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Nano-particles consisting of a core surrounded by multiple outer shells (multi-
shell particles) are used as novel functional materials as well as stiffeners/toughners
in conventional composites and nanocomposites. In these heterogeneous particles, the
mismatch of thermal expansion coefficients and lattice constants between neighbor-
ing shells induces stress/strain fields in the core and shells, which in turn affect the
physical/mechanical properties of the particles themselves and/or of the composites
containing them. In this paper, we solve the elastostatic inhomogeneous inclusion
problem of an infinite medium containing a multi-shell spherical particle when the
eigenstrains are prescribed in the particle and in the multi-shells, and the inhomogene-
ity problem when an arbitrary remote stress field is applied to the infinite medium.
The corresponding Eshelby and stress concentration tensors of the two problems are
obtained and specialised to inhomogeneous inclusions in finite spherical domains with
fixed displacement or traction-free boundary conditions. Finally, the Eshelby tensor
of a spherical inhomogeneity with non-uniform eigenstrain is obtained and applied to
quantum dots of uniform and non-uniform compositions.

Key words: nano-inhomogeneity, multi-shell, non-uniform eigenstrain, Eshelby ten-
sor, finite domain, nano-onions, quantum.

1. Introduction

The synthesis and characterization of nano-particles with core-shell struc-
tures have attracted a lot of attention in many areas of science and technology.
These particles which are ellipsoidal or spherical in shape and which consist of a
core surrounded by concentric shells of nanometer-size are called “nano-onions”
because of this special structure [1, 2]. In order to obtain target properties, dif-
ferent systems, in terms of materials and shell thickness, have been produced
(e.g., CdS/HgS/CdS and Cds/HgS/Cds/HgS/Cds) [3, 4]. Multi-fold core-shell
structured particles of micrometer-size are called “micro-onions” [5]. In materi-
als science and engineering, the particles with core-shell structures have been
used as reinforcements and tougheners in composites [6]. In solid-state physics,
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nano-onions are found to exhibit novel physical effects and properties, such as
quantum confinement effect, and novel electronic, magnetic and optical proper-
ties [7–11]. Nano-onions can be used on their own as functional devices, besides
being a constituent part of a composite medium [2, 12–14]. Nano-onions are a
kind of quantum dot (QD). The strain distributions in heterogeneous electronic
structures of fine scale, e.g., quantum dot (QD) structures, have been extensively
studied [15, 16] and it has been shown that the strains affect the optical prop-
erties of these structures by modifying the energies and wave functions of the
confined carriers. Thus, the knowledge of strain fields in nano-onions can be very
important for understanding and predicting other physical properties [17, 18].
Rockenberger et al. [8] studied CdTe(core)/CdS(shell) nanoparticles by ex-
tended X-ray absorption. They observed changes in the bond lengths of CdTe
and CdS, and concluded that small mismatches between the lattice constants of
the two materials are elastically compensated by an adjustment of their lattice
dimensions in a small interface layer, resulting in a strain. Therefore, they used
the classical theory of continuum elasticity to calculate the strain distribution
within the core-shell structure by simulating the mismatch strain by a uniform
prescribed eigenstrain in the core. For nano-onions, as pointed out by Itskevich
et al., Little et al., and Pérez–Conde and Bhattacharjee [17, 19, 20], the
misfit strain, the surface stress and the applied external pressure, all modify the
strain fields in them, and in turn affect the electronic structures, and hence their
physical properties.

The mechanical behaviour of materials at the nanoscale is different from that
at the macroscopic scale due to the increased ratio of the surface/interface to
the volume. A classical continuum model to explain the surface effect on the
elastic properties of nanostructures was formulated by Gurtin and Murdoch
[21]. Later, it was further developed by many researchers [22–27] to analyze
the elastic properties of nano-structured materials. Miller and Shenoy [22,
25] compared the results obtained by the classical continuum model with those
obtained by the atomistic simulations for nanobeams and nanowires, and found
that the two methods led almost to the same results. Since a nanostructure can be
regarded as a combination of bulk and surface [25], the mechanical behaviour of
a nano-structured material can be predicted within the framework of continuum
elasticity supplemented by surface elasticity [22, 25, 28]. In fact, Yakobson and
Smalley [29] have noted that the laws of continuum mechanics are amazingly
robust and allow one to treat even intrinsically discrete objects only a few atoms
in diameter.

Core-shell structures also exist widely in conventional particle-reinforced com-
posites and nanocomposites [30–32]. Therefore, the analysis of the stress/strain
fields in these particles has also attracted the attention of the researchers in me-
chanics and composites. Some solutions of elastostatic, viscoelastic and elasto-
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plastic problems have been reported [33–38]. However, almost all the existing
works on multi-shell models are concerned with the solutions of stress fields
under special loading conditions or with the predictions of the effective elastic
moduli using approximate schemes.

Recently, Duan et al. [39] have solved the elastostatic problem for a spherical
particle with a single graded (with non-homogeneous elastic moduli) shell due to
the homogeneous eigenstrains within the Eshelby formalism [40, 41]. Duan et al.
[42] analyzed the strain fields in embedded and free-standing nano-onions with
multi-shell structure and non-uniform compositions which induce non-uniform
eigenstrains. Moreover, they presented a concept of compatible composition pro-
files and analyzed critical sizes of quantum dots with non-uniform compositions
[43]. However, from the point of view of Eshelby formalism, they extended the
formalism to multi-shell inhomogeneity or non-uniform inhomogeneity with hy-
drostatic eigenstrains only [42, 43]. In this paper, we shall use the displacement
potential method to solve the elastostatic problems of particles with non-uniform
compositions and multi-shells due to arbitrary (uniform or non-uniform) eigen-
strains or exterior loadings in the framework of the Eshelby formalism.

