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The onset of surface-tension-driven convection is studied in a two-layer system com-
prising an incompressible fluid-saturated porous layer over which lies a layer of the
same fluid. The lower rigid surface of the porous layer is either perfectly heat con-
ducting or insulating, while the upper heat insulating fluid boundary is free and at
which the surface tension effects are allowed for. At the contact surface between the
fluid-saturated porous medium and the adjacent bulk fluid, both Beavers-Joseph and
the Jones conditions are employed. The resulting eigenvalue problem is solved exactly.
Besides, analytical expression for the critical Marangoni number is obtained for in-
sulating boundaries by using regular perturbation technique. The effect of variation
of different physical parameters on the onset of Marangoni convection is investigated
in detail. It is found that the parameter ζ, the ratio of the thickness of the fluid layer
to that of the porous layer, has a profound effect on the stability of the system.

1. Introduction

One of the convective instabilities that has been studied extensively
by many researchers over the years is the onset of convection in a thin layer of
fluid heated from below. The instability in such a fluid layer may either be due to
buoyancy driven convection, known as Rayleigh–Benard convection, or may be
due to surface tension driven convection at the upper free surface, referred to as
Marangoni convection. The Benard or Marangoni or coupled Benard–Marangoni
type of convective instability in a fluid layer has been studied in detail because of
its applications in many scientific and engineering problems (see Pearson [1],
Nield [2], Rudraiah et al. [3], Char and Chen [4] and references therein).
The convective instability in a porous layer due to buoyancy, known by Darcy–
Benard convection, has also received equal interest as found in the literature
owing to its natural occurrence and relevance in various fields such as chemical
engineering, industrial engineering, soil mechanics, geophysics, to mention a few
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(for details see Nield and Bejan [5] and Vafai [6]). A limited effort has also
been put into understand Marangoni convection in porous media, but it is still
in an infancy stage (Hennenberg et al., [7], and Rudraiah and Prasad [8]).

However, rapid developments in modern technology during the recent years
have posed challenges in studying convective instability problems in more com-
plicated two- and multilayer fluid dynamical systems. The use of such composite
systems can be found, for example, in the following applications: manufacture
of composite materials used in aircraft structures and automobile industries,
geophysics, bioconvection, nuclear reactors, solid-matrix heat exchangers, direc-
tional solidification of alloys and electronics cooling. There are several investi-
gations pertaining to convective instability in a two-layer system composed of
a fluid-saturated porous layer over which lies a fluid layer and also different
systems of superposed porous and fluid layers.

Nield [9] was the first to study the onset of convection in superposed fluid
and porous layers when the system is bounded by two horizontal heat insulting
boundaries. The thermal stability for different systems of superposed porous and
fluid regions has also been analysed by Taslim and Narusawa [10]. McKay [11]
has considered the onset of buoyancy-driven convection in superposed reacting
fluid and porous layers. Straughan [12, 13] has studied a fundamental model
for convection in a porous-fluid layer system developed originally by Nield [9].
He has obtained the eigenvalues and eigenfunctions numerically by utilizing the
Chebyshev tau method. In particular, the effect of surface tension is also allowed
for in the former paper, while in the latter, the effect of variation of properties
of relevant fluid and porous material on the control of convection is discussed
by considering the upper surface to be fixed or stress-free. Chen [14] has inves-
tigated the effect of throughflow on the onset of thermal convection in a fluid
layer overlying a porous layer, with an idea of understanding the control of con-
vective instability by the adjustment of throughflow. Khalili et al., [15] have
obtained the closed-form solution for Chen’s model by considering upper and
lower boundaries as heat insulating. The coupled capillary and gravity-driven
instability in a fluid layer overlying a porous layer has been studied by Desaive
et al., [16] using Brinkman’s model to describe the flow in the porous medium.
Recently, Carr [17] has studied penetrative convection via internal heating in
a two-layer system in which a layer of fluid overlies and saturates the porous
medium.

