, t) = 1 and
|Φ([y(x)], t)| ≤ 1. These conditions follow from the properties of probability
density functional, which is strictly positive P ([v(x)], t) ≥ 0 and its integral over
the entire sample space equals 1. Multipoint moments of velocity of any order
are computed by taking the successive functional derivatives evaluated at y = 0.
The first functional derivative of Φ is given by

(2.20)
δΦ([y(x)], t)

δyα(x)
=

∫

Ω

ivα(x) expi(y,v) P ([v(x)], t)Dv(x)

= i〈uα(x) expi(y,u)〉

hence, at y = 0

(2.21)
δΦ([y(x)], t)

δyα(x)

∣
∣
∣
∣
∣
y=0

= i〈uα(x, t)〉.
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The k-th order derivatives of Φ give

(2.22)
δkΦ([y(x)], t)

δyα(x1)δyβ(x2) · · · δyγ(xn)

∣
∣
∣
∣
∣
y=0

= ik〈uα(x1, t)uβ(x2, t) · · ·uγ(xn, t)〉.

We now consider the case where the arguments of the functional Φ constitute a
sample space of the Fourier-transformed velocity v̂(k, t) in the unbounded flow
domain, as it is done in Sec. 4.1. for the 1D Burgers equation. The sample space
function will be denoted by z(k) to distinguish it from the Fourier-transformed
velocity v̂(k, t).

The multipoint velocity correlations are then found from the formula

(2.23) ik〈uα(x1, t)uβ(x2, t) · · ·uγ(xn, t)〉

=

∫

k1

∫

k2

· · ·
∫

kn

δnΦ([z(k)], t)

δzα(k1)δzβ(k2) · · · δzγ(kn)

exp
[
− i(k1x1 + k2x2 + · · · + knxn)

]
dk1dk2 · · · dkn

∣
∣
∣
∣
∣
z=0

.

The characteristic functional Φ fully describes the random field as all the mul-
tipoint statistics can be computed from it. The time evolution of Φ is described
by a functional differential equation. We do not present here the derivation of
this equation, an interested reader is referred to the papers [8, 9]. The func-
tional equation corresponding to the Burgers equation is considered in Sec. 4.1.
Although our final goal is to consider characteristic functional of turbulent veloc-
ity, we have first chosen the Burgers equation due to its simplicity in comparison
to the Navier–Stokes equations. We believe that this simplified example will bet-
ter illustrate an application of the extended group method which is presented in
the following section.

3. Extension of the Lie group analysis

3.1. Finite and infinitesimal transformations

In this section we recall the classical symmetry method ([1, 2, 3]) which can
be used to analyse the partial differential equation (2.5) and present its con-
tinuum extension for the functional differential equation (2.6). By “symmetry
transformation” we understand such transformation of variables which does not
change the functional form of the considered equation. This means that for ex-
ample, Eq. (2.6), in the old variables Φ, t, v(x) and the same equation written
in new, transformed variables Φ̄, t̄, v̄(x)

(3.1) F
(
[v̄(x)], t̄, Φ̄, Φ̄

1
, Φ̄

2
, . . . , Φ̄

q

)
= 0
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are equivalent. Note that x is not transformed in the present approach since it
constitutes a continuous “counting” parameter, such as a summation index in
the classical counterpart. Here, we consider only such transformations of varia-
bles which constitute Lie groups, i.e. they depend on a continuous parameter ε
and satisfy group properties (such as closure, associativity and the existence of
the unitary and inverse elements). Table 1 presents the comparison of a finite
one-parameter Lie point transformation for the classical and continuum formu-
lation.

