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The interior Neumann problem for the Stokes resolvent system is studied from
the point of view of the potential theory. The existence and uniqueness results as well
as boundary integral representations of the classical solution are given in the case
of a bounded domain in R

n, having a compact but not connected boundary of class
C1,α (0 < α ≤ 1).
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1. Introduction

Let D′ ⊂ R
n and D1 ⊂ R

n (n ∈ N, n ≥ 2) be two bounded domains with
connected boundaries Γ ′ and Γ1 of class C1,α (0 < α ≤ 1), such that D1 ⊂ D′.
Also let D ⊂ R

n be the bounded domain given by D = D′ \ D1, and let Γ =
Γ ′ ∪ Γ1 be its boundary. We assume that the origin of R

n belongs to D1, and
denote by n the unit normal to Γ pointing outside the domain D (see Fig. 1).
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Fig. 1. Bounded domain in R
n.

The following equations:

(1.1) ∇ · u = 0, −∇q + (∇2 − χ2)u + f = 0 in D
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determine the Stokes resolvent system in the bounded domain D. Note that
χ2 is a complex number such that χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0},
u = (u1, . . . , un) and q are unknown functions, and f = (f1, . . . , fn) is a given
vector function. All functions occurring in this paper are complex-valued. In
addition, ∇ is the n-dimensional gradient operator and ∇2 denotes the Laplace
operator.

The Stokes resolvent system (1.1) can be obtained by applying the Laplace
transform to the system of the continuity and Navier–Stokes equations which,
in the case n = 2 or n = 3, describes the low Reynolds number flow of a viscous
incompressible fluid (for details see [12], Sec. 1.5). Thus, in this case, u and q
are the Laplace transforms of the flow velocity and pressure fields, and f is the
Laplace transform of a given body force.

The solution of the Stokes resolvent system can be used to obtain the exis-
tence, stability, and asymptotic properties of solutions to the Navier-Stokes equa-
tion, by applying some results of the functional analysis or pseudo-differential
operator theory (for details see [2, 21]). On the other hand, the potential the-
ory for the Stokes resolvent system in the general case n ≥ 2 was developed
by Varnhorn (see [25, 26]), and extension of this theory to the case of domains
with connected boundaries of Lyapunov type (i.e., of class C1,α (0 < α ≤ 1))
was recently obtained in [27]. In addition, the fundamental solution for the sys-
tem of equations (1.1) in R

3
+ was obtained by McCraken in [16]. Also the

Dirichlet problems for the Stokes resolvent equations on bounded and exterior
domains in R

n with compact but not connected boundaries of Lypaunov type
have been studied recently in [11], and a mixed boundary value problem for the
same equations has been treated in [10].

The aim of this paper is to use the potential theory in order to prove the
existence and uniqueness result of the classical solution to the interior Neumann
problem for the Stokes resolvent system (1.1), in the case of the bounded domain
D with compact but not connected boundary of Lyapunov type.

2. The potential theory for the Stokes resolvent system

The first part of this paper is devoted to the presentation of the potential
theory for the Stokes resolvent system.

2.1. Preliminary results

Let us assume that the fields u and q satisfy the system of equations (1.1).
Then the corresponding Cauchy stress tensor Σ(u) is given by the relation

(2.1) Σ(u) = −qIn + ∇u + (∇u)T ,
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where In denotes the n× n identity matrix and (∇u)T is the transposed matrix
to ∇u = (∂ui/∂xj)i,j=1,...,n.

From the equations (1.1) we find that

(2.2)
∂Σkj(u)

∂xk
= χ2uj − fj in D, j = 1, . . . , n,

where Σij(u) are the components of Σ(u), i, j = 1, . . . , n. Note that in (2.2) we
have used the repeated-index summation convention. From now on, we take into
account this rule.

Let us now denote by T a continuous vector field on Γ . Then the interior
Neumann problem for the Stokes resolvent system (1.1) in the bounded domain
D is the boundary value problem, due to the system of equations (1.1) and the
boundary condition of the Neumann type

(2.3) Σ(u) · n = T on Γ.