In the present study, the onset of convection in a composite porous-fluid lay-
ers system heated from below is considered only due to temperature-dependent
surface tension forces at the upper free surface of the fluid layer and neglect-
ing the effect of buoyancy forces. The problem under investigation helps in
better understanding of the Marangoni convection in a fluid-saturated porous
layer, as pointed out by Nield [18] apart from its importance in many prac-
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tical applications mentioned earlier. The flow in the fluid layer is governed
by Navier–Stokes equation, while the Darcy equation is used to describe the
flow regime in the porous medium. The upper heat insulating fluid surface is
open to free atmosphere and convection driven by surface tension is allowed
for. The bottom boundary of the porous layer is considered to be rigid and ei-
ther perfectly heat conducting or insulating. The contentious issue here is about
the use of proper conditions at the contact surface between the fluid-saturated
porous medium and the adjacent bulk fluid, which depend on the type of equa-
tion used to describe the flow in the porous medium. If the flow in the porous
medium is governed by Darcy equation, then the well-established classical fluid
slip velocity condition postulated by Beavers and Joseph [19] is proved to
be more successful. For a Brinkman-type equation, however, the presence of
viscous stress term does not allow to formulate the proper compatibility condi-
tions for stresses at the contact surface of fluid-saturated porous medium and
the bulk fluid. One of the main problems of the compatibility conditions on
such a boundary is to determine viscous interactions of the bulk fluid with the
porous skeleton and fluid filling its pores during its flow tangent to the boundary
surface. This interesting problem has been analyzed recently by Cieszko and
Kubik [20]. They have derived compatibility conditions for the tangential com-
ponents of relative fluid flow velocities at the contact surface. It is shown that
the results obtained from their linear compatibility conditions compare better
with the experimental results than those obtained using the Beavers-Joseph slip
condition.

Since we have adopted Darcy’s law in the porous medium, both the Beavers–
Joseph and the Jones [21] conditions are used in the present study. These con-
ditions can be succinctly written in the following form:

∂u

∂z
+ χ

∂w

∂x
=

α√
k

(u− um) ,(1.1)

∂v

∂z
+ χ

∂w

∂y
=

α√
k

(v − vm) ,(1.2)

where u and v are respectively the horizontal x and y components of the fluid
velocity, while um and vm are the equivalent components in the porous medium,
α is the dimensionless material constant called the slip parameter and χ is a con-
stant taking the value 0 for the Beavers–Joseph condition and 1 for the Jones
condition. The linearized stability equations with accompanying boundary con-
ditions are solved exactly. The critical Marangoni number and the corresponding
wave number are determined over a wide range of physical parameters of the sys-
tem. Besides, the solution to the eigenvalue problem is also sought for by regular
perturbation technique in the case of insulating boundaries.
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The paper is organized as follows. Secion 2 is devoted to the formulation of
the problem. The methods of solution to the resulting eigenvalue problem are
discussed in Sec. 3 and the results are discussed in Sec. 4.

2. Formulation of the problem

Let us consider the physical configuration consisting of an infinite horizontal
incompressible fluid-saturated porous layer of thickness dm underlying a layer of
the same fluid of thickness d, as shown in Fig.1.

Fig. 1. Geometrical configuration of the system.

The bottom surface of the porous layer is rigid while the upper fluid surface
is free to the atmosphere, with a linear dependence of the surface tension on
temperature in the form [1]

(2.1) σ = σ0 − σT (T − T0),

where σ0 is the surface tension of the fluid at temperature T0 and the constant
rate of change of surface tension with temperature, σT , is assumed to be positive.
Also, the free surface has been assumed to remain flat (undeformed). A Cartesian
coordinate system (x, y, z) is chosen such that the origin is at the interface
between the bulk fluid layer and the fluid-saturated porous layer and the z-axis
points vertically upwards. The temperatures of the lower and upper boundaries
are taken to be uniform and equal to Tl and Tu, respectively, with Tl > Tu.
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The governing equations for the fluid layer are:

∇ · q = 0,(2.2)

ρ0

[
∂q

∂t
+ (q · ∇)q

]
= −∇p+ µ∇2q,(2.3)

∂T

∂t
+ (q · ∇)T = κ∇2T(2.4)

and those for porous layer they are:

∇m · qm = 0,(2.5)

ρ0

φ

∂qm

∂t
= −∇mpm − µ

K
qm,(2.6)

S
∂Tm

∂t
+ (qm.∇m)Tm = κm ∇2

m Tm.(2.7)

In the above equations, q = (u, v, w) is the velocity vector, T is the temper-
ature, µ is the dynamic viscosity, p is the pressure, ρ0 is the fluid density,
K is the permeability of the porous medium, κ is the thermal diffusivity of
the fluid, ϕ is the porosity of the porous medium, S = (ρ0cp)m/(ρ0cp)f =
[φ(ρ0cp)f + (1 − φ) (ρ0cp)s]/(ρ0cp)f is the ratio of heat capacities of the fluid-
saturated porous medium to that of the fluid, cp is the specific heat and the
subscripts m, f and s refer to the porous medium, fluid and solid, respectively.