Table 1. Comparison of one-parameter Lie point transformation for the classical
and continuum formulation.

classical formulation continuum formulation

i. Φ̄ = ψ(Φ, v1, . . . , vn, t, ε) Φ̄ = ψ(Φ, [v(x)], t, ε)
ii. v̄1 = φ1(Φ, v1, . . . , vn, t, ε) v̄(x) = φx(Φ, [v(x′)], x, t, ε), x ∈ G

...
...

v̄n = φn(Φ, v1, . . . , vn, t, ε)
iii. t̄ = φt(Φ, v1, . . . , vn, t, ε) t̄ = φt(Φ, [v(x)], t, ε)

As it can be seen, the transformed variables Φ̄, v̄(x), t̄ become functionals in
the continuum limit and depend on the infinite set of variables [v(x)]. It should
also be noted that instead of the finite set v̄1 . . . v̄n, in the continuum formulation
we define v̄(x) = Φx, which is an explicit function of the variable x, since v̄ de-
fines a new variable at each point x. This has important consequences for further
considerations. For the subsequent purpose of symmetry analysis all variables of
equation (2.5), i.e. the sets t, v1, . . . , vn, as well as Φ and all its possible deriv-
atives of any order will be treated as independent variables. Now, the following
differential operators are introduced:

D
Dt =

∂

∂t
+ Φ,t

∂

∂Φ
+ Φ,tt

∂

∂Φ,t
+

n∑

j=1

Φ,tvj

∂

∂Φ,vj

+ · · ·,(3.2)

D
Dvi

=
∂

∂vi
+ Φ,vi

∂

∂Φ
+

n∑

j=1

Φ,vivj

∂

∂Φ,vj

+ Φ,vit
∂

∂Φ,t
+ · · ·, i = 1, . . . , n.(3.3)

The partial derivatives, e.g., of the form ∂/∂t act only on the terms which
depend explicitly on t. Analogous definitions will be applied in the continuum
limit (2.6). The differential operators (3.2) and (3.3) have the following counter-
parts:

(3.4)
D
Dt =

∂

∂t
+ Φ,t

∂

∂Φ
+ Φ,tt

∂

∂Φ,t
+

∫

G

dxΦ,tv(x)
δ

δΦ,v(x)
+ · · ·,
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(3.4)
[cont.]

D
Dv(x)dx =

δ

δv(x)
+ Φ,v(x)

∂

∂Φ
+ Φ,v(x) t

∂

∂Φ,t

+

∫

G

dx′Φ,v(x)v(x′)
δ

δΦ,v(x′)
+ · · ·, x ∈ G

and the derivatives of Φ in terms of the new differential operators read:

(3.5)

Φ,t =
DΦ

Dt , Φ,v(x) =
DΦ

Dv(x)dx, Φ,v(x)v(x′) =
D

Dv(x)dx
DΦ

Dv(x′)dx′ ,

Φ,v(x)t =
D

Dv(x)dx
DΦ

Dt , Φ,tt =
D
Dt

DΦ

Dt .

Note that all derivatives in Eq. (3.5) are commutative. It is also important to
distinguish between x and x′ which denote different integration indices such as
i and j in two consecutive summations. In the Lie group method, the quantities
given by formulae (i), (ii), (iii) and derivatives of Φ̄ are written in a Taylor series
expansion about ε = 0. Their infinitesimal forms, after neglecting terms of order
O(ε2) are given in Table 2.

Table 2. Comparison of infinitesimal transformations for the classical and
continuum formulation.

classical formulation continuum formulation

iv. Φ̄ = Φ + η(Φ, v1, ..., vn, t) ε Φ̄ = Φ + η(Φ, [v(x)], t) ε
v. v̄1 = v1 + ξ1(Φ, v1, ..., vn, t) ε v̄(x) = v(x)

...
... +ξx(Φ, [v(x′)], x, t) ε, x ∈ G

v̄n = vn + ξn(Φ, v1, ..., vn, t) ε
vi. t̄ = t+ ξt(Φ, v1, ..., vn, t) ε t̄ = t+ ξt(Φ, [v(x)], t) ε
vii. Φ̄,t̄ = Φ,t + ζ;t(Φ, v1, ..., vn, t) ε Φ̄,t̄ = Φ,t + ζ;t(Φ, [v(x

′)], t) ε
viii. Φ̄,v̄1

= Φ,v1
+ ζ;v1

(Φ, v1, ..., vn, t) ε Φ̄,v̄(x) = Φ,v(x) + ζ;v(x)(Φ, [v(x
′)], x, t) ε

...
... x ∈ G

Φ̄,v̄n = Φ,vn + ζ;vn(Φ, v1, ..., vn, t) ε
...