The paper is organized as follows. In Sec. 2, we describe the problem un-
der consideration. In Sec. 3, we present the solution for a multi-shell spherical
inhomogeneous inclusion, namely, a spherical inhomogeneity with multi-shells
having different elastic constants subjected to arbitrary uniform eigenstrains in
the inhomogeneity and multi-shells. For this problem, the Eshelby tensors are
given in concise closed-forms, and the properties of the local and volume average
Eshelby tensors are discussed. In Sec. 4, the Eshelby tensors in a finite domain
with fixed displacement or traction-free boundary conditions are given. In Sec. 5,
we solve the stress field in an infinite medium containing a multi-shell spheri-
cal inhomogeneity subjected to an arbitrary uniform remote stress. In this case,
we no longer talk about Eshelby tensors but instead introduce stress concentra-
tion tensors which relate the stress fields in the inhomogeneity, the multi-shells
and the matrix to the remote stress. Finally, in Sec. 6, the Eshelby tensor of a
spherical inhomogeneity with non-uniform eigenstrain is obtained and applied
to quantum dots with uniform and non-uniform compositions.

2. Multi-shell inhomogeneity in an infinite medium

Consider a spherical particle with multi-shells embedded in an infinite elastic
matrix, as shown in Fig. 1. Let phase 1 denote the innermost core, hereinafter
referred to as the inhomogeneity, and let phase I refer to the shell bounded
by the concentric and spherical surfaces with radii rI and rI+1 (I ∈ (1, M)),
respectively. Let Ω1, Ωk (k = 2, ...I, ..., M) and ΩM+1 denote regions occupied
by the inhomogeneity, the multi-shells and the matrix, respectively. The sub-
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scripts k (k = 1, 2, ...I, ..., M, M + 1) are used to denote the quantities in the
regions Ωk (k = 1, 2, ...I, ..., M, M + 1). The inhomogeneity, the multi-shells
and the matrix are homogeneous, linearly elastic and isotropic, characterized
by the bulk modulus κk, the shear modulus µk and the Poisson ratio νk (k =
1, 2, ...I, ..., M, M + 1).

Y

X

Z

r

1

M+1

I

M

matrix

Fig. 1. A spherical inhomogeneity with multi-shells embedded in an infinite medium.

We shall first consider the inhomogeneous inclusion problem, namely, when
uniform eigenstrains ε

∗
I (I = 1, 2, ..., M) are prescribed in the inhomogeneity

and the multi-shells. For this problem, the Eshelby tensors Sk
I (x) relate the total

strains ε
k(x) in the inhomogeneity (k = 1), the multi-shells (k = 2, 3, ...M), and

the matrix (k = M + 1) to the prescribed uniform eigenstrains ε
∗
I , i.e.,

(2.1) ε
k = Sk

I : ε
∗
I + Hk(σs

0) (k = 1, 2, · · · , M + 1),

where Sk
I is the Eshelby tensor in the kth phase, which relates the uniform

eigenstrains ε
∗
I prescribed in the Ith phase to the strains induced in the kth

phase. Thus the repeated subscript I in Eq. (2.1) indicates summation from 1
to M . Hk(σs

0) are the strains due to the constant interface stress σ
s
0, which will

be described below.
The displacement field u∗

I corresponding to the uniform eigenstrains ε
∗
I in

the Ith phase is expressed as

(2.2) u∗
I = ε

∗
I · x,

where x is the position vector. As stated in Sec. 1, the large ratio of sur-
face/interface atoms to the bulk can have a profound effect on the properties
of nanostructures, and this effect can be described by the classical continuum
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model with consideration of the interface effect. Therefore, the interface condi-
tions for this inhomogeneous inclusion problem are

(2.3)

uI + ε
∗
I · x = uI+1 + ε

∗
I+1 · x, (σI − σI+1) · N = ∇S · σs,

at r = rI+1

uM+1 = 0, σM+1 = 0 at |x| → +∞,

where N is the unit normal vector to the interface between the Ith and (I +1)th
phases, ∇S ·σs denotes the interface divergence of the interface stress tensor σ

s.
The interface stress σ

s depends on the state of the elastic strain ε
s [22, 23, 44, 45]

and can be expressed as [22]

(2.4) σ
s = σ

s
0 + Cs : ε

s,

where Cs is the interface modulus tensor. For an elastically isotropic surface/
interface, Cs : ε

s = 2µsε
s +λs(trε

s)1, where λs and µs are the interface moduli,
and 1 is the second-order unit tensor in two-dimensional space.

We shall next consider the problem when the infinite elastic matrix contain-
ing the spherical inhomogeneity with the multi-shells in Fig. 1 is subjected to an
arbitrary uniform remote stress field σ

0. In this case, the stress concentration
tensors Tk(x) (k = 1, 2, ..., M +1) relate the total stresses σ

k(x) in the inhomo-
geneity, the multi-shells and the matrix to the prescribed uniform remote stress
σ

0, i.e.,

(2.5) σ
k(x) = Tk(x) : σ

0 + σ(σs
0) (k = 1, 2, ..., M + 1),

where σ(σs
0) is the stress tensor due to the constant interface stress tensor σ

s
0.

The interface and boundary conditions for this problem are

(2.6)
uI = uI+1, (σI − σI+1) · N = ∇S · σs, at r = rI+1,

σM+1 = σ
0 at |x| → +∞.