The basic steady state is assumed to be quiescent and we consider the solution
of the form

(u, v, w, p, T ) = [0, 0, 0, pb(z), Tb(z)]

in the fluid layer, and

(um, νm, wm, pm, Tm) = [0, 0, 0, pmb(zm), Tmb(zm)],

in the porous layer, where the subscript b denotes the basic state. The tempera-
ture distributions Tb (z) and Tmb (zm) are found to be

Tb (z) = T0 −
(T0 − Tu) z

d
0 ≤ z ≤ d,(2.8)

Tmb (zm) = T0 −
(Tℓ − T0) zm

dm
− dm ≤ zm ≤ 0,(2.9)

where T0 = (κmTℓd+ κTudm) / (κmd+ κdm) is the interface temperature.
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In order to investigate the stability of the basic solution, infinitesimal distur-
bances are introduced in the form

(2.10) (u, v, w, p, T ) = [0, 0, 0, pb (z) , Tb (z)] +
(
u′, v′, w′, p′, T ′

)
,

(2.11) (um, vm, wm, pm, Tm) = [0, 0, 0, pmb(zm), Tmb(zm)]

+
(
u′m, v

′

m, w
′

m, p
′

m, T
′

m

)
,

where the primed quantities are the perturbed ones over their equilibrium coun-
terparts.

Now Eqs. (2.10) and (2.11) are substituted in Eqs. (2.2)–(2.7) and linearized
in the usual manner. Next, the pressure term is eliminated from Eqs. (2.3) and
(2.6) by taking curl twice on these two equations and only the vertical component
is retained. The variables are then nondimensionalized using d, d2/κ, κ/d and
T0 − Tu as the units of length, time, velocity and temperature in the fluid layer
and dm, d

2
m/κm, κm/dm and Tℓ−T0 as the corresponding characteristic quantities

in the porous layer. Note that separate length scales are chosen for the two layers
so that each layer is of unit depth. In this manner, the detailed flow fields in both
the fluid and porous layers can be clearly discerned for all depth ratios, ζ = d/dm.
The dimensionless equations for the perturbed variables are given by

[
1

Pr

∂

∂t
−∇2

]
∇2w = 0,(2.12)

[
∂

∂t
−∇2

]
T = w,(2.13)

[
Da

Prm

∂

∂t
+ 1

]
∇2

mwm = 0,(2.14)

[
S
∂

∂t
−∇2

m

]
Tm = wm.(2.15)

For the fluid layer, Pr = v/κ is the Prandtl number, ∇2 = ∂2/∂x2 + ∂2/∂y2

+ ∂2/∂z2 is the Laplacian operator and for the porous layer Prm = v/κmφ
is the Prandtl number, Da = K/d2

m is the Darcy number and ∇2
m = ∂2/∂x2

m

+∂2/∂y2
m+∂2/∂z2

m. To solve the set of Eqs. (2.12)–(2.15), we need ten boundary
conditions, which are detailed below.

The bottom boundary of the porous layer (zm = −1) is assumed to be rigid
and either perfectly heat–conducting or insulating, so that

(2.16) wm = 0, Tm = 0 at zm = −1,
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or

(2.17) wm = 0,
∂Tm

∂zm
= 0 at zm = −1.

The upper free surface of the fluid layer (z = 1) at which convection driven by
temperature-dependent surface tension forces is allowed for and considered to be
insulating, so that

(2.18) w = 0,
∂T

∂z
= 0 at z = 1

and the balance between shear stresses and surface tension gradients, written in
the non-dimensional form, give

(2.19)

∂u

∂z
= −M∂T

∂x

∂v

∂z
= −M∂T

∂y

at z = 1,

where M = σT (T0 − Tu) d/µκ is the Marangoni number. Equations (2.19) are
differentiated partially with respect to x andy respectively, and the results are
added to get, after using Eq. (2.2), the following condition:

(2.20)
∂2w

∂z2
= M∇2

hT at z = 1,

where ∇2
h = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator.

