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Testing and analysis of high frequency electroelastic
characteristics of piezoelectric transformers
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This article presents the results of experimental and numerical work on the dy-
namic electroelastic response of Rosen-type piezoelectric transformers. Experiments
were conducted to measure the electrical impedance, phase angle and voltage gain at
various frequencies. The three-dimensional finite element method was also employed
to solve the coupled electro-elastic boundary value problem. The electrical impedance,
phase angle and voltage gain were calculated and a comparison was made between
experiment and simulation. The effects of load resistance and capacitance on the
voltage gain and electroelastic field concentrations were also discussed in detail.
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1. Introduction

Piezoelectric ceramics are characterized as smart materials and structures,
and have been widely used in the area of sensors and actuators. The principle
of operation of a piezoelectric transformer is a combined function of sensors and
actuators, so that energy can be transformed from electrical form to electrical
form via mechanical vibration. Small electronic devices which operate at high
voltages require a compact transformer to step up the low voltage of available
power supplies, and the piezoelectric transformers find extensive applications in
the liquid crystal display backlight inverter to reduce the height and size of the
notebook computers, personal digital assistants, digital video cameras, etc. The
piezoelectric transformers have several inherent advantages [1, 2] over electro-
magnetic transformers such as low cost, high efficiency, compact size, and no
magnetic noise. Recently, Hwang et al. [3] measured the electrical characteris-
tics for Rosen-type piezoelectric transformers using PNW-PMN-PZT composi-
tion, and discussed the effect of load resistance on the output voltage and current
of the piezoelectric transformers. Karlash [4] considered the forced vibrations
of the Rosen-type piezoelectric transformers and analyzed the frequency prop-
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erties and stress state of the transformer using one-dimensional approximation.
Narita et al. [5] solved the plane strain electroelastic problem of a central ac-
tive piezoelectric transformer in presence of a crack located normally to the
interfaces, and discussed the effect of electric field on the fracture mechanics pa-
rameters such as stress intensity factor, energy release rate and energy density
factor.

When the piezoelectric transformers are operated, the piezoelectric ceramics
will be in mechanical resonance and large electroelastic fields will appear in the
piezoelectric ceramics. Prediction of the intensified fields in the vicinity of an
electrode tip or possibly a crack tip would most likely require detailed finite
element calculations. A two or three-dimensional finite element model of piezo-
electric materials and devices with cracks [6, 7] or electrodes [8, 9] under direct
current (DC) electric fields was developed, and numerical simulation results were
shown to be in qualitative agreement with the test data. Finite element analysis
was also presented to study the nonlinear behavior due to domain wall mo-
tion in piezoelectric devices under alternating current (AC) electric fields, and
a comparison was made between numerical results and experimental data [10].

In this paper, we experimentally and numerically investigate the high-
frequency characteristics in Rosen-type piezoelectric transformers. The electri-
cal impedance, phase angle and voltage gain are measured. Three-dimensional
finite element simulations are then done to predict the electrical impedance,
phase angle and voltage gain, and results produced by the model are compared
with experimental values. The internal electroelastic fields are also calculated
and the results are presented graphically.

2. Experimental procedure

The transformers were fabricated using a hard-lead zirconate titanate (PZT)
C–205. The material characteristics are listed in Table 1 (Fuji Ceramics Co.,
Ltd., Japan). The specimen used is a Rosen-type structure (Fig. 1). The input
half of the transformer is poled along its thickness while the output half is poled
along its length. All external faces are free. The transformer has a length of
50 mm, a width of 13 mm and a thickness of 2 mm.

Table 1. Material properties of C–205.

Elastic stiffnesses Piezoelectric Dielectric Mass density
coefficients constants

c11 c33 c44 c12 c13 e31 e33 e15 ∈11 ∈33 ρ

(×1010 N/m2) (C/ m2) (×10−10 C/Vm) (kg/m3)

C–205 15.11 8.43 8.70 13.22 2.76 −4.26 18.52 13.59 79.47 68.68 7800
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Fig. 1. Rosen-type transformer.