3. Solution of spherical inhomogeneous inclusion problem

3.1. Solution procedure

The above-mentioned inhomogeneous inclusion problem under arbitrary uni-
form eigenstrains ε

∗
I (I ∈ (1, M)) is solved using the principle of superposition,

that is, we obtain the complete set of the components of the Eshelby tensors
Sk

I (x) through the consideration of several particular eigenstrains. For this, we
first solve the elastic field induced by ε∗zzI in the spherical coordinate system
(r, θ, ϕ). The axisymmetric elasticity problem for spherical domains can be solved
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in a general fashion in terms of functions of r multiplied by Legendre polyno-
mials of θ. For the present problem, only a solution associated with Legendre
polynomials n = 0, 2 is needed [46]. It is expedient to split the displacement field
into its dilatational part

(3.1) uk
r = F k

zzr +
Gk

zz

r2
, uk

θ = uk
ϕ = 0

and its deviatoric part

(3.2) uk
r = Uk

r P2(cos θ), uk
θ = Uk

θ

dP2(cos θ)

dθ
, uk

ϕ = 0

in which

(3.3) Uk
r (r) =

[
12νkA

k
zzr

3 + 2Bk
zzr +

2(5 − 4νk)C
k
zz

r2
− 3

Dk
zz

r4

]
,

(3.4) Uk
θ (r) =

[
(7 − 4νk)A

k
zzr

3 + Bk
zzr +

2(1 − 2νk)C
k
zz

r2
+

Dk
zz

r4

]
,

where P2(cos θ) is the Legendre polynomial of order two. Ak
zz, Bk

zz, Ck
zz, Dk

zz,
F k

zz and Gk
zz are constants to be determined. The subscript zz of these constants

indicates that they are solved for the eigenstrain ε∗zzI 6= 0. For the inhomogeneous
inclusion problem, these constants are determined from the condition to avoid a
singularity at r = 0 inside the inhomogeneity and Eq. (2.3). In the inhomogeneity
(k = 1) C1

zz, D
1
zz and G1

zz vanish; in the matrix (k = M + 1) AM+1
zz , BM+1

zz and
FM+1

zz vanish.
Due to the spherical shape of the inhomogeneity and linear property of the

problem, the solution due to arbitrary uniform eigenstrains ε
∗
I can be obtained

from Eqs. (3.1)–(3.4) by superimposing the individual solutions for ε∗xxI , ε∗yyI ,
ε∗zzI , ε∗xyI , ε∗xzI and ε∗yzI , respectively. The detailed procedures of the superposi-
tion can be found in the recent paper of Duan et al. [26]. It is found that under
ε∗xxI , ε

∗
yyI , ε

∗
zzI , ε

∗
xyI , ε

∗
xzI and ε∗yzI , respectively, the constants Ak

pq (p, q = x, y, z)
are equal for each of k = 1, 2, ..., M + 1, i.e.,

(3.5)
∂Ak

xx

∂ε∗xxI

=
∂Ak

yy

∂ε∗yyI

=
∂Ak

zz

∂ε∗zzI

=
∂Ak

xy

∂ε∗xyI

=
∂Ak

xz

∂ε∗xzI

=
∂Ak

yz

∂ε∗yzI

, (I = 1, 2, . . . , M).

The constants Bk
pq, Ck

pq, Dk
pq, F k

pq and Gk
pq also obey their own respective

identities. Therefore, for brevity, we introduce constants Ak
I , Bk

I , Ck
I , Dk

I , F k
I
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and Gk
I for the spherical inhomogeneity, the multi-shells and the matrix such

that

(3.6)

Ak
I ≡ r2

1

∂Ak
pq

∂ε∗pqI

, Bk
I ≡

∂Bk
pq

∂ε∗pqI

, Ck
I ≡ 1

r3
1

∂Ck
pq

∂ε∗pqI

,

Dk
I ≡ 1

r5
1

∂Dk
pq

∂ε∗pqI

, F k
I ≡

∂F k
pp

∂ε∗ppI

, Gk
I ≡ 1

r3
1

∂Gk
pp

∂ε∗ppI

,

where the subscript pairs pq = xx, yy, zz, xy, xz and yz denote the eigenstrain
cases ε∗xxI , ε

∗
yyI , ε

∗
zzI , ε

∗
xyI , ε

∗
xzI and ε∗yzI , respectively. Thus, the repeated sub-

scripts in Eq. (3.6) do not represent summation. Note that the last two expres-
sions in Eq. (3.6) are applicable to pp = xx, yy and zz only. The superscript k
denotes the k-th phase, and I denotes the quantities corresponding to the dif-
ferent eigenstrains. Therefore, the total strain fields in the inhomogeneity and
the matrix are expressed in terms of the constants Ak

I , Bk
I , Ck

I , Dk
I , F k

I and Gk
I .

Knowing these constants, the Eshelby tensors in the inhomogeneous inclusion,
the multi-shells and matrix can be calculated from the formulae given in the
next section, where we shall also discuss their general properties.

3.2. Eshelby tensors

Because of the geometrical and physical symmetry of the problem under
consideration, the Eshelby tensors in the inhomogeneity and multi-shells are all
transversely isotropic tensors with any of the radii being an axis of symmetry.
However, it should be noted that unlike the classical Eshelby tensor for an ellip-
soidal inhomogeneity without shells, these Eshelby tensors are generally position-
dependent. Eshelby tensors are also position-dependent for nano-inhomogeneities
because of the interface stress [26]. Using the Walpole notation – [47] for trans-
versely isotropic tensors, a fourth-order tensor Sk

I (r) with the above mentioned
radial symmetry can be expressed as

(3.7) Sk
I (r) = sk

I1(r)E
1 + sk

I2(r)E
2 + sk

I3(r)E
3

+ sk
I4(r)E

4 + sk
I5(r)E

5 + sk
I6(r)E

6

or in a concise matrix form

(3.8) Sk
I (r) = S̃k

I (r) · ẼT

in which

(3.9) S̃k
I (r) =

[
sk
I1(r) sk

I2(r) sk
I3(r) sk

I4(r) sk
I5(r) sk

I6(r)
]
,
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(3.10) Ẽ =
[
E1 E2 E3 E4 E5 E6

]
,

where r (r = rn) is the position vector. n = niei is the unit vector along
the radius passing the material point at which the Eshelby tensor is calcu-
lated, and r is the distance between this point and the origin (the centre of
the spherical inhomogeneity). ni are the direction cosines of r and i = 1, 2, 3

denote x-, y- and z-directions, respectively. sk
Ip(r) (p = 1, 2, . . . , 6) are functions

of r, and Ep (p = 1, 2, . . . , 6) are the six elementary tensors introduced by
Walpole [47].