At the interface (i.e., at z = 0) the normal component of velocity, tempera-
ture and heat flux are continuous, which yield

w =
ζ

εT
wm,(2.21)

T =
εT
ζ
Tm,(2.22)

∂T

∂z
=
∂Tm

∂zm
.(2.23)

We note that two more conditions are required at z = 0. To derive these con-
ditions we start with Eqs. (1.1) and (1.2). Differentiating Eqs. (1.1) and (1.2)
partially with respect to x and y respectively, adding the resulting equations and
using Eqs. (2.2) and (2.5), the condition in non-dimensional form is

(2.24)
∂2w

∂z2
− χ∇2

hw =
αζ√
Da

∂w

∂z
− α ζ3

εT

[
1√
Da

]
∂wm

∂zm
at z = 0,
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where εT = κ/κm is the ratio of thermal diffusivities. Further, the continuity of
normal stress at the interface requires that

(2.25) pm = p− 2µ
∂w

∂z
at z = 0.

We differentiate Eq. (2.25) partially with respect to x and y and substitute for
∂p/∂x and ∂p/∂y from Eq. (2.3), and for ∂pm/∂xm and ∂pm/∂ym from Eq. (2.6).
After using Eqs. (2.2) and (2.5), the following interface condition is obtained in
non-dimensional form:

(2.26)

(
3∇2

h +
∂2

∂z2

)
∂w

∂z
− 1

Pr

∂

∂t

(
∂w

∂z

)

= − ζ4

εT

[
1

Da

]
∂wm

∂zm
− 1

Prm

∂

∂t

(
∂wm

∂zm

)
at z = 0.

We make the normal mode expansion and seek solutions for the dependent vari-
ables in the fluid and porous layers according to

(w, T ) = [W (z) , Θ (z)] exp [i (ℓx+my) + ωt] ,(2.27)

(wm, Tm) = [Wm (zm) , Θm (zm)] exp
[
i
(
ℓ̃xm + m̃ym

)
+ ωmt

]
,(2.28)

where ℓ and m are the wave numbers in the x and y directions respectively,
in the fluid layer, while ℓ̃ and m̃ are the corresponding wave numbers in the
porous layer and ω = ωr + iωi(= εT /ζ

2ωm) is the growth parameter of the
disturbances. Here, ωr is the growth rate of the instability and ωi is the frequency.
If ωr > 0, the infinitesimal disturbance grows and the system becomes unstable
with respect to that disturbance. If ωr < 0, the infinitesimal disturbance decays
and the system becomes stable. The convective motions in the neutral state are
divided into the stationary state (ωi = 0) and the oscillatory state (ωi 6= 0).
In the linear stability theory, the principle of exchange of stabilities often plays
an important role and is assumed to be valid; that is, if ωr = 0, then ωi = 0
automatically. This principle has been proved to be valid (i.e., instability occurs
via stationary convection) for the Marangoni convective instability in a single
fluid layer [1, 22], in a porous layer [7, 8] and also in the composite fluid-porous
layers system for the heated-below situation considered here (for details see [9]
and [12]). We follow these earlier analyses and conveniently take ω = 0 in our
further discussion.
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Substituting Eqs. (2.27) and (2.28) in Eqs. (2.12)–(2.15) and setting ω = 0,
we obtain the following equations relevant to neutral stability:

(
D2 − a2

)2
W = 0,(2.29)

(
D2 − a2

)
Θ = −W,(2.30)

(
D2

m − a2
m

)
Wm = 0,(2.31)

(
D2

m − a2
m

)
Θm = −Wm,(2.32)

where D and Dm denote differentiation with respect to z and zm respectively,

a =
√
ℓ2 +m2 and am =

√
ℓ̃2 + m̃2 are correspondingly the overall horizontal

wave numbers in the fluid and porous layers. If matching of the solutions in the
two layers is to be possible, the wave numbers must be the same for the fluid
and porous layers, so that we have a/d = am/dm, and hence ζ = a/am.

The ten boundary conditions given by Eqs. (2.16) or (2.17), (2.18), (2.20)–
(2.23), (2.24) and (2.26), using Eqs. (2.27) and (2.28), now take the form

Wm = 0, Θm = 0 at zm = −1(2.33)

or

Wm = 0, DmΘm = 0 at zm = −1,(2.34)

W = 0, DΘ = 0 at z = 1,(2.35)

D2W +Ma2Θ = 0 at z = 1(2.36)

and those at the interface (i.e. at z = 0) become

(2.37)

W =
ζ

εT
Wm,

DΘ = DmΘm,

Θ =
εT
ζ
Θm,

[
D2 + χa2 − αζ D√

Da

]
W = − αζ3

εT
√

Da
DmWm,

[
D2 − 3a2

]
DW = − ζ4

εT Da
DmWm.
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Thus the convective instability problem has now been reduced to an eigenvalue
problem consisting of a sixth order ordinary differential equation in the fluid layer
and a fourth order ordinary differential equation in the porous layer subject to
five boundary as well as five interface conditions.