Figure 2 shows the driving circuits of the specimen. The transformer was
driven by an AC voltage Vin using a function generator. Input and output res-
onant frequencies were measured by using an impedance/phase analyzer, as
shown in Figs. 2 (a) and 2 (b), respectively. Voltage gain Vout was also measured
by a digital multimeter (See Fig. 2 (c)). Load resistance and capacitance of the
digital multimeter are R = 1 MΩ and C = 160 pF, respectively.

Fig. 2. Test circuits of the transformer.
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3. Finite element analysis

3.1. Basic equations

Consider a linear piezoelectric material with no body force and free charge.
The governing equations in the Cartesian coordinates xi (i = 1, 2, 3) are given
by

σji,j = ρui,tt,(3.1)

Di,i = 0,(3.2)

where σij is the stress tensor, Di is the electric displacement vector, ui is the
displacement vector, ρ is the mass density, a comma denotes partial differentia-
tion with respect to the coordinate xi or the time t, and the Einstein summation
convention over repeated indices is used. The relation between the strain tensor
εij and the displacement vector ui is given by

εij =
1
2
(uj,i + ui,j)(3.3)

and the electric field intensity is

Ei = −φ, i,(3.4)

where φ is the electric potential. Constitutive relationships are

σij = cijklεkl − ekijEk,(3.5)

Di = eiklεkl + εikEk,(3.6)

where cijkl is the elastic constant, eikl is the piezoelectric constant, εik is the
dielectric permittivity, and

cijkl = cjikl = cijlk = cjilk = cklij , ekij = ekji, εik = εki.(3.7)

For piezoelectric ceramics which exhibit symmetry of a hexagonal crystal of class
6 mm with respect to principal axes x1, x2, and x3, the constitutive relations
can be written in the following form:
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(3.9)
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where

(3.10)
σ1 = σ11, σ2 = σ22, σ3 = σ33,

σ4 = σ23 = σ32, σ5 = σ31 = σ13, σ6 = σ12 = σ21,

(3.11)
ε1 = ε11, ε2 = ε22, ε3 = ε33,

ε4 = 2ε23 = 2ε32, ε5 = 2ε31 = 2ε13, ε6 = 2ε12 = 2ε21,

(3.12)
c11 = c1111 = c2222, c12 = c1122, c13 = c1133 = c2233,

c33 = c3333 c44 = c2323 = c3131, c66 = c1212 =
1
2
(c11 − c12),

(3.13) e15 = e131 = e223, e31 = e311 = e322, e33 = e333.

3.2. Computational model

The three-dimensional finite element model of the piezoelectric transformer
is shown in Fig. 3. A rectangular Cartesian coordinate system (x, y, z) is used.
Two electrodes with length l and width 2w lie in the surfaces z = ±h of the input
part, and an electrode of length 2w and width 2h is attached to the surface x = l
of the output part. The electric potential on the electrode surface (−l ≤ x ≤ 0,
|y| ≤ w, z = h) equals the applied AC voltage, φ = V (t) = V0 exp(iωt) for
Cases a and c; ω is angular frequency (=2πf where f is frequency in Hertz).
The system of Case c is also loaded by the resistance R and capacitance C.

Fig. 3. Scheme of finite element model.
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The electrode surface (−l ≤ x ≤ 0, |y| ≤ w, z = −h) is connected to the
ground, so that φ = 0. For Case b, the electric potential on the electrode surface
(x = l, |y| ≤ w, |z| ≤ h) equals the applied AC voltage φ = V (t) = V0 exp(iωt),
and the electric potential is equal to zero on the surfaces (−l ≤ x ≤ 0, |y| ≤ w,
z = ±h). The electrode layers are not incorporated into the model.