From the above elastic solutions, the Eshelby tensor in the inhomogeneity is
given by Eq. (3.8) with S̃1

I(r) being

(3.11) S̃1
I(r) =




δI1 + B1
I + 2F 1

I + 3(7 − 8ν1)A
1
Iρ

2

δI1 + 2B1
I + F 1

I + 36ν1A
1
Iρ

2

δI1 + 3B1
I + 3(7 − 4ν1)A

1
Iρ

2

δI1 + 3B1
I + 3(7 + 2ν1)A

1
Iρ

2

−B1
I + F 1

I − 18ν1A
1
Iρ

2

−B1
I + F 1

I − 3(7 − 8ν1)A
1
Iρ

2




T

where ρ = r/r1, and the constants A1
I , B

1
I and F 1

I are given in Eq. (3.6). In the
infinite matrix, S̃M+1

I (r) is

(3.12) S̃M+1
I (r) =




6DM+1
I

1

ρ5
+ 2

[
GM+1

I − 2(1 + νM+1)C
M+1
I

] 1

ρ3

12DM+1
I

1

ρ5
− 2

[
GM+1

I + 2(5 − 4νM+1)C
M+1
I

] 1

ρ3

3DM+1
I

1

ρ5
+ 6(1 − 2νM+1)C

M+1
I

1

ρ3

−12DM+1
I

1

ρ5
+ 6(1 + νM+1)C

M+1
I

1

ρ3

−6DM+1
I

1

ρ5
− 2

[
GM+1

I − (5 − 4νM+1)C
M+1
I

] 1

ρ3

−6DM+1
I

1

ρ5
+
[
GM+1

I + 4(1 + νM+1)C
M+1
I

] 1

ρ3




T

where the constants CM+1
I , DM+1

I and GM+1
I are given in Eq. (3.6). In the multi-

shells, S̃k
I (r) (k = 2, ..., M) is given by
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(3.13) S̃k

I
(r) =




δIk + Bk

I
+ 2F k

I
+ 3(7 − 8νk)Ak

I
ρ2 +

2

ρ3

[
Gk

I
− 2(1 + νk)Ck

I

]
+

6Dk

I

ρ5

δIk + 2Bk

I
+ F k

I
+ 36νkAk

I
ρ2 − 2

ρ3

[
Gk

I
+ 2(5 − 4νk)Ck

I

]
+

12Dk

I

ρ5

δIk + 3Bk

I
+ 3(7 − 4νk)Ak

I
ρ2 + 6(1 − 2νk)Ck

I

1

ρ3
+ 3Dk

I

1

r5

δIk + 3Bk

I
+ 3(7 + 2νk)Ak

I
ρ2 + 6(1 + νk)

Ck

I

ρ3
− 12Dk

I

ρ5

−Bk

I
+ F k

I
− 18νkAk

I
ρ2 − 2

ρ3

[
Gk

I
− (5 − 4νk)Ck

I

]
− 6Dk

I

ρ5

−Bk

I
+ F k

I
− 3(7 − 8νk)Ak

I
ρ2 +

[
Gk

I
+ 4(1 + νk)Ck

I

] 1

ρ3
− 6Dk

I

ρ5




T

If the inhomogeneity, the multi-shells and the matrix have the same elastic
moduli, the Eshelby tensors given in Eqs. (3.11) and (3.12) reduce to the classical
interior and exterior Eshelby tensors [40].

Duan et al. [39] have shown that the volume average Eshelby tensors can
be used to predict the effective elastic moduli of composites. We therefore give
the volume averages of the Eshelby tensors for the spherical inhomogeneity with
multi-shells. Performing the volume integrations, it is found that the volume
average of the Eshelby tensor S̄k

I is an isotropic tensor, which can be expressed as

(3.14) S̄k
I =

1

Vk

∫

Vk

S̃k
I (r)·̃E

T
dV = ξk

I K1 + ςk
I K2

in which

(3.15) K1 =
1

3
I(2) ⊗ I(2), K2 = −1

3
I(2) ⊗ I(2) + I(4s),

where Vk is the volume of the corresponding phase, ξk
I and ςk

I are constants,
and I(2) and I(4s) are the second- and fourth-order symmetric identity tensors,
respectively. When the inhomogeneity, the multi-shells and the matrix have the
same elastic constants, Eq. (3.14) for the interior volume-averaged Eshelby tensor
reduces to the classical one [40].

4. Eshelby tensors in finite domains

In the preceding section, we gave the general form of the Eshelby tensors
of a spherical inhomogeneity with multi-shells in an infinite matrix. In this sec-
tion, we consider a spherical inhomogeneity and multi-shells with prescribed
uniform eigenstrains ε

∗
I , in a finite domain whose outer boundary is either fixed

or traction-free (Figs. 2(a) and (b)). The Eshelby tensors in the inhomogene-
ity and multi-shells when the outermost shell is fixed can be obtained from



268 X. Yi, H. L. Duan, B. L. Karihaloo, J. Wang

the general solution by letting the elastic moduli of the matrix tend to infinity.
Therefore, we do not report the detailed results here. Instead, we give the results
when the outermost shell is traction-free because they can be used to analyse the
strain state in free-standing nano-onions. Figure 3 shows spherical free-standing
nano-onions with ingredient A (shaded area) and ingredient B. These spherical
nano-onions consist of cores and concentric multi-shells of nanometer-size. Here,
we distinguish the interface stress from the surface stress for the free-standing
nano-onions. Generally, the surface stress τ can also be expressed by the form
similar to Eq. (2.4), i.e., τ = τ01+Cs : ε

s, where τ0 is the constant surface stress.

1

I

M

1

I

M

(a)                              (b) 

Fig. 2. A spherical inhomogeneity containing multi-shells with fixed exterior boundary (a)
and traction-free exterior boundary (b).

M=3 M=4M=2M=1

Fig. 3. Spherical free-standing nano-onions with ingredient A (shaded area) and
ingredient B.

The interface and boundary conditions for the free-standing nano-onions are

(4.1)
uI + ε

∗
I · x = uI+1 + ε

∗
I+1 · x, (σI − σI+1) · N = ∇S · σs,

σrr =
2τ0

rM
at r = rM .