Let (·, ·) : C
n × C

n → C be the inner product given by relation

(2.4) (z, η) = ziηi,

for all z = (z1, . . . , zn), η = (η1, . . . , ηn) ∈ C
n, where w is the complex conjugate

of w ∈ C.
Using the equations (2.2) we get the following result (see e.g. [12] p. 24, for

f = 0):

Lemma 1. If the fields u = (u1, . . . , un) and q satisfy the Stokes resolvent
system (1.1), then we have the identity

(2.5)
∫

Γ

Σij(u)njuidΓ = χ2

∫

D

(u,u)dx + 2

∫

D

Eij(u)Eij(u)dx −
∫

D

(f ,u)dx,

where

(2.6) Eij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, . . . , n.

2.2. Uniqueness result of the classical solution to the interior Neumann
problem (1.1), (2.3)

Definition 1. The pair (u, q) is a classical solution to the interior Neumann
problem consisting of the system of equations (1.1) and the boundary condition
(2.3) if (u, q) ∈ (C2(D)∩C1(D))× (C1(D)∩C0(D)), Σ(u) ·n ∈ C0(Γ ), and u

and q satisfy the Equations (1.1) and the boundary condition (2.3) at each point
of D and Γ respectively.



286 M. Kohr

Theorem 1. The interior Neumann problem consisting of the system of
equations (1.1) and the boundary condition of the Neumann type (2.3) has at
most one classical solution (u, q).

P r o o f. Let us assume that the pairs (u(1), q(1)) and (u(2), q(2)) are two clas-
sical solutions of the interior Neumann problem (1.1), (2.3), and let (u(0), q(0))
be their difference. Then applying the identity (2.5) to the fields u(0) and q(0),
one obtains the equality

(2.7)
∫

Γ

Σij(u
(0))nju

(0)
i dΓ = χ2

∫

D

|u(0)|2dx + 2

∫

D

Eij(u
(0))Eij(u(0))dx,

which, in view of the boundary condition Σ(u(0)) · n = 0 on Γ , takes the form

(2.8)
∫

D

[
χ2|u(0)|2 + 2Eij(u

(0))Eij(u(0))

]
dx = 0.

In addition, since | arg χ2| < π, we find that u(0) = 0 in D, and in view of the
homogeneous Stokes resolvent equation

∇q(0) + (χ2 −∇2)u(0) = 0 in D,

we deduce that q(0) = α0 ∈ C in D. Finally, using the fact that Σ(u(0)) · n = 0

on Γ , one obtains that α0 = 0. This completes the proof of Theorem 1.

2.3. The fundamental solution of the Stokes resolvent system

Next, we refer to the system of the continuity and singularly Stokes resolvent
equations

(2.9) ∇ · u = 0, −∇q + (∇2 − χ2)u + gδ(x) = 0,

where g = (g1, . . . , gn) is a constant vector and δ is the Dirac distribution or the
delta function in R

n. Also the fields u = (u1, · · · , un) and q are complex-valued,
and χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}.

2.3.1. The Green function and its associate pressure vector. The unsteady Stokes-

let or the free-space Green function Gχ2

(Gχ2

ij ) and the corresponding pressure

vector Πχ2

(Πχ2

i ) to the Stokes resolvent system are defined by the relations

(2.10) ui(x) =
1

2̟n
Gχ2

ij (x)gj , q(x) =
1

2̟n
Πχ2

j (x)gj ,

where ̟n is the surface area of the (n − 1)-dimensional unit sphere in R
n.
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Substituting the expressions (2.10) into the Eqs. (2.9), one obtains the equa-
tions

(2.11)
∂Gχ2

ij (x)

∂xi
= 0, j = 1, . . . , n,

(2.12) −
∂Πχ2

j (x)

∂xk
+ (∇2 − χ2)Gχ2

kj (x) = −2̟nδkjδ(x), j, k = 1, . . . , n.

Note that δkj is the Kronecker symbol, i.e., δkj = 1 for k = j, and δkj = 0 for
k 6= j.