Mechanical boundary conditions are given by

(3.14)

σxx(±l, y, z) = 0 (|y| ≤ w, |z| ≤ h),

σxy(±l, y, z) = 0 (|y| ≤ w, |z| ≤ h),

σxz(±l, y, z) = 0 (|y| ≤ w, |z| ≤ h),

(3.15)

σyy(x,w, z) = 0 (|x| ≤ l, |z| ≤ h),

σyx(x,w, z) = 0 (|x| ≤ l, |z| ≤ h),

uz(0, w, 0) = 0,

σyz(x,w, z) = 0 (0 < |x| ≤ l, 0 < |z| ≤ h),

(3.16)

σyy(x,−w, z) = 0 (|x| ≤ l, |z| ≤ h),

ux(0,−w, 0) = 0,

σyx(x,−w, z) = 0 (0 < |x| ≤ l, 0 < |z| ≤ h),

uz(0,−w, 0) = 0,

σyz(x,−w, z) = 0 (0 < |x| ≤ l, 0 < |z| ≤ h),

(3.17)
σzz(x, y,±h) = 0 (|x| ≤ l, |y| ≤ w),
σzx(x, y,±h) = 0 (|x| ≤ l, |y| ≤ w),
σzy(x, y,±h) = 0 (|x| ≤ l, |y| ≤ w).

Electrical boundary conditions are summarized below.
For Case a

(3.18)

Dx(±l, y, z) = 0 (|y| ≤ w, |z| ≤ h),

Dy(x,±w, z) = 0 (|x| ≤ l, |z| ≤ h),

φ(x, y, h) = V0 exp(iωt) (−l ≤ x < 0, |y| ≤ w),

φ(x, y,−h) = 0 (−l ≤ x < 0, |y| ≤ w),

Dz(x, y,±h) = 0 (0 ≤ x ≤ l, |y| ≤ w).
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For Case b

(3.19)

φ(l, y, z) = V0 exp(iωt) (|y| ≤ w, |z| ≤ h),

Dx(−l, y, z) = 0 (|y| ≤ w, |z| ≤ h),

Dy(x,±w, z) = 0 (|x| ≤ l, |z| ≤ h),

φ(x, y,±h) = 0 (−l ≤ x < 0, |y| ≤ w),

Dz(x, y,±h) = 0 (0 ≤ x ≤ l, |y| ≤ w).

For Case c

φ(l, y, z) = 4iωDx(l, y, z)wh{R2C2/(R2 + C2)}1/2

(|y| ≤ w, |z| ≤ h),

(3.20)

Dx(−l, y, z) = 0 (|y| ≤ w, |z| ≤ h),

Dy(x,±w, z) = 0 (|x| ≤ l, |z| ≤ h),

φ(x, y, h) = V0 exp(iωt) (−l ≤ x < 0, |y| ≤ w),

φ(x, y,−h) = 0 (−l ≤ x < 0, |y| ≤ w),

Dz(x, y,±h) = 0 (0 ≤ x ≤ l, |y| ≤ w).

Calculations of impedance and phase for Cases a and b require the calculation
of the ratio of the AC voltage V (t) of the system to an alternating current I(t).
The impedance Z is expressed as

Z =
V (t)
I(t)

= |Z|eiϕ(3.21)

where |Z| is the impedance magnitude and ϕ is the phase difference between
the voltage and current. The alternating current I(t) is obtained as

(3.22) I(t) =





iω

w∫

−w

0∫

−l

Dz(x, y, h)dxdy (Case a),

iω

h∫

−h

w∫

−w

Dx(l, y, z)dydz (Case b).
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ANSYS elements SOLID5 and electrical circuit elements CIRCU124 were
used in the analysis. SOLID5 has a three-dimensional piezoelectric and struc-
tural field capability. The element has eight nodes with up to six degrees of
freedom at each node. On the other hand, CIRCU124 has a general circuit
element applicable to circuit simulation. The element may also interface with
piezoelectric finite elements to simulate coupled piezoelectric-circuit field inter-
action. The element has up to six nodes to define the circuit component and up
to three degrees of freedom per node to model the circuit response.