3. Methods of solution

The resulting eigenvalue problem is solved exactly, in general with M as an
eigen-value. Besides, an analytical expression for the critical Marangoni num-
ber is also obtained by regular perturbation technique with wave number a as
a perturbation parameter for the case of insulating boundaries.

3.1. Exact solution

Since Eqs. (2.29) and (2.31) are independent of Θ and Θm, they can be
directly solved to get the general solution in the form

W = A1cosh (az) +A2sinh (az) +A3z cosh (az) +A4z sinh (az) ,(3.1)

Wm = Am1 sinh (amzm) +Am2 cosh (amzm) ,(3.2)

whereA1−A4, Am1, andAm2 are constants to be determined. Using the boundary
conditions (2.33)1, (2.35)1, (2.37)1, (2.37)4 and (2.37)5 in Eqs. (3.1) and (3.2),
we obtain

W = A1 [cosh (az) + ∆1 sinh (az) + ∆2z cosh (az) + ∆3z sinh (az)] ,(3.3)

Wm = A1
εT
ζ

[coth am sinh (amzm) + cosh (amzm)] ,(3.4)

where

∆1 =
ζ3am coth am

2a3Da
,

∆2 = −
2a (cosh a+ ∆1 sinh a) − sinh a

(
a2 (γ + 1) +

αζ2 coth am√
Da

)
− αζa∆1√

Da

2a cosh a+ αζ sinh a
/√

Da
,

∆3 = − (1 + ∆2) coth a− ∆1.

The heat Eqs. (2.30) and (2.32) have now to be solved defining their right-
hand sides by the expressions given by Eqs. (3.3) and (3.4), respectively. As
mentioned earlier, two types of temperature boundary conditions are considered.
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The solution obtained for Θ and Θm using the boundary conditions (2.34)2,
(2.35)2, (2.37)2 and (2.37)3 (i.e., for the case when the lower boundary of the
porous layer and upper boundary of the fluid layer are insulating), is found to be

(3.5) Θ =
A

4a2
[K1 sinh(az) + L1 cosh(az) + f(z)] ,

(3.6) Θm = A

{[
aK1 − λ4

am
− εT zm

2ζam

]
sinh(amzm)

+

[
εTL1

ζ
− εT coth(amzm)

2ζam

]
cosh(amzm)

}

while the solution obtained for Θ and Θm using the boundary conditions (2.33)2,
(2.35)2, (2.37)2 and (2.37)3 (i.e., for the case when the lower boundary of the
porous layer is isothermal and upper boundary of the fluid layer is insulating), is

(3.7) Θ =
A

4a2
[K1 sinh(az) + L1 cosh(az) + f(z)] ,

(3.8) Θm = A

{[
aK2 − λ4

am
− εT zm

2ζam

]
sinh(amzm)

+

[
εTL2

ζ
− εT coth(amzm)

2ζam

]
cosh(amzm)

}
.

Here

Ki = (λ1 cosh a+ λ2 sinh a− aLi sinh a)/a cosh a, (i = 1, 2),

L1 =
cosh a(λ3 − λ4 cosh am) + cosh am(λ1 cosh a+ λ2 sinh a)

amζ cosh a sinh am/εT + a cosh am sinh a
,

L2 = −λ5am cosh a+ sinh am [(λ4 − λ1) cosh a− λ2 sinh a]

amζ cosh a cosh am/εT + a cosh a cosh am
,

f(z) =
[
(∆3 − 2a)z − ∆2az

2
]
sinh(az) +

[
∆3az

2 + (∆2 − 2a)z
]
cosh(az),

with

λ1 =
1

4a2

{
2a2 + (a2 − 1)∆2 + 2∆1a+ a∆3

}
,

λ2 =
1

4a2

{
2a+ 2a2 ∆1 + a∆2 + (a2 − 1)∆3

}
,
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λ3 =
εT

2ζam
{ (am − coth am) cosh am − (am coth am − 1) sinh am} ,

λ4 =
1

4a2
{2a∆1 − ∆2 − 2a∆3} ,

λ5 =
εT

2ζam
(coth am cosh am − sinh am) .