Let Σχ2

(u) be the stress field corresponding to the fields u and q. Using the
relations (2.1) and (2.10) we find that

(2.13) Σχ2

ik (u)(x) =
1

2̟n
Sχ2

ijk(x)gj , i, k = 1, . . . , n,

where Sχ2

ijk are the components of the stress tensor Sχ2

, associated to the Green

function and the pressure vector Gχ2

and Πχ2

, and having the form

(2.14) Sχ2

ijk(x) = −Πχ2

j (x)δik +
∂Gχ2

ij (x)

∂xk
+

∂Gχ2

kj (x)

∂xi
, i, j, k = 1, . . . , n.

The fundamental solution (Gχ2

,Πχ2

) of the Stokes resolvent system (2.11),
(2.12) can be obtained by the Fourier transform method in the form (see [2] and
[28] for n = 2; [23] for n = 3; p. 81–82 [12], for n = 2, 3; p. 60 [25]; [26]; [27] in
the general case n ≥ 2):

(2.15)
Gχ2

jk (x) =
δjk

|x|n−2
A1(χ|x|) +

xjxk

|x|n A2(χ|x|),

Πχ2

j (x) = 2
xj

|x|n , j, k = 1, . . . , n,

where

(2.16)

A1(z) = 2




(z

2

)m−1
Km−1(z)

Γ (m)
+ 2

(z

2

)m

Km(z)

Γ (m)z2
− 1

z2


 ,

A2(z) = 2




n

z2
− 4

(z

2

)m+1
Km+1(z)

Γ (m)z2


 ,
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m = n/2, Γ (z) is the Gamma function, χ is the particular square root of
χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}, which has a positive real part, i.e.,
Reχ > 0, and Kν is the modified Bessel function of the order ν ≥ 0. For details
see e.g. [1].

2.3.2. The stress tensor associated with the Green function. Taking into account
the relations (2.14), (2.15) and (2.16), one obtains the components of the stress
tensor Sχ2

in the form (see e.g. p. 61–62 [25]; [27]):

(2.17) Sχ2

ijk(x) = −2

{
δik

xj

|x|n D1(χ|x|) +

(
δkj

xi

|x|n + δij
xk

|x|n
)

D2(χ|x|)
}

− 2
xixjxk

|x|n+2
D3(χ|x|),

where

(2.18)

D1(z) = 8

(z

2

)m+1
Km+1(z)

Γ (m)z2
− 2n

z2
+ 1,

D2(z) = 8

(z

2

)m+1
Km+1(z)

Γ (m)z2
− 2n

z2
+ 2

(z

2

)m

Km(z)

Γ (m)
,

D3(z) = −16

(z

2

)m+2
Km+2(z)

Γ (m)z2
+

2n(n + 2)

z2
.

2.3.3. The pressure tensor associated with the stress tensor. Now, using the prop-
erties (2.11), (2.12) and (2.15) we deduce that

(2.19) (∇2
x
− χ2)Sχ2

ijk(y − x) =
∂Λχ2

ik (x − y)

∂xj
for x 6= y, i, j, k = 1, . . . , n,

where (see [12] Chapter 2, for n = 2, 3; p. 61–62 [25], for n ≥ 2)

(2.20) Λχ2

ik (x − y) =





−2δikχ
2 ln r − 4

δik

r2
+ 8

x̂ix̂k

r4
for n = 2

2χ2

n − 2
δik

1

rn−2
− 4δik

1

rn
+ 4n

x̂ix̂k

rn+2
for n ≥ 3,

denote the components of the pressure tensor Λχ2

associated with the stress
tensor Sχ2

, and x̂ = x − y = (x̂1, . . . , x̂n), r = |x̂|.
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In addition, making use of the Eqs. (2.11) as well as the expression of the
pressure vector Πχ2

, we get the property

(2.21)
∂Sχ2

ijk(y − x)

∂xj
= 0 for x 6= y, i, k = 1, . . . , n.

2.4. The potential theory for the Stokes resolvent system

Let us denote by f̃ = (f̃1, . . . , f̃n) and h̃ = (h̃1, . . . , h̃n) two complex vector-
valued functions in the class C0(Γ ).