It is noted that ε
∗
M = 0 and I ∈ (1, M − 1) in Eqs. (2.1) and (4.1) for this

traction-free boundary condition. Let us consider a core with two surrounding
shells (M = 3) as an example to illustrate the procedure. Let the corresponding
eigenstrains in the phase 1 and phase 2 be ε

∗
1 and ε

∗
2, respectively. According to



Eshelby formalism for multi-shell nano-inhomogeneities 269

Eq. (2.1), the total strains in the three phases (1, 2 and 3) are, respectively,

(4.2)

ε
1 = S1

1 : ε
∗
1 + S1

2 : ε
∗
2 + H1(σs

0, τ 0) (in phase 1),

ε
2 = S2

1 : ε
∗
1 + S2

2 : ε
∗
2 + H2(σs

0, τ 0) (in phase 2),

ε
3 = S3

1 : ε
∗
1 + S3

2 : ε
∗
2 + H3(σs

0, τ 0) (in phase 3),

where S1
1, S1

2, S2
1, S2

2, S3
1 and S3

2 are six Eshelby tensors in the phases 1, 2 and
3, respectively. The superscripts 1, 2 and 3 denote the quantities corresponding
to the phases, and the subscripts 1 and 2 denote the quantities corresponding to
eigenstrains ε

∗
1 and ε

∗
2, respectively. Sk

I in Eq. (4.2) is given by Eqs. (3.8), (3.11)
and (3.13), and the unknown constants in Eqs. (3.11) and (3.13) are determined
by the interface and boundary conditions in Eq. (4.1).

5. Solution of spherical inhomogeneity problem

In the previous two sections, we gave the Eshelby tensors that relate the
eigenstrains to the total strains inside the spherical inhomogeneity, the multi-
shells and the matrix. In this section, we solve the elastic field of a multi-shell
spherical inhomogeneity embedded in an alien matrix which is subjected to a uni-
form stress σ

0 at infinity. Because the Eshelby equivalent inclusion method is
not used, we shall call the corresponding tensors the stress concentration ten-
sors. These tensors in Eq. (2.5) relate the stress fields in the inhomogeneity, the
multi-shells and the matrix to the remote stress tensor σ

0. As with the inhomo-
geneous inclusion problem in the previous section, the inhomogeneity problem
under remote loading is also solved by the principle of superposition [26]. For
example, the solutions under σ0

zz are still given by Eqs. (3.1)–(3.4) with the
constants determined by interface and boundary conditions (2.6) and the con-
dition to avoid a singularity at r = 0. In the inhomogeneity (k = 1) C1

zz, D
1
zz

and G1
zz vanish; in the matrix (k = M + 1) AM+1

zz vanishes, and the remain-
ing constants are determined from the corresponding interface and boundary
conditions. It is found that under σ0

xx, σ0
yy, σ

0
zz, σ

0
xy, σ

0
xz and σ0

yz, respectively,
Ak

pq, B
k
pq, C

k
pq, D

k
pq, F

k
pp and Gk

pp (p, q = x, y, z) in the general solutions (3.1)–(3.4)
for the inhomogeneity, the multi-shells and the matrix obey relations similar to
Eq. (3.5). In this case, we define constants Ak, Bk, Ck, Dk, F k and Gk such that

(5.1)

Ak ≡r2
1µk

∂Ak
pq

∂σ0
pq

, Bk ≡µk

∂Bk
pq

∂σ0
pq

, Ck ≡µk

r3
1

∂Ck
pq

∂σ0
pq

,

Dk ≡µk

r5
1

∂Dk
pq

∂σ0
pq

, F k ≡2(1 + νk)

(1 − 2νk)
µk

∂F k
pp

∂σ0
pp

, Gk ≡µk

r3
1

∂Gk
pp

∂σ0
pp

,

where the repeated subscripts and superscripts k in Eq. (5.1) do not denote
summation.
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As before, the subscript pairs pq = xx, yy, zz, xy, xz and yz denote the re-
mote stress cases σ0

xx, σ0
yy, σ

0
zz, σ

0
xy, σ

0
xz and σ0

yz, respectively. Again, the last two
expressions in Eq. (5.1) are applicable to pp = xx, yy and zz only. Therefore,
the total stress fields in the inhomogeneity, the multi-shells and the matrix are
expressed in terms of the constants Ak, Bk, Ck, Dk, F k and Gk.

The stress concentration tensors of the considered system have the same
properties as those of the Eshelby tensors. Therefore, Tk(r) can be expressed
as

(5.2) Tk(r) = T̃k(r) · ẼT

where

(5.3) T̃k(r) =
[

T k
1 (r) T k

2 (r) T k
3 (r) T k

4 (r) T k
5 (r) T k

6 (r)
]
,

In the inhomogeneity, T̃1(r) is

(5.4) T̃1(r) =




2B1 + 2F 1 + 6(7 + 6ν1)A
1ρ2

4B1 + F 1 − 12ν1A
1ρ2

6B1 + 6(7 − 4ν1)A
1ρ2

6B1 + 6(7 + 2ν1)A
1ρ2

−2B1 + F 1 + 6ν1A
1ρ2

−2B1 + F 1 − 6(7 + 6ν1)A
1ρ2




T

.