Substituting Eqs. (3.3) and (3.5) or (3.7) suitably in the coupled boundary con-
dition (2.36), we obtain an analytical expression for the Marangoni number M
which can be conveniently written, for both types of temperature boundary con-
ditions, in the form

(3.9) Mi =
4a [(a+ ∆2a+ 2∆3) cosh a+ (2∆2 + ∆1a+ ∆3a) sinh a]

Ki sinh a+ Li cosh a+ f (1)
,

(i = 1, 2) ,

where M1 is the Marangoni number corresponding to the case when the lower
boundary of the porous layer and upper boundary of the fluid layer are insulat-
ing, while M2 is the Marangoni number for lower isothermal and upper insulating
boundaries. The critical Marangoni numbers M1c and M2c are obtained numer-
ically by minimizing M1 and M2 respectively, with respect to the wave number
a for various fixed values of ζ, εT ,Da and α.

3.2. Solution by regular perturbation technique for insulating boundaries

From the exact analysis carried out in the former section, it is observed
that the onset of Marangoni convection corresponds to a vanishingly small wave
number in the case of insulating boundaries. This fact has been exploited here to
solve the eigenvalue problem for the assumed temperature boundary conditions
by employing regular perturbation technique with wave number a as a pertur-
bation parameter. Such a study helps in not only knowing the accuracy of the
results obtained by this technique, but also provides a justification for using this
technique, to solve those convective instability problems in general for which the
critical stability parameter has to be found numerically.

The dependent variables in both the fluid and porous layers are now expanded
in powers of a2 in the form

(Wm, Θm) =
N∑

i=0

(
a2
)i

(Wi, Θi) ,(3.10)

(Wm, Θm) =
N∑

i=0

(
a2

ζ2

)i

(Wmi, Θmi) .(3.11)



Onset of surface-tension-driven convection ... 83

Substitution of Eqs. (3.10) and (3.11) into Eqs. (2.29)–(2.32) and the boundary
conditions (2.34), (2.35), (2.36) and (2.37) yields a sequence of equations for the
unknown functions Wi(z), Θi(z), Wmi(z) and Θm i(z) for i = 0, 1, 2, ....

At the leading order in (a2) Eqs. (2.29)–(2.32) become, respectively,

D4W0 = 0,(3.12)

D2Θ0 = −W0,(3.13)

D2
mWm0

= 0,(3.14)

D2
mΘm0

= −Wm0
(3.15)

and the boundary conditions (2.34), (2.35), (2.36) and (2.37) become

Wm0
= 0, DmΘm0

= 0, at zm = −1,(3.16)

W0 = 0, DΘ0 = 0, D2W0 = 0, at z = 1(3.17)

and at the interface (i.e. z = 0)

(3.18)

W0 =
ζ

εT
Wm0

,

Θ0 =
εT
ζ
Θm0

,

DΘ0 = DmΘm0
,

D2W0 −
αζ√
Da

DW0 = − αζ3

εT
√

Da
DmWm0

,

D3W0 = − ζ4

εT Da
DmWm0

.

The solution to the zeroth order Eqs. (3.12)–(3.15) is given by

W0 = 0, Θ0 =
εT
ζ
,(3.19)

Wm0
= 0, Θm0

= 1.(3.20)
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At the first order in (a2), Eqs. (2.29)–(2.32) then reduce to

D4W1 = 0,(3.21)

D2Θ1 −
εT
ζ

= −W1,(3.22)

D2
mWm1

= 0,(3.23)

D2
mΘm1

− 1 = −Wm1
,(3.24)

the boundary conditions (2.34), (2.35), (2.36) and (2.37) become

Wm1
= 0, DmΘm1

= 0 at zm = −1,(3.25)

W1 = 0, DΘ1 = 0, D2W1 +M
εT
ζ

= 0, at z = 1(3.26)

and at the interface (i.e. z = 0)

(3.27)

W1 =
1

ζ εT
Wm1

,

Θ1 =
εT
ζ3
Θm1

,

DΘ1 =
1

ζ2
DmΘm1

,

D2W1 −
αζ2

√
Da

DW1 = − αζ

εT
√

Da
DmWm1

,

D3W1 =
−ζ2

εT Da
DmWm1

.