2.4.1. The single- and double-layer potentials for the Stokes resolvent system.

By the single-layer potential with density f̃ we mean the complex vector-valued
function Vχ2,n(·, f̃) defined as follows:

(2.22) Vχ2,n(x,g) =

∫

Γ

Gχ2

(x − y) · f̃(y)dΓ (y), x ∈ R
n \ Γ,

where Gχ2

is the Green function of the Stokes resolvent system (see the relations
(2.15) and (2.16)). Similarly, by the double-layer potential with density h̃ we
mean the complex vector-valued function Wχ2,n(·, h̃) whose jth-component has
the form

(2.23) (Wχ2,n)j(x, h̃) =

∫

Γ

Sχ2

ijk(y − x)nk(y)h̃i(y)dΓ (y),

x ∈ R
n \ Γ, j = 1, . . . , n,

where Sχ2

is the stress tensor associated with the Green function Gχ2

(see the
relations (2.17) and (2.18)).

Now, let us denote by P s
χ2,n

(·, f̃) and P d
χ2,n

(·, h̃) the functions defined at each
point x ∈ R

n \ Γ by the relations

(2.24) P s
χ2,n(x, f̃) =

∫

Γ

Πχ2

i (x − y)f̃i(y)dΓ (y),

(2.25) P d
χ2,n(x, h̃) =

∫

Γ

Λχ2

ik (x − y)nk(y)h̃i(y)dΓ (y),

where Πχ2

and Λχ2

are the pressure vector and the pressure tensor respectively,
associated with the Green function Gχ2

and having the forms (2.15) and (2.20).
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Taking into account the Eqs. (2.11), (2.12), (2.19) and (2.21), one obtains
the result that the pairs (Vχ2,n(·, f̃), P s

χ2,n
(·, f̃)) and (Wχ2,n(·, h̃), P d

χ2,n
(·, h̃)) are

classical solutions of the homogeneous Stokes resolvent system in R
n \ Γ , i.e.,

(2.26) ∇ · Vχ2,n(·, f̃) = 0, −∇P s
χ2,n(·, f̃) + (∇2 − χ2)Vχ2,n(·, f̃) = 0

in R
n \ Γ,

(2.27) ∇ · Wχ2,n(·, h̃) = 0, −∇P d
χ2,n(·, h̃) + (∇2 − χ2)Wχ2,n(·, h̃) = 0

in R
n \ Γ.

The decay behavior of the single- and double-layer potentials Vχ2,n(·, f̃) and
Wχ2,n(·, h̃) at infinity is given by the following relations (see e.g. pp. 78–79 [25]):

(2.28) Vχ2,n(x, f̃) = O(|x|−n), Wχ2,n(x, h̃) = O(|x|1−n) as |x| → ∞.

Moreover, if the vector density h̃ of the double-layer potential Wχ2,n(·, h̃) satis-
fies the condition

(2.29)
∫

Γ

h̃ · ndΓ = 0,

then we have

(2.30) Wχ2,n(x, h̃) = O(|x|−n) as |x| → ∞.

On the other hand, using the relations (2.14) it follows that the stress ten-
sor Σ(Vχ2,n(·, f̃)) corresponding to the single-layer potential Vχ2,n(·, f̃) has the
following components:

(2.31) Σjk(Vχ2,n(x, f̃)) = −P s
χ2,n(x, f̃)δjk +

∂(Vχ2,n)j(x, f̃)

∂xk

+
∂(Vχ2,n)k(x, f̃)

∂xj
=

∫

Γ

Sχ2

jik(x − y)f̃i(y)dΓ (y), x ∈ R
n \ Γ.