In the matrix, T̃M+1(r) is

(5.5) T̃M+1(r) =




1 + 12DM+1 1

ρ5
+ 4

[
GM+1 − 2(1 − 2νM+1)C

M+1
] 1

ρ3

1 + 24DM+1 1

ρ5
− 4

[
GM+1 + 2(5 − νM+1)C

M+1
] 1

ρ3

1 + 6DM+1 1

ρ5
+ 12(1 − 2νM+1)C

M+1 1

ρ3

1 − 24DM+1 1

ρ5
+ 12(1 + νM+1)C

M+1 1

ρ3

−12DM+1 1

ρ5
− 4

[
GM+1 − (5 − νM+1)C

M+1
] 1

ρ3

−12DM+1 1

ρ5
+ 2

[
GM+1 + 4(1 − 2νM+1)C

M+1
] 1

ρ3




T
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and in the multi-shells, T̃k(r) (k = 2, ..., M) is

(5.6) T̃k(r) =




2Bk + 2F k + 6(7 + 6νk)Akρ2 +
12Dk

ρ5
+

4

ρ3

[
Gk − 2(1 − 2νk)Ck

]

4Bk + F k − 12νkAkρ2 +
24Dk

ρ5
− 4

ρ3

[
Gk + 2(5 − νk)Ck

]

6Bk + 6(7 − 4νk)Akρ2 +
6Dk

ρ5
+ 12(1 − 2νk)

Ck

ρ3

6Bk + 6(7 + 2νk)Akρ2 − 24Dk

ρ5
+ 12(1 + νk)

Ck

ρ3

−2Bk + F k + 6νkAkρ2 − 12Dk

ρ5
− 4

ρ3

[
Gk − (5 − νk)Ck

]

−2Bk + F k − 6(7 + 6νk)Akρ2 − 12Dk

ρ5
+

2

ρ3

[
Gk + 4(1 − 2νk)Ck

]




T

.

The volume averages of the stress concentration tensors are frequently needed
in micromechanical approaches. Performing the volume integrations, it is found
that the volume average of the stress concentration tensor is an isotropic tensor,
which can be expressed as

(5.7) T̄k =
1

Vk

∫

Vk

T̃k(r)·̃ET
dV = αkK1 + βkK2

where αk and βk are two constants. When the multi-shells and the matrix have
the same elastic constants, Eq. (5.7) for the interior stress concentration tensor
reduces to the classical one for an inhomogeneity without shells embedded in an
alien infinite matrix.

6. Eshelby tensors for non-uniform inhomogeneities

In the following, we assume that a spherical inhomogeneity has a spherically
symmetric composition, i.e. the non-uniform composition is a function of the
radial coordinate r only. Such a nano-inhomogeneity is an appropriate model
for solving the strain fields in quantum dots of non-uniform composition, as will
be done later in this section. According to Vegard’s law [48], the non-uniform
eigenstrains can be expressed as ε

∗(r) = x(r)ε∗0, where ε
∗
0 is a constant tensor

[42]. The existence of the non-uniform eigenstrains will cause an elastic field in
a free-standing particle, even when the surface of the particle is not constrained.
Thus, in an attempt to find out the elastic fields in the inhomogeneity and
matrix, we need to solve first the elastic field in a free-standing inhomogeneity.
According to the theory of elasticity, the governing equation to obtain u∗ is as
follows:

(6.1) Cijkl

(
u∗

k,lj − ε∗kl,j

)
= 0,
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where Cijkl is the elastic moduli tensor of the inhomogeneity and ε∗ij is the
non-uniform eigenstrain. Next, in order to obtain simple analytical solutions, we
assume that the elastic moduli of the non-uniform inhomogeneity are constant,
i.e., for example the elastic moduli of the InxGa1−xAs inhomogeneity are those of
InAs, and the elastic moduli of the CdTexSe1−x inhomogeneity are those of CdTe.
This is a reasonable assumption because the compounds in the inhomogeneity
have usually nearly identical elastic constants. First, we consider the elastic fields
due to the only non-vanishing ε∗zz(r) = x(r)ε∗zz0. According to Eqs. (3.1) and
(3.2) in Sec. 3, we assume that

(6.2) u∗
r = U1(r)P2(cos θ) + U2(r), u∗

θ = V1(r)
dP2(cos θ)

dθ
, u∗

ϕ = 0.

Substitution of Eq. (6.2) into Eq. (6.1) gives

3(1 − ν1)

(
r2 ∂2U2

∂r2
+ 2r

∂U2

∂r

)
− 6(1 − ν1)U2 − ε∗zz0r

2(1 + ν1)
∂x

∂r
= 0,

3(1 − ν1)

(
r2 ∂2U1

∂r2
+ 2r

∂U1

∂r

)
− 3(5 − 8ν1)U1 − 9r

∂V1

∂r

(6.3)
−9(3 − 4ν1)V1 − 2ε∗zz0r

2(1 − 2ν1)
∂x

∂r
= 0,

3r
∂U1

∂r
+ 12(1 − ν1)U1 + 3(1 − 2ν1)

(
2r

∂V1

∂r
+ r2 ∂2V1

∂r2

)

− 36(1 − ν1)V1 − 2ε∗zz0r
2(1 − 2ν1)

∂x

∂r
= 0.

For a given variation of x(r), e.g., a linear, logarithmic or exponential vari-
ation with r, U1, U2 and V1 can be easily determined. In particular, if x(r) in
Eq. (6.) is assumed to be a linear function in the radial co-ordinate r

(6.4) x(r) = α0 + α1
r

r1

where α0 and α1 are two constants, and r1 denotes the radius of the non-uniform
inhomogeneity, then the corresponding U1, U2 and V1 are given as

(6.5) U1 =

[
12ν1a

1
zzr

3 + 2b1
zzr +

2(5 − 4ν1)c
1
zz

r2
− 3

d1
zz

r4

]
+

r2α1ε
∗
zz0(3 − 4ν1)

12r1(1 − ν1)
,

(6.6) U2 = f1
zzr +

g1
zz

r2
+

r2α1ε
∗
zz0(1 + ν1)

12r1(1 − ν1)
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(6.7) V1 =

[
(7 − 4ν1)a

1
zzr

3 + b1
zzr +

2(1 − 2ν1)c
1
zz

r2
+

d1
zz

r4

]
+

r2α1ε
∗
zz0(5 − 6ν1)

36r1(1 − ν1)
,

The constants a1
zz, b

1
zz, c

1
zz, d

1
zz, f

1
zz and g1

zz are determined from the traction-free
condition at the outer boundary of the free inhomogeneity, and the condition to
avoid the singularity at the origin, and are equal to

(6.8)

a1
zz =

α1ε
∗
zz0

18r2
1(1 − ν1)(7 + 5ν1)

, b1
zz =

α0ε
∗
zz0

3
+

α1ε
∗
zz0(7 − 5ν2

1)

12(1 − ν1)(7 + 5ν1)
,

f1
zz =

α0ε
∗
zz0

3
+

α1ε
∗
zz0(1 − 2ν1)

6(1 − ν1)
, c1

zz = d1
zz = g1

zz = 0.