... Φ̄,v̄(x)v̄(x′) = Φ,v(x)v(x′)

ix. Φ̄,v̄iv̄j
= Φ,vivj

+ζ;v(x)v(x′)(Φ, [v(x
′′)], x, x′, t) ε

... + ζ;vivj
(Φ, v1, ..., vn, t) ε x, x′ ∈ G

A few notation particularities should be mentioned. Indices of ζ are sepa-
rated by a semicolon to distinguish them from derivatives. Functional ξx which
denotes infinitesimals corresponding to u is an explicit function of x. The same
dependence holds true for infinitesimals corresponding to the functional deriva-
tives of Φ, such as ζ;v(x). In these cases the index of the set [v(x)] has been given
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a different name such as [v(x′)] to avoid confusion with the parameter x. The re-
maining infinitesimals do not depend on x explicitly. The key property of the Lie
group method is that the finite transformations, given by the formulae (i)–(iii),
can be computed from their infinitesimal forms (iv)–(vi) (cf. [22]). According to
the first Lie theorem, the finite form of the transformation can be obtained by
integrating the first-order system of equations. For the continuum formulation
this system takes the form:

(3.6)
dΦ̄

dε
,

dΦ̄

dε
,

dv̄(x)

dε
, x ∈ G,

where the latter equations should be integrated with the initial condition

(3.7) ε = 0 : Φ̄ = Φ, t̄ = t, v̄(x) = v(x).

Now, to calculate the new, transformed variables Φ̄, v̄(x), t̄ from Eq. (3.6)
it is first necessary to find the infinitesimal forms η, ξt, ξx. To do this we
should first express the infinitesimals ζ in terms of η, ξt, ξx and independent
variables t, [v(x)],Φ. For this purpose, in the classical formulation, the diffe-
rential operators (3.2) and (3.3) are applied to the transformed variable Φ̄ =
ψ(Φ, v1, · · · , vn, t, ǫ)

(3.8)
Dψ
Dvi

=
n∑

k=1

Dφk

Dvi

D̄Φ̄

D̄v̄k
+

Dφt

Dvi

D̄Φ̄

D̄t̄ =
n∑

k=1

Φ̄,v̄k

Dφk

Dvi
+ Φ̄,t̄

Dφt

Dvi
;

a continuum counterpart of the above relation becomes

(3.9)
Dψ

Dv(x)dx =

∫

G

Φ̄,v(x′)
Dφx′(Φ, [v(x)], x′, t, ε)

Dv(x)dx dx′ + Φ̄,t̄
Dφt

Dv(x)dx.

When the infinitesimal forms (iv)–(viii), are introduced into equation (3.9) we
obtain:

(3.10)
D(Φ + ηε)

Dv(x)dx =

∫

G

(

Φ,v(x′) + ζ;v(x′)ε
)D(v(x′) + ξx′ε)

Dv(x)dx dx′

+
(

Φ,t + ζ;tε
)D(t+ ξtε)

Dv(x)dx .

Equation (3.10) can be further split into two equations, containing terms
O(1) and O(ε), respectively. The first of the two gives the identity

(3.11)
DΦ

Dv(x)dx = Φ,v(x).
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From O(ε) we obtain a formula for the infinitesimal ζ;v(x)

(3.12) ζ;v(x) =
Dη

Dv(x)dx −
∫

G

Φ,v(x′)
Dξx′

Dv(x)dxdx
′ − Φ,t

Dξt
Dv(x)dx.

By analogy, formula for the infinitesimal ζ;t can be found:

(3.13) ζ;t =
Dη
Dt −

∫

G

φ,v(x′)
Dξx′

Dt dx
′ − Φ,t

Dξt
Dt .