Now, let us denote by v a field defined in a domain U containing Γ . Then
assuming that there exist the limiting values of this field at an arbitrary point
x0 ∈ Γ , evaluated from D and R

n \ D respectively, we denote these limiting
values by v−(x0) and v+(x0). In particular, we use the notations H+

χ2,n
(·, f̃) and
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H−
χ2,n

(·, f̃) for the limiting values of the normal stress due to the single layer

potential Vχ2,n(·, f̃) on both sides of Γ . Note that

(2.32) (Hχ2,n)j(x0, f̃) =

∫

Γ

Sjik(x − y)nk(x)f̃i(y)dΓ (y), x ∈ U \ Γ,

where x̃ is the unique projection of x ∈ U onto Γ .
The continuity behavior of the single- and double-layer potentials across the

boundary Γ of the domain D is given by the following theorem (see p. 66 [25];
p. 199–201 [12]):

Theorem 2. Let f̃ and h̃ be two complex vector-valued densities in the class
C0(Γ ), and let Vχ2,n(·, f̃), Wχ2,n(·, h̃) and H±

χ2,n
(·, f̃) be the complex vector-

valued functions given by the relations (2.22), (2.23) and (2.32). Then for any
point x0 ∈ Γ we have the relations

(2.33) V+
χ2,n

(x0, f̃) = V−
χ2,n

(x0, f̃) = Vχ2,n(x0, f̃),

(2.34) W+
χ2,n

(x0, h̃) − W∗
χ2,n(x0, h̃) = ̟nh̃(x0)

= W∗
χ2,n(x0, h̃) − W−

χ2,n
(x0, h̃),

(2.35) H+
χ2,n

(x0, f̃) − H∗
χ2,n(x0, f̃) = −̟nf̃(x0)

= H∗
χ2,n(x0, f̃) − H−

χ2,n
(x0, f̃),

where

(2.36)

(W∗
χ2,n

)j(x0, h̃) =

PV∫

Γ

h̃i(y)Sχ2

ijk(y − x0)nk(y)dΓ (y),

(H∗
χ2,n

)j(x0, f̃) =

PV∫

Γ

f̃i(y)Sχ2

jik(x0 − y)nk(x)dΓ (y)

and PV denotes the principal value.

P r o o f. The proof of the properties (2.33)–(2.35) in the two- or three-
dimensional steady case (i.e., for n = 2, 3 and the case χ = 0) is presented
in [12], Chapter 3. The case χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}, can be
treated by using the relations

(2.37)
Gχ2

kj (x − y) = G0
kj(x − y) + Gc

kj(x − y),

Sχ2

ijk(y − x)nk(y) = S0
ijk(y − x)nk(y) + Sc

ijk(y − x)nk(y),
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where G0(G0
ij) is the steady Stokeslet and S0(S0

ijk) is its associated stress tensor
(which correspond to the case χ = 0), given by (see p. 39 [12], for n = 2, 3;
p. 16–17 [25])

(2.38) G0
kj(x − y) =





−δkj ln r +
x̂kx̂j

r2
for n = 2,

δkj

n − 2

1

rn−2
+

x̂kx̂j

rn
for n ≥ 3,

(2.39) SS
ijk(y − x) = 2n

x̂ix̂j x̂k

rn+2
, n ≥ 2,

and Gc(Gc
ij) and Sc(Sc

ijk) are continuous kernels. Note that x̂ = x − y =
(x̂1, . . . , x̂n) and r = |x̂|.

The decomposition formulas (2.37) yield that the kernel matrices G0 and
S0 determine the continuity behavior of the potentials Vχ2,n(·, f̃), Wχ2,n(·, h̃)

and H±
χ2,n

(·, f̃). Therefore, the properties (2.33)–(2.35) are direct consequences
of those corresponding to the case χ = 0 (for details see e.g. [12], Sec. 3.4).

2.4.2. Compactness of the single- and double-layer integral operators. For further
considerations, we use the notations

(2.40)

W∗
χ2,n

(x, h̃) =

PV∫

Γ

h̃(y) · Kχ2,n(y,x)dΓ (y),

H∗
χ2,n

(x, f̃) =

PV∫

Γ

f̃(y) · Dχ2,n(x,y)dΓ (y),

for any x ∈ Γ , where Kχ2,n(y,x) and Dχ2,n(x,y) are the kernel matrices given
by

(2.41)
(Kχ2,n)ij(y,x) = Sχ2

ijk(y − x)nk(y),

(Dχ2,n)ij(x,y) = Sχ2

jik(x − y)nk(x).