It is seen that even when the surface of the particle is not constrained, the
non-uniform eigenstrain still causes an elastic stress/strain field in the particle.
When the non-uniform inhomogeneity is embedded in an infinite (relative to
the inhomogeneity size) or finite alien medium, the constraint imposed by the
exterior medium will cause an additional elastic field. It is found that under
ε∗xx0, ε

∗
yy0, ε

∗
zz0, ε

∗
xy0, ε

∗
xz0 and ε∗yz0, respectively, c1

pq = d1
pq = g1

pp = 0 (p, q =

x, y, z), and a1
pq, b

1
pq and f1

pp (p, q = x, y, z) in the general solutions (6.5)–(6.7)
for the inhomogeneity obey relations similar to Eq. (3.5). In this case, we define
constants a1, b1 and f1 such that

(6.9) a1 ≡ r2
1

∂a1
pq

∂ε∗pq0

, b1 ≡
∂b1

pq

∂ε∗pq0

, f1 ≡
∂f1

pp

∂ε∗pp0

,

where the subscript pairs pq = xx, yy, zz, xy, xz and yz denote the eigenstrain
cases ε∗xx0, ε

∗
yy0, ε

∗
zz0, ε

∗
xy0, ε

∗
xz0 and ε∗yz0, respectively.

In what follows, we will calculate the elastic field by embedding the non-
uniform inhomogeneity in an infinite medium or a finite shell. For the embedded
nano-onion, the displacement fields in the inhomogeneity and the matrix are
given by Eqs. (3.1) and (3.2). In the case of inhomogeneity (k = 1) c1

zz, d
1
zz and

g1
zz vanish; in the matrix (k = 2) a2

zz, b
2
zz and f2

zz vanish. The other constants
are determined from the following interface conditions:

(6.10) u2 = u1 + u∗ |r=r1
, (σ1 − σ

2) · N = ∇S · σs

where u1 is the displacement in the inhomogeneity caused only by the constraint
imposed by the matrix, and u2 is the total displacement in the matrix. The
expressions of u1 and u2 are the same as those for a spherical inhomogeneity
with multi-shell structures.

For the case of non-uniform eigenstrain ε
∗(r) = ε

∗
0(α0 + α1r/r1), according

to the same procedures as those used for the inhomogeneity with multi-shell
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structure, we define constants Ak, Bk, Ck, Dk, Fk and Gk for the spherical
inhomogeneity and the matrix such that

(6.11)

Ak ≡ r2
1

∂Ak
pq

∂ε∗pq0

, Bk ≡
∂Bk

pq

∂ε∗pq0

, Ck ≡ 1

r3
1

∂Ck
pq

∂ε∗pq0

,

Dk ≡ 1

r5
1

∂Dk
pq

∂ε∗pq0

, Fk ≡
∂Fk

pp

∂ε∗pp0

, Gk ≡ 1

r3
1

∂Gk
pp

∂ε∗pp0

.

Therefore, in analogy with Eq. (2.1), we define Eshelby tensors Jk(x) that
relate the total strains ε

k(x) in the non-uniform inhomogeneity(k = 1) and the
matrix (k = 2) to the prescribed eigenstrain

(6.12) ε
k = Jk(r) : ε

∗
0 + Hk(σs

0),

where Jk(r) is a transversely isotropic tensor

(6.13) Jk(r) = J̃k(r) · ẼT .

in which

(6.14) J̃k(r) =
[

jk
1 (r) jk

2 (r) jk
3 (r) jk

4 (r) jk
5 (r) jk

6 (r)
]
.

The Eshelby tensor in the inhomogeneity, J̃1(r) is

(6.15) J̃1(r) =




B1 + b1 + 2(F1 + f1) + 3(7 − 8ν1)(A1 + a1)ρ2 +
ρα1

3(1 − ν1)

2(B1 + b1) + F1 + f1 + 36ν1(A1 + a1)ρ2 +
(3 − 4ν1)ρα1

6(1 − ν1)

3(B1 + b1) + 3(7 − 4ν1)(A1 + a1)ρ2 +
(5 − 6ν1)ρα1

12(1 − ν1)

3(B1 + b1) + 3(7 + 2ν1)(A1 + a1)ρ2 +
(7 − 9ν1)ρα1

12(1 − ν1)

−B1 − b1 + F1 + f1 − 18ν1(A
1 + a1)ρ2 − (1 − 6ν1)ρα1

12(1 − ν1)

−B1 − b1 + F1 + f1 − 3(7 − 8ν1)(A1 + a1)ρ2 − (1 − 3ν1)ρα1

12(1 − ν1)




T

where a1, b1, f1 are given in Eq. (6.9), and A1,B1,F1 are given in Eq. (6.11).
In the matrix, J̃2(r) has the same form as Eq. (3.12) with M = 1, and CM+1

I ,
DM+1

I and GM+1
I are replaced by C2, D2 and G2, respectively.
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7. Numerical results

As seen from the above theoretical analysis, interface stress has effect on
the elastic fields of the composites containing nanoparticles with multi-shells. To
evaluate the influence of interface stress on the elastic fields of this kind of nano-
composites, we first study the total stress distribution in the nano-particle with a
shell embedded in an infinite matrix, with the effect of interface stress expressed
by Eq. (2.4). Here, we assume that the interface constitutive equation is isotropic,
i.e., there are two interface parameters λs and µs on each of the two interfaces.
The material and geometric parameters used for the numerical calculations are
as follows. The shear moduli are µ3 = 10GPa, µ1 = 10µ3 and µ2 = 4µ3 and
Poisson’s ratios are ν1 = ν2 = ν3 = 0.3; the radii of inhomogeneity and shell are
r1 = 6nm, r2 = 9nm, respectively. The normalized total radial stress (σrr/Σ0)
due to σ0

xx = −σ0
yy = Σ0 are shown in Fig. 4. It is noted that previously, Herve

and Zaoui [33] have solved the elastic field in an infinite medium containing
a spherical inhomogeneity with multiple homogeneous shells. For comparison
purposes, we have also drawn the results of Herve and Zaoui [33] in Fig. 4.
It can be seen that the interface parameter has a significant effect on the stress
distribution, especially in the nanoparticle. When interface parameters are equal
to zero, our results reduce to those of Herve and Zaoui [33].