Integrating Eq. (3.22) between z = 0 and 1, Eq. (3.24) between zm = −1 and 0,
using the boundary conditions (3.25)2, (3.26)2, (3.27)3 and adding the resulting
equations, we obtain the following solvability condition:

(3.28)

1∫

0

W1dz +
1

ζ2

0∫

−1

Wm1
dzm =

εT
ζ

+
1

ζ2
.

The general solution of Eqs.(3.21) and (3.23) are respectively given by

(3.29)1 W1 = M
[
C1 + C2z + C3z

2 + C4z
3
]
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and

(3.29)2 Wm1
= M [C5 + C6zm] .

The constants C1 − C6 are determined using the boundary conditions (3.25)1,
(3.26)1,3, (3.27)1, (3.27)4 and (3.27)5, and are found to be

C1 =

√
DaεT /αζ

2 + εT /2ζ

1 + ζ2 /α
√

Da + ζ + ζ3/3Da
,

C2 =

(
ζ2

α
√

Da
+ ζ

)
C1 −

√
DaεT
αζ2

,

C3 =
ζ2C1

2Da
− εT

2ζ
,

C4 = −ζ
3C1

6Da
,

C5 = C6 = C1 ζ εT .

Substituting for W1 and Wm1
the values given by Eqs. (3.29)1 and (3.29)2 re-

spectively, in Eq. (3.28) and performing the integration, we obtain an expression
for the critical Marangoni number Mc in the form

(3.30) Mc =

(
εT
ζ

+
1

ζ2

)

C1 + C2/2 + C3/3 + C4/4 + C5/2ζ2
.

The expression for Mc thus obtained is evaluated numerically for different values
of physical parameters ζ, Da, εT and the results are discussed in the following
section.

4. Results and discussion

The onset of surface-tension-driven convection in a two-layer system consist-
ing of a fluid layer overlying a porous layer saturated by the same fluid is inves-
tigated theoretically. The eigenvalue problem is solved exactly and an analytical
expression for the Marangoni number is obtained for two types of temperature
boundary conditions, viz. (i) lower rigid surface of the porous layer and upper
free surface of the fluid layer are insulating, and (ii) lower rigid surface of the
porous layer is isothermal and upper free surface of the fluid layer is insulating.
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The critical Marangoni numbers for these two temperature boundary conditions
are denoted by M1c and M2c, respectively. For the case of insulating temper-
ature boundary conditions, the resulting eigenvalue problem is also solved by
regular perturbation technique to obtain the critical Marangoni number. It is
assumed that the porous medium consists of 3 mm diameter glass beads ran-

Fig. 2. Variation of a) M1c and b) M2c with ζ for different values of α when εT = 0.725 and
Da = 0.003.
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domly packed and depth of the porous layer being 3 cm, resulting in the Darcy
number

√
Da = 0.003 and εT = 0.725 [14]. The values of slip parameter α chosen

here are 0.1, 1 and 5 which are the representative values for aloxite and foam-
metals. In addition to these values, we have also used different values of Da and
εT to know their effect on the critical Marangoni numbers M1c and M2c. As men-

Fig. 3. Variation of a) M1c and b) M2c with ζ for different values of Da when εT = 0.725
and α = 1.0.
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tioned earlier, at the contact interface between fluid – saturated porous medium
and the adjacent bulk fluid, both the Beavers–Joseph and the Jones conditions
are used to examine their influence on the onset of Marangoni convection. The
numerically evaluated critical Marangoni numbers and wave numbers for the
Beavers–Joseph slip condition are presented graphically in Figs. 2–5.

Fig. 4. Variation of a) M1c and b) M2c with εT for different values of α when and ζ = 1.
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Fig. 5. Variation of ac with ζ for different values of Da when α = 1.0 and εT = 0.725.

The curves in Fig. 2a show the evolution of M1c with the depth ratios (ζ) for

three values of slip parameter α = 0.1, 1 and 5 when εT = 0.725 and Da = 0.003.