Note that

Dχ2,n(x,y) = (Kχ2,n(x,y))T , x,y ∈ Γ, x 6= y,

where the superscript T denotes the transpose of a matrix.
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Let us now consider the single- and double-layer integral operators
Vχ2,n : C0(Γ ) → C0(Γ ) and Kχ2,n : C0(Γ ) → C0(Γ ), given by the relations

(2.42)
(Vχ2,nf̃)(x0) ≡ Vχ2,n(x0, (2̟n)−1f̃),

(Kχ2,nh̃)(x0) ≡ W∗
χ2,n(x0, (2̟n)−1h̃)

for any x0 ∈ Γ and all f̃ , h̃ ∈ C0(Γ ). Using the formulas (2.37) and the assump-
tion that Γ ∈ C1,α, it can be proved that both kernels Gχ2

(x−y) and Kχ2,n(y,x)
of the integral operators Vχ2,n and Kχ2,n are weakly singular. Therefore, these
operators are compact from C0(Γ ) into C0(Γ ).

Let us introduce the integral operator Hχ2,n : C0(Γ ) → C0(Γ ) given by the
relation

(2.43) (Hχ2,nf̃)(x0) ≡ H∗
χ2,n

(x0, (2̟n)−1f̃), x0 ∈ Γ, f̃ ∈ C0(Γ ),

where ξ means the complex conjugate of ξ ∈ C. With respect to the inner product
〈·, ·〉 : C0(Γ ) × C0(Γ ) → C defined by

(2.44) 〈v,w〉 ≡
∫

Γ

v · wdΓ =

∫

Γ

vjwjdΓ,

for all v = (v1, · · · , vn),w = (w1, · · · , wn) ∈ C0(Γ ), the integral operators Kχ2,n

and Hχ2,n are adjoint, i.e., they satisfy the relation

(2.45) 〈Kχ2,nh̃, f̃〉 = 〈h̃,Hχ2,nf̃〉, f̃ , h̃ ∈ C0(Γ ).

3. The interior Neumann problem

Using the potential theory for the Stokes resolvent system, we are now able
to obtain the existence result of the classical solution to the interior Neumann
problem (1.1), (2.3).

As above, let D = D′\D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary

Γ = Γ ′ ∪ Γ1 of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0,
Imz = 0}. Also, let f ∈ Cλ(D) be a Hölder continuous vector function in D with
Hölder exponent λ ∈ (0, 1], and let T ∈ C0(Γ ) be given. First, we refer to the
interior Neumann problem for the homogeneous Stokes resolvent system

(3.1) ∇ · u = 0, −∇q + (∇2 − χ2)u = 0 in D

(3.2) Σ(u) · n = T on Γ.
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3.1. Boundary integral representations of the solution

We have proved that this problem has at most one classical solution (u, q)
(see Theorem 1). In order to show the existence of the solution to the Neumann
problem (3.1)–(3.2), we consider the following boundary integral representations:

(3.3) u(x) = Vχ2,n(x, (2̟n)−1Ψ), q(x) = P s
χ2,n

(
x, (2̟n)−1Ψ

)
, x ∈ D,

where Ψ ∈ C0(Γ ) is an unknown complex vector-valued density. Applying the
boundary condition (3.2) to these boundary integral representations and using
the jump formulas (2.35), we obtain the Fredholm integral equation of the second
kind with unknown Ψ

(3.4)
(

1

2
In + Hχ2,n

)
Ψ = T on Γ.

Let us consider the homogeneous equation

(3.5)
(

1

2
In + Hχ2,n

)
Ψ0 = 0 on Γ,

as well as its adjoint with respect to the inner product given by the formula
(2.44)

(3.6)
(

1

2
In + Kχ2,n

)
Φ0 = 0 on Γ.