0.0 0.5 1.0 1.5 2.0
-2.2

-2.1

-2.0

-1.9

-1.8
 

rr
/

0

y/r1

 Herve and Zaoui (1993)
 s=3N/m, s=5N/m
 s=6N/m, s=10N/m
 s=9N/m, s=15N/m

Fig. 4. Stress distribution in a spherical uniform nano-particle with one shell (M = 2)
embedded in an infinite matrix for different values of interface moduli λs and µs.

Next, let us compare the total strain distribution in the uniform nano-onion
with one shell CdS/ZnS (M = 2), embedded in an infinite CdS matrix with that
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in the non-uniform nano-onion ZnxCd1−xS embedded in an infinite CdS matrix.
It is noted that the elastic moduli of nano-structured quantum dots (QDs) are
different from those of bulk materials due to the increased ratio of the surface
to the volume. The elastic moduli of nanoparticles (or nanowires and nanofilms,
etc.) can be characterized by apparent (or effective) moduli, which reflect the
surface effect [25, 28, 49], and a simple scaling law for the properties of nano-
structured materials has been given by Wang et al. [28]. However, because of
the lack of information on the surface properties of QDs under consideration,
we cannot determine the exact effective elastic moduli of nano-structured QDs.
Therefore, we assume that the elastic moduli of nano-structured QDs are the
same as those of the corresponding bulk materials.

The elastic constants of bulk ZnS and CdS are as follows: ZnS, bulk modu-
lus 81.6 GPa, Poisson’s ratio 0.4; and CdS, bulk modulus 62.3 GPa, Poisson’s
ratio 0.4. The lattice constants of ZnS and CdS are a = 5.409, a = 5.815,
respectively. Therefore, the misfit strain due to the mismatch of the lattice
constants of ZnS(core)/CdS(shell) is ε∗m0 = −7.0%. We consider the case of
ZnxCd1−xS for which in Eq. (6.4): α0 = 1, α1 = −0.4, and r1 = 9 nm. For
CdS/ZnS/CdS: r1 = 6 nm, r2 = 9 nm. We assume that there exists a constant
interface stress σ

s = σs
01 in CdS/ZnS/CdS and ZnxCd1−xS QDs and σs

0 = 1N/m.
The normalized total radial strain (εrr/ε∗m0) both for CdS/ZnS and ZnxCd1−xS
under ε∗zz(r) = x(r)ε∗m0, are shown in Figs. 5–6. It can be seen that the distri-
butions of the total radial strains are strongly dependent on the compositions
and structures of the nano-onions, and are different for ZnxCd1−xS and
CdS/ZnS (M = 2).

Fig. 5. Strain distribution in a spherical uniform nano-onion with one shell (M = 2)
embedded in an infinite matrix with a constant interface stress σs

0 = 1N/m.
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Fig. 6. Strain distribution in a non-uniform spherical QD embedded in an infinite matrix
with a constant interface stress σs

0 = 1N/m.

8. Concluding remarks

The mechanical behaviour of materials at the nanoscale is different from that
at the macroscopic scale due to the increasing ratio of the surface to the vol-
ume. Recently, many attempts have been made to reveal the influence of surface
properties on the elastic properties of nanobeams, nanowires, nanoplates, etc.
The theoretical and experimental works of Miller and Shenoy [22], Jing et
al. [50] and Duan et al. [26, 27] showed that the elastic moduli of homoge-
neous and heterogeneous materials varied with their characteristic size due to
the surface effect. It can be seen from above, an isotropic surface/interface is
characterized by two surface/interface elastic constants λs and µs, giving rise
to two intrinsic length scales lλ = |λs|/µM+1 and lµ = |µs|/µM+1. Therefore,
the Eshelby and stress concentration tensors for the nano-inhomogeneities with
muliti-shells are found to depend on these two intrinsic length scales and on the
size of the inhomogeneity, i.e. both on relative and absolute sizes.

Based on the theory of the surface elasticity [26], the elastic solutions of the
nano-inhomogeneities with arbitrary shape can be obtained by using the same
techniques. For example, Wang and Wang [51] obtained the elastic solutions of
a nanosized elliptical hole by using the complex variable formulation. Lipiński
et al. [52] obtained the elastic solutions of an ellipsoidal multi-coated inclusion by
using Green’s function techniques. The problems of nano-inhomogeneities with
ellipsoidal shape can also be solved by Green’s function techniques. This will be
investigated in the future. Based on our analysis and the concluding remarks,
the following conclusions can be drawn:
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1. We have obtained the analytical solutions of the elastostatic inhomogeneous
inclusion problem of an infinite medium containing a spherical particle
with multi-shells when eigenstrains are prescribed in the particle and in
the multi-shells, and the inhomogeneity problem when an arbitrary remote
stress field is prescribed. The corresponding Eshelby and stress concentra-
tion tensors are presented.

2. The analytical solutions of inhomogeneous inclusions in finite spherical
domains with fixed displacement or traction-free boundary conditions have
been obtained.

3. The strain fields in the spherical non-uniform inhomogeneity due to non-
uniform eigenstrains have been solved and applied to quantum dots with
uniform and non-uniform compositions. The information on the stress fields
in embedded core-shell particles can also be used to analyse the damage
mechanisms in composites containing these particles.
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