The infinitesimals of higher orders will follow from the recursive formulae:

(3.14)
Dψ,v(x(1))...v(x(s−1))

Dv(x(s))dx(s)
=

∫

G

Φ̄,v(x(1))...v(x(s−1))v(x)

Dφx

Dv(x(s))dx(s)
dx

+ Φ̄,v(x(1))...v(x(s−1))t

Dφt

Dv(x(s))dx(s)
.

or

(3.15)
Dψ,v(x(1))...v(x(s−1))

Dt =

∫

G

Φ̄,v(x(1))...v(x(s−1))v(x)

Dφx

Dt dx

+ Φ̄,v(x(1))...v(x(s−1))t

Dφt

Dt .

Hence, at this point, we have derived the formulae which express the infinitesi-
mals ζ;t, ζ;v(x) etc. in terms of η, ξx, ξt and t, [v(x)], Φ. These formulae will be
used in the following section; the whole procedure will finally lead to an equation,
which will determine the forms of infinitesimal transformations η, ξx, ξt.

3.2. Generator X and its prolongations

Once all the necessary infinitesimal forms are obtained, they can be substi-
tuted into the Eqs. (2.5) or (2.6) written in the transformed variables. In order
to simplify notation we will assume that Eqs. (2.5) and (2.6) contain derivatives
up to the second order only. Generalization of the following relations to the case
of higher-order derivatives is straightforward. After expansion of Eq. (3.1) in
Taylor series about ε = 0 in both the classical and continuum formulations, the
expanded equation has the form:

(3.16) F + εX(2)F +
ε2

2

[

X(2)
]2
F +O(ε3) = 0
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where X(2) is called the prolongation of the generator X of the second order. In
the classical formulation the generator X is given by

(3.17) X = η
∂

∂Φ
+ ξt

∂

∂t
+

n∑

j=1

ξj
∂

∂vj
.

Here, we consider only the prolongation of the second order because, as it was
assumed, Eqs. (2.5) and (2.6) contain derivatives up to the second order only. In
the classical formulation X(2) is given by the formula

(3.18) X(2) = η
∂

∂Φ
+ ξt

∂

∂t
+

n∑

j=1

ξj
∂

∂vj
+ ζ;t

∂

∂Φ,t
+

n∑

j=1

ζ;vj

∂

∂Φ,vj

+ ζ;tt
∂

∂Φ,tt
+

n∑

j=1

ζ;vjt
∂

∂Φ,vjt
+

n∑

j=1

n∑

k=1

ζ;vjvk

∂

∂Φ,vjvk

.

The corresponding formulae for the continuum limit are given by

(3.19) X = η
∂

∂Φ
+ ξt

∂

∂t
+

∫

G

dx ξx
δ

δv(x)

and

(3.20) X(2) = η
∂

∂Φ
+ ξt

∂

∂t
+

∫

G

dx ξx
δ

δv(x)
+ ζ;t

∂

∂Φ,t
+

∫

G

dx ζ;v(x)
δ

δΦ,v(x)

+ ζ;tt
∂

∂Φ,tt
+

∫

G

dx ζ;v(x)t
δ

δΦ,v(x)t
+

∫

G

∫

G

dx dx′ζ;v(x)v(x′)
δ

δΦ,v(x)v(x′)
.

The first term in Eq. (3.16) equals zero, as follows from the Eqs. (2.5) or (2.6).
All the remaining terms [X(2)]n in (3.16), representing a successive application
of X(2) will be zero if the following relation holds

(3.21) X(2)F = 0.

In order to find the infinitesimal transformations we use the condition

(3.22)
[

X(2)F
]∣
∣
∣
F=0

= 0

where, in the continuum formulation, the prolongation X(2) is expressed by for-
mula (3.20) and the forms of infinitesimals ζ are found from relations
(3.12)–(3.15). The resulting condition constitutes an overdetermined system of
linear differential equations. In the continuum limit we obtain a set of functional
differential equations. This system can be finally solved for the infinitesimals η,
ξt and ξx.
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3.3. Invariant solutions

If the functional differential equation (2.6) admits a symmetry given by the
generator (3.19), then a solution Φ = Θ(t, [v(x)]) of this equation is called an
invariant solution if it satisfies the relation

(3.23) X [Φ −Θ (t, [v(x)])] = 0.