Then we have the following result:

Lemma 2. Let D = D′\D1 ⊂ R
n (n ≥ 2) be a bounded domain with boundary

Γ = Γ ′ ∪ Γ1 of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0,
Imz = 0}. Then the null spaces of the operators

(3.7)
1

2
In + Hχ2,n : C0(Γ ) → C0(Γ ),

1

2
In + Kχ2,n : C0(Γ ) → C0(Γ )

are one-dimensional. Moreover, a basis of the space

N
(

1

2
In + Hχ2,n

)
=

{
Ψ0 ∈ C0(Γ ) :

(
1

2
In + Hχ2,n

)
Ψ0 = 0 on Γ

}
,

is the set {N1}, where

(3.8) N1(x) =

{
n(x) if x ∈ Γ1,

0 if x ∈ Γ ′,

and n is the unit normal to Γ pointing outside D.
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P r o o f. Using the properties

(3.9) Vχ2,n(x, (2̟n)−1N1) = 0, x ∈ R
n

(3.10) P s
χ2,n

(
x, (2̟n)−1N1

)
=

{
1 if x ∈ D1,

0 if x ∈ D,

we find the relation

(3.11) H−
χ2,n

(·, (2̟−1
n N1) = 0 on Γ,

which shows that

(3.12) N1 ∈ N
(

1

2
In + Hχ2,n

)
.

Now, let Ψ0 be an arbitrary function in the set N
(

1

2
In + Hχ2,n

)
and let u0

and q0 be the fields defined by

(3.13) u0 = Vχ2,n(·, (2̟n)−1Ψ0), q0 = P s
χ2,n(·, (2̟n)−1Ψ0) in R

n \ Γ.

Since Ψ0 ∈ N
(

1

2
In + Hχ2,n

)
it follows that

(3.14) H−
χ2,n

(·, (2̟n)−1Ψ0) = 0 on Γ,

i.e., Σ−(u0) · n = 0 on Γ . In addition, the fields u0 and q0 satisfy the system of
equations (3.1). Therefore, in view of uniqueness of the solution to the interior
Neumann problem, we get

(3.15) u0 = 0 in D, q0 = 0 in D.

In addition, using the uniqueness result of the classical solution of the fol-
lowing exterior Dirichlet problem (see p. 25 [12]):

∇ · u0 = 0, −∇q0 + (∇2 − χ2)u0 = 0 in R
n \ D′,

u0 = 0 on Γ ′,

(|u0||∇u0|)(x) = o(|x|1−n), (|u0||q0|)(x) = o(|x|1−n) as |x| → ∞,

we deduce that

(3.16) u0 = 0, q0 = 0 in R
n \ D′.
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Consequently, we have the relation

(3.17) H+
χ2,n

(·, (2̟n)−1Ψ0) = 0 on Γ ′.

On the other hand, since the pair (u0, q0) is a classical solution to the interior
Dirichlet problem

∇ · u0 = 0, −∇q0 + (∇2 − χ2)u0 = 0 in D1,

u0 = 0 on Γ1,

it follows in view of the uniqueness result that (see Theorem 1)

(3.18) u0 = 0, q0 = c1 in D1,

where c1 ∈ C. Accordingly, we get the relations

(3.19) H+
χ2,n

(·, (2̟n)−1Ψ0) = −c1n on Γ1.

Now, taking into account the jump formulas (2.35), as well as the relations
(3.14), (3.17) and (3.19), we deduce that

(3.20) Ψ0 = 0 on Γ ′,

(3.21) Ψ0 = c1n on Γ1

or, equivalently,

(3.22) Ψ0 = c1N1 on Γ,

where N1 is the function given by the relation (3.8). Consequently, the set {N1}
is a basis of the space N

(
1

2
In + Hχ2,n

)
.

Finally, applying Fredholm’s alternative (see e.g. [13]), we find that the null
spaces of the operators

1

2
In + Hχ2,n : C0(Γ ) → C0(Γ ),

1

2
In + Kχ2,n : C0(Γ ) → C0(Γ )

(which are adjoint with respect to the inner product given by the formula (2.44))
have the same dimension, i.e.,

(3.23) dimN
(

1

2
In + Hχ2,n

)
= dimN

(
1

2
In + Kχ2,n

)
= 1,

where

N
(

1

2
In + Kχ2,n

)
=

{
Φ0 ∈ C0(Γ ) :

(
1

2
In + Kχ2,n

)
Φ0 = 0 on Γ

}
.