4. Results and discussion

In order to confirm the results of the device simulation, the resonance chara-
cteristic of transformers is first measured and a quantitative comparison is made
between measurements and finite element method (FEM). The impedance/phase-
frequency spectra of the input part (Case a) are plotted in Fig. 4, in which both
the measured and calculated data are shown. The impedance minimum peak cor-
responds to the resonance frequency, while the impedance maximum corresponds
to antiresonance frequency. The measured (calculated) fundamental and second
resonances are approximately fr31−1 = 36(36) kHz and fr31−2 = 71(74) kHz. It
can be seen that the trend is sufficiently similar between analysis and experiment.
Figure 5 shows the measured and calculated impedance/phase characteristics of
the output part (Case b). The measured (calculated) fundamental and second
resonance frequencies are about fr31−1 = 33(32) kHz and fr31−2 = 65(64) kHz,
and agreement between analysis and experiment is fair.
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Fig. 4. Electrical impedance/phase spectra for the input part.
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Fig. 5. Electrical impedance/phase spectra for the output part.

Figure 6 shows the output voltage Vout versus driving frequency f at in-
put AC voltage Vin = 10 V and loads of R = 1 MΩ, C = 160 pF for Case c.
Frequencies at which the maximum output voltages occur are approximately
f = 33, 65 kHz, and they agree with the values of resonance frequencies of the
output part (see Fig. 5). The finite element analysis predictions for the output
voltage match all the experimental responses. Figure 7 shows the amplitude of
normal stress σxx of the finite element solutions versus x at y = 0 mm, z = 0 mm
for Vin = 10 V, R = 1 MΩ, C = 160 pF and f = 33, 65 kHz. The amplitude of
normal stress σxx near the first resonance frequency remains smaller than that
near the second resonance frequency. The amplitude of σxx in the output part
is the largest on the vibration mode of the second mode (i.e., on x = 12.5 mm).
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Fig. 6. Output voltage versus frequency for R = 1 MΩ and C = 160 pF.
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Next, the output voltages and internal stresses obtained from the FEM are
discussed in detail for the practical applications in liquid crystal display backlight
inverters. Figure 8 shows the output voltage of the transformer before lighting
the lamp versus the driving frequency at Vin = 10 V for R = 1, 10 MΩ and
C = 0 pF (Case c). The output voltage increases as the load resistance is
increased from 1 MΩ to 10 MΩ. Figure 9 shows the amplitude of normal stress
σxx at x = 12.5 mm, y = 0 mm and z = 0 mm under the same conditions
shown in Fig. 8. The amplitude of normal stress also increases with the increase
of load resistance. Figure 10 displays the output voltage of the transformer after

60 70 80
0

200

400

600

800

V
o
u
t (
V
)

f (kHZ)

Vin= 10 V

C = 0 pF

FEM
Case c

R =10 MΩ
1 MΩ

Fig. 8. Output voltage versus frequency for R = 1, 10 MΩ and C = 0 pF.
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Fig. 10. Output voltage versus frequency for R = 100 kΩ and C = 5, 10, 15 pF.

lighting the lamp against the driving frequency at Vin = 10 V for R = 100 kΩ
and various values of capacitance (Case c). The capacitance has a small effect
on the voltage gain. Figure 11 shows the amplitude of normal stress σxx versus
C at x = 12.5 mm, y = 0 mm and z = 0 mm for the steady state (Vin = 10
V, f = 65 kHz, and R = 100 kΩ). The results for R = 500 kΩ, 1 MΩ are also
shown. The amplitude of normal stress is seen to increase with increasing the
capacitance, depending on the load resistance.
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5. Conclusions

An experimental and numerical investigation was conducted to evaluate the
high frequency characteristics of the piezoelectric transformers. The finite ele-
ment model quantitatively predicted the electrical impedance/phase angle and
voltage gain, and captured the dynamic phenomena related to macrospecimens.
A higher voltage gain is attained with the increase of the load resistance. The
voltage gain and internal electroelastic fields are strongly dependent on the load
resistance and capacitance. This study is useful in designing piezoelectric trans-
formers and in reducing the problem of failure that frequently occurs during
service.
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