After employing (3.19) and expanding the derivatives, the following, hyperbolic
functional equation is obtained from (3.23)

(3.24) ξt
∂Θ

∂t
+

∫

G

ξx
δΘ

δv(x)
dx = η.

This equation can be solved by the method of characteristics. The corresponding
system of equations reads

(3.25)
dt

ξt
=
dΦ

η
=
δv(x)

ξx
for each x ∈ G.

Above, Θ has been replaced by Φ. Note that the last term in fact corresponds
to an infinite set of equations for each point in G. The infinite set of constants,
which is a solution of the above system, can be employed as new variables in
Eq. (2.6). In the considered case one of them, say C1, will be a dependent variable
and the rest will constitute a set of independent variables; the following relation
holds

(3.26) C1 = H(C2, [C(x)]),

where H is an arbitrary functional. After the process of solving the character-
istic system for a partial differential equation with a finite set of variables, the
number of independent variables is reduced by one. In the case of functional
differential equations in formula (3.26), one variable will be excluded from a set
(C1, C2, [C(x)]), x ∈ G/{x1} however, the total number of variables remains
infinite.

4. Application of the extended group method

4.1. Group analysis of the Hopf formulation of the Burgers equation
in the inviscid case

The extended Lie group method will now be applied to the functional formu-
lation of the Burgers equation. The 1D Burgers equation in the physical space
reads

(4.1)
∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= µ

∂2u(x, t)

∂x2 .
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In the present paper we consider the Fourier transform of Eq. (4.1) in the infinite
domain

(4.2)
∂v̂(k, t)

∂t
= i

∫

k′+k′′=k

k′′v̂(k′, t)v̂(k′′, t) dk′ − µk2v̂(k, t),

where v̂(k, t) is a Fourier transform of a real variable u(x, t).
We further assume that µ = 0 and consider the inviscid case only. The Hopf

functional formulation (cf. [8]) of the Burgers equation reads

(4.3)
∂Φ

∂t
=

∫

k′

∫

k′′

k′′z(k′ + k′′)
δ2Φ

δz(k′)δz(k′′)
dk′ dk′′ − µ

∫

k

k2z(k)
δΦ

δz(k)
dk,

where Φ([z(k)], t) is the characteristic functional which depends on the infinite
set of variables [z(k)] (a sample space of the Fourier-transformed velocity v̂(k, t))
and time.We will exclude here the mode z(k = 0) from the considerations. Such
assumption was also made by Hopf [8]; in the case of Navier–Stokes equations
this corresponds to the zero mean velocity in the domain. In the continuum
formulation the generator (cf. Eq. (3.17)) applied to Eq. (4.3) has the form

(4.4) X = η
∂

∂Φ
+ ξt

∂

∂t
+

∫

k

dk ξk
δ

δz(k)
,

where the infinitesimals η, ξt and ξk are functionals; ξk is also an explicit function
of k. The prolongation of the generator X(2) (cf. Eq. (3.20)) for the considered
functional equation is given by

(4.5) X(2) = η
∂

∂Φ
+ ξt

∂

∂t
+

∫

k

dk ξk
δ

δz(k)
+ ζ;t

∂

∂Φ,t

+

∫

k

dk ζ;z(k)
δ

δΦ,z(k)
+

∫

k

dk

∫

k′

dk′ ζ;z(k)z(k′)
δ

δΦ,z(k)z(k′)
,

where any unneeded ζ has been omitted. Applying (4.5) to (4.3), the first two
terms of (4.5) have no effect, the fourth one acts on Φ,t to lead to ζ;t, while the
third and the last term in (4.5) act on the integral term in Eq. (4.3). As a result
we obtain

(4.6) ζ;t −
∫

k

∫

k′

k ξk+k′ Φ,z(k)z(k′)dk dk
′ −
∫

k

∫

k′

k z(k + k′)ζ;z(k)z(k′)dk dk
′ = 0.

Into the above equation we substitute the infinitesimals ζ;t, ζ;z(k)z(k′) which
can be found from Eqs. (3.12)–(3.14) and the differential operators D/Dt and
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D/Dz(k)dk from Eqs. (3.4). One also makes use of the considered equation (4.3)
by substituting for Φ,t

(4.7) Φ,t =

∫

k

∫

k′

kz(k + k′)Φ,z(k)z(k′) dk dk
′.