As a result of the variation in the depth ratio, three distinguishable regions

are evident from the figure for all the values of α considered. We note that

M1c increases only negligibly with ζ for small values of ζ; increases significantly

with ζ up to 0.95 or 1, at which maximum values of M1c are reached and then

decreasing trends are found for ζ values above 1. That is, the presence of thin

layers in the extreme cases of ζ ≪ 1 and ζ ≫ 1 is found to have a destabilizing

influence on the system. Also, all the curves of α merge into one as ζ becomes

very large. Moreover, the variations in M1c with α are found to be noticeable for

values of ζ < 0.2 and also for ζ > 0.5. This is to say that Marangoni convection

is important when the depth of the fluid layer is relatively large or also when

the depth of the fluid layer is relatively thin. Nonetheless, the situation observed

for the lower isothermal and upper insulating temperature boundary conditions

is quite different as far as the effect of ζ on M2c is concerned and the same is

evident from Fig. 2b. From this figure we note that M2c increases, for all values

of α considered, continuously with ζ without showing any decreasing trend as

noticed in the case of insulating boundaries (see Fig. 2a). This may be due to

the asymmetric temperature boundary conditions considered at the lower porous

and upper fluid surfaces. However, α plays again a similar role in the stability
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of the system with ζ akin to the previous case. As ζ → ∞, both M1c and M2c

attain different constant values 48 and 79.6, respectively, which are the exact

values known for the case of single fluid layer [1, 22].

To analyze the influence of permeability of the porous layer on the onset

of Marangoni convection, we have plotted in Figs. 3a and 3b the critical val-

ues M1c and M2c respectively, as a function of ζ for different values of Da

when εT = 0.725 and α = 0.1. It is seen that the decrease in Da increases

the critical Marangoni numbers in both cases and thus making the system more

stable. This is because low permeable porous layer dampens the fluid motion,

requiring an increased critical Marangoni number to have surface tension-driven

convective instability in the system. Also, the variation in Da has no signifi-

cant effect on the onset of convection for values of ζ ≪ 1, while the curves

of different Da merge into one for ζ ≫ 1 as expected. The critical Marangoni

numbers obtained by regular perturbation technique are also shown in Fig. 3a

by dotted lines. We note that the results are in excellent agreement with those

obtained by the exact method. This also suggests that the regular perturba-

tion technique with wave number a as a perturbation parameter can conve-

niently be used in solving convective instability problems in the case of insulating

boundaries.

The variations in M1c and M2c as a function of thermal diffusivity ratio εT
are shown in Figs. 4a and 4b, respectively for Da = 0.003 and α = 0.1, 1 and 5

when the depth of the fluid layer is the same as the depth of the porous layer

(i.e., ζ = 1). From the figures, it is obvious that an increase in the value of εT is

to decrease the critical Marangoni number and thus having a destabilizing effect

on the system. Nonetheless, increase in the value of slip parameter α increases

the critical Marangoni numbers and hence its effect is to delay the onset of

convection.

The critical wave numbers are found to be vanishingly small (i. e., ac ≈ 0) for

various values of physical parameters chosen in the case of insulating boundaries.

However, for lower isothermal and upper insulating surfaces, the critical wave

number is found to be varying with physical parameters. Figure 5 shows variation

in ac with ζ for four different values of Da = 0.01, 0.003, 0.002 and 0.001 when

α = 1 and εT = 0.725 . We observe that an increase in ζ and decrease in Da is

to increase ac and hence their effect is to reduce the size of the convection cells.

Also, ac ∼ 2 as ζ → ∞, which is the critical value observed in a single fluid

layer [1].

The critical Marangoni numbers M1c and M2c obtained by employing both

the Beavers–Joseph and the Jones interface conditions for different values of

ζ when α = 1, εT = 0.725 and Da = 0.001 are presented in Table 1 for

comparison.
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Table 1. Comparison of critical Marangoni numbers for Beavers–Joseph (BJ)
and Jones conditions.

ζ M1c (BJ) M1c (Jones) Regular Perturbation M2c (BJ) M2c (Jones)
Technique(Mc)

0.2 23.419 23.421 23.421 34.370 34.382

0.4 77.872 77.951 77.940 54.763 54.629

0.6 103.405 103.170 103.148 61.065 61.002

0.8 103.841 103.758 103.683 64.161 64.130

From the Table it can be seen that there is a negligible difference in the

critical Marangoni numbers whether Beavers–Joseph or the more generalized

Jones condition is being used. Thus the use of Beavers–Joseph slip condition is

justified in trickling flow situations as we have considered the onset of convection

only due to variation of surface tension with temperature. In the Table, the

critical Marangoni numbers (Mc) obtained by regular perturbation technique

are also given. Again, we note that Mc values are in very good agreement with

those obtained by the exact method.

From the scenario envisaged, it is evident that it is possible to control the

Marangoni convection effectively in a composite fluid and porous layers system

by appropriately choosing the values of ζ, α, Da and εT .
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