The final form of the equation is lengthy and is not given here. We only note
that the terms η, ξt, ξx do not depend on the derivatives of Φ, hence from the
equation the following system of differential equations can be obtained, where
on the left-hand side the coefficient function is written:

Φ,z(k)tΦ,z(k′) :
∂ξt
∂Φ

= 0,(4.8)

Φ,z(k)t :
δξt
δz(k)

= 0, for each k,(4.9)

Φ,z(k)z(k′)Φ,z(k′′) :
∂ξk
∂Φ

= 0, for each k,(4.10)

Φ,z(k)Φ,z(k′) :
∂2η

∂Φ2 = 0,(4.11)

(4.12) Φ,z(k)z(k′) : − (k + k′)z(k + k′)
∂ξt
∂t

− (k + k′) ξk+k′

+

∫

k′′

(k + k′′)z(k + k′′)
δξk′

δz(k′′)
dk′′+

∫

k′′

(k′+ k′′)z(k′+ k′′)
δξk

δz(k′′)
dk′′= 0,

for each k and k′,

(4.13) Φ,z(k) :
∂ξk
∂t

+

∫

k′

(k + k′)z(k + k′)
∂2η

∂Φ∂ z(k′) dk′
dk′

−
∫

k′

∫

k′′

k′′z(k′ + k′′)
δ2ξk

δz(k′)δz(k′′)
dk′ dk′′ = 0,

for each k,

(4.14) 1 :
∂η

∂t
−
∫

k

∫

k′

kz(k + k′)
δ2η

δz(k)δz(k′)
dk dk′ = 0.
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We note that relations (4.8)–(4.11) give:

ξt = ξt(t),(4.15)

ξk = ξk([z(k
′)], k, t),(4.16)

η = f1([z(k)], t)Φ + f2([z(k)], t).(4.17)

It is left for further considerations to find a complete, general solution of the
system (4.8)–(4.14). So far, we have found a number of particular solutions for
the infinitesimals η, ξt and ξk; here we restrict ourselves to one of them which is
of our interest here:

ξt = 0,(4.18)

ξk = kz(k),(4.19)

η = 0.(4.20)

From these infinitesimals we find a particular solution of the considered func-
tional equation (4.3).

4.2. Invariant solutions of the Hopf formulation of the Burgers equation

As it was presented in Sec. 3.3, an invariant solution of a functional differen-
tial equation (in our case Φ = Θ(t, [z(k)])) can be determined from a hyperbolic
functional equation (3.24) which can be solved by the method of characteris-
tics with the corresponding system of equations (3.25). This is analogous to
the procedure used in the group analysis of partial differential equations (Refs.
[1, 2, 3]). In our case, for the infinitesimals (4.18)–(4.20) where ξt = 0 and η = 0,
the system (3.25) is written in the following, shorthand notation

(4.21)
δt

0
=
δz(k)

k z(k)
=
δΦ

0
for each k,

which is equivalent, e.g., to following equations

δt = 0,(4.22)

δΦ = 0,(4.23)

δz(k)

k z(k)
=

δz(k1)

k1 z(k1)
for each k 6= k1,(4.24)

where k1 can be, e.g., a selected point in the wavenumber space. However, an
interesting solution is obtained if we choose k1 = −k. In such a case we solve
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the system for the pairs k and −k

δz(k)

k z(k)
=

δz(−k)
−k z(−k) for k > 0(4.25)

which further leads to

(4.26) ln[z(k)] = − ln[z(k)] +A(k),

where A(k) is an infinite set of integration constants. The above formula can be
rearranged to give a new set of variables C(k)

(4.27) C(k) = z(k)z(−k).

The remaining integration constants of Eqs. (4.22) and (4.23) are τ = t and
Φ = Φ. We note that in a discrete case, e.g. with 2N +1 variables z−N , · · · , z−1,
z0, z1, · · · , zN , solving (4.25) would provide only N new variables.

Hence, additional equations would be necessary, so that the total number of
variables would be reduced by one after solving the hyperbolic system. However,
we did not consider so far any restrictions on z(k); as z(k) is a Fourier transform
of a real field, the condition z(−k) = z∗(k) must be satisfied. Hence, the vari-
ables z(k) and z(−k) are not independent and we argue that C(k) and τ fully
parametrise the functional Φ.

The integration constant Φ is considered as a new dependent variable, while
the remaining ones constitute a set of independent variables. Hence, the invariant
solution will be of the form

(4.28) Φ = F ([C(k)], τ) = F ([z(k)z∗(k)], τ) = F ([z(k)z(−k)], τ)

which will now be substituted back into Eq. (4.3). Before it is done we first
compute the second functional derivative of F with respect to z(k) and z(k′).
The first derivative of F reads

δF

δz(k)
=

∫

k′′

δF

δC(k′′)

δC(k′′)

δz(k′)
dk′′ =

∫

k′′

δF

δC(k′′)

[
z(−k′′) δ(k − k′′)

+ z(k′′) δ(−k − k′′)
]
dk′′ = 2

δF

δC(k)
z(−k).

After the second functional differentiation with respect to z(k′) we obtain

δ2F

δz(k) δz(k′)
= 4z(−k)z(−k′) δ2F

δC(k) δC(k′)
+ 2δ(k + k′)

δF

δC(k′)
.
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Hence, Eq. (4.3) becomes

∂F

∂t
=

∫

k

∫

k′k z(k + k′)

[

4z(−k)z(−k′) δ2F

δC(k) δC(k′)
+ 2δ(k + k′)

δF

δC(k′)

]

dkdk′

the second term on the RHS is zero as z(k = 0) is excluded from the considera-
tions. After the change of variables (k → −k) and (k′ → −k′), the above formula
reads

(4.29)
∂F

∂t
= −4

∫

k

∫

k′

k z(−k − k′)z(k)z(k′)
δ2F

δC(k) δC(k′)
dkdk′

where we also have used the fact that C(k) = C(−k) as follows from (4.27). We
can further write the RHS integral as a surface integral over k and k′ such that
k + k′ + k′′ = 0

(4.30)
∂F

∂t
= −4

∫ ∫

k+k′+k′′=0

k z(k′′)z(k)z(k′)
δ2F

δC(k) δC(k′)
dS

= −4

∫ ∫

k+k′+k′′=0

k′′ z(k)z(k′′)z(k′)
δ2F

δC(k′′) δC(k′)
dS

where dS = dk dk′ = dk dk′′ = dk′′ dk′. The second equality is obtained by the
change of the variables k → k′′. It can be shown that the following relation is
also true:

(4.31) 2
∂F

∂t
= 4

∫ ∫

k+k′+k′′=0

k′′ z(k′′)z(k)z(k′)
δ2F

δC(k) δC(k′)
dS.

The above can be derived by changing the variables k → k′ in Eq. (4.29) and
adding the resulting formula to (4.29). After adding both Eqs. (4.30) and (4.31)
we arrive at

(4.32) 3
∂F

∂t
= 4

∫ ∫

k+k′+k′′=0

k′′ z(k′′)z(k)z(k′)

(
δ2F

δC(k) δC(k′)

− δ2F

δC(k′′) δC(k′)

)

dS.

If the invariant solution substituted into Eq. (4.3) leads to the reduction of
variables, Eq. (4.32) should be written in terms of C(k) = z(k)z(−k). This is
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not the case in the above example unless the bracketed term inside the integral
is zero. If we exclude a linear solution of F which is not of our interest here, we
have

(4.33)
δF

δC(k)
=

δF

δC(k′′)

which is true provided that F is a functional with the argument
∫
C(k)dk. If the

RHS of (4.32) is zero it follows that also the time derivative of the functional F
is zero, hence, we obtain a solution for the stationary case. Its final form reads

(4.34) Φ = F

(∫

C(k)dk

)

= F

(∫

z(k)z(−k)dk
)

.

We note here that the same form of solution was found by Hopf [8] for the func-
tional formulation of the Navier–Stokes equations in the inviscid and stationary
case. Here, we have shown that this is also an invariant solution for the Hopf
formulation of the Burgers equation which can be derived from its symmetries.
We note that the solution was obtained by a strictly determined procedure where
no guessing of its form was necessary. This is one of the advantages of the sym-
metry analysis which can be used as a powerful mathematical tool for analysing
different types of equations.

By looking for the solution of the Hopf formulation of an equation, we have
to take into account the restrictions imposed on the characteristic functional,
i.e. Φ∗([z(k)]) = Φ([−z(k)]), |Φ| ≤ 1 and Φ(0) = 1. An example of the invariant
solution which satisfies those restrictions may be given by

(4.35) Φ = exp

(

−κ
2

2

∫

z(k)z(−k)dk
)

= exp

(

−κ
2

2

∫

z(k)z∗(k)dk

)

where κ is a given constant. This solution represents a characteristic functional
of a Gauss distribution [8], where the fluctuations at different points of the field
are independent. If formula (2.23) is applied to find the first and second-order
statistics of the field u(x), we obtain

〈u(x)〉 = 0,(4.36)

〈u(x)u(x′)〉 = κ2

∫

k

exp [−ik(x− x′)]dk = κ2δ(x− x′).(4.37)

It is seen from the second equation that the spectral energy density has a constant
value κ2 for all wavenumbers k; this may be a consequence of neglecting viscosity
in Eq. (4.3). The two-point correlations become a Dirac delta function; this also
proves that the fluctuations of the considered field u(x) are independent if x 6= x′.
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Unfortunately, such solution is rather irrelevant from the physical point of view.
So far, we have only illustrated how the extended group method can be applied
to a functional differential equation. We have shown that it leads to the new
forms of variables, cf. Eq. (4.27), and to the analytical solution of the equation.
We hope to find more interesting, physical results by considering the Burgers
equation with viscosity, as well as by considering the Hopf formulation of the
Navier–Stokes equations.

5. Conclusions and perspectives

In the present paper the classical, point-symmetry group analysis is extended
from partial differential equations to their counterparts in the continuum limit.
In particular, we introduce the procedure of applying symmetry analysis to the
case when functional derivatives are present in the equation.

As an example we consider the Hopf functional formulation of the Burg-
ers equation, Eq. (4.3). We perform the symmetry analysis extended for the
functional differential equations and find the symmetry transformations Eqs.
(4.18)–(4.20). By solving the hyperbolic equation with the derived infinitesimals,
interesting invariant solutions of the equation can be found.

The most significant result of the paper consists in the demonstration that a
particular solution of the functional equation found by Hopf [8] for the station-
ary and inviscid case, Eq. (4.34), can also be derived from the symmetry analysis
by a strictly determined way of reasoning where no guessing is necessary. The
solution represents a characteristic functional of a Gaussian distribution. The
spectral energy density of the field has a constant value for all wavenumbers. We
expect to obtain more relevant, physical results from the group analysis when
viscosity is included in the functional equation. This is a perspective for the
future work.

The Burgers equation is sometimes considered as a simplified model of the
Navier–Stokes equations. Hence, another perspective is to investigate the Hopf
formulation of the Navier–Stokes equations by the symmetry method. We hope
to find information about the moments of the solutions of the Navier–Stokes
equations by considering the invariant solutions of the corresponding functional.
The presented extension of the Lie groups can be a useful tool for the analysis
of functional equations. The method can be further extended to the case where
both types of derivatives: functional with respect to a given v(x) and partial
with respect to x, are present in the equation. This is also left for future work.
We believe that the new approach is highly relevant to a variety of important
functional differential equations (FDE) in physics, especially in the classical and
quantum field theories [23]. Generally speaking, very little is known on how
to analytically treat and solve FDEs (numerical treatment is difficult anyway



On the extension of Lie group 617

because of the high dimensionality). Hence, the methods may give a chance to
treat equations which so far have been put aside because of the missing analytical
methods. In fact, the benefit is twofold since the symmetries not only allow for
analytical solutions but are also useful in themselves, since symmetries illuminate
the properties of the physical model equations.
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