This completes the proof of Lemma 2.
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Using again Fredholm’s alternative, we deduce that the Fredholm integral
equation of the second kind (3.4) has a solution Ψ ∈ C0(Γ ) if and only if the
following orthogonality condition holds:

(3.24)
∫

Γ

T · Φ0dΓ = 0, ∀ Φ0 ∈ N
(

1

2
In + Kχ2,n

)
.

The condition (3.24) is satisfied only in certain particular cases and is the con-
sequence of the fact that we are looking for solutions to the interior Neumann
problem (3.1)–(3.2) in the form of a single-layer potential without any comple-
tion. Note that this restriction does not appear in the case of a bounded domain
with connected boundary, and the solution of the corresponding interior Neu-
mann problem is expressed in terms of a single-layer potential (for details see
e.g. p. 210 [12]; p. 70 [25]).

On the other hand, it is obvious that the result of Lemma 2 holds also for
the operators

(3.25)
1

2
In + Kχ2,n : C0(Γ ) → C0(Γ ),

1

2
In + Hχ2,n : C0(Γ ) → C0(Γ ),

i.e.,

(3.26) dimN
(

1

2
In + Kχ2,n

)
= dimN

(
1

2
In + Hχ2,n

)
= 1,

and a basis of the null space N
(

1

2
In + Hχ2,n

)
of the operator

1

2
In + Hχ2,n

is the set {N1}, where the function N1 is given by the relation (3.8). Note that

(3.27) N
(

1

2
In + Kχ2,n

)
=

{
Φ ∈ C0(Γ ) :

(
1

2
In + Kχ2,n

)
Φ = 0 on Γ

}
,

(3.28) N
(

1

2
In + Hχ2,n

)
=

{
Ψ0 ∈ C0(Γ ) :

(
1

2
In + Hχ2,n

)
Ψ0 = 0 on Γ

}
.

Let {Φ1} be a basis of the null space N
(

1

2
In + Kχ2,n

)
. Then {Φ1} is a basis

of the null space N
(

1

2
In + Kχ2,n

)
. Also let u1 and q1 be the fields given by

(3.29) u1(x) = Wχ2,n(x, (2̟n)−1Φ1), q1(x) = P s
χ2,n(x, (2̟n)−1Φ1),

x ∈ R
n \ Γ.
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Applying the identity (2.5) to the fields u1 and q1 in the bounded domain D, we
obtain the formula

(3.30)
∫

D

(χ2|u1|2 + 2Eij(u1)Eij(u1))dx =

∫

Γ

{Σ−(u1) · n} · u−
1 dΓ.

Since Φ1 ∈ N
(

1

2
In + Kχ2,n

)
, it follows that u+

1 = 0 on Γ and thus, in view

of the jump formulas (2.34), we deduce that u−
1 = −Φ1 on Γ . Therefore, the

formula (3.30) becomes

(3.31)
∫

D

(χ2|u1|2 + 2Eij(u1)Eij(u1))dx = −
∫

Γ

{Σ−(u1) · n} · Φ1dΓ.

On the other hand, from the identity

−1

2
Φ1 = Kχ2,nΦ1 on Γ

and the regularizing properties of the double-layer integral operator Kχ2,n :
C0(Γ ) → C0(Γ ), we find that (see e.g. [15] in the case χ = 0; [24]; [27])

Φ1 ∈ C1,α(Γ ).

Hence the normal stress due to the double-layer potential u1 has equal limiting
values on both sides of Γ (see p. 47, 103 [7]; [12] Theorem 3.4.11, in the case
n = 3, χ = 0), i.e.,

(3.32) Σ−(Wχ2,n(·, (2̟n)−1Φ1)) · n = Σ+(Wχ2,n(·, (2̟n)−1Φ1)) · n on Γ.

Further, integrating both sides of the equation

∇ · Wχ2,n(·, (2̟n)−1Φ1) = 0 in D

over the domain D, and using the divergence theorem, as well as the boundary
condition

W−
χ2,n

(·, (2̟n)−1Φ1) = −Φ1 on Γ,

we obtain the relation

(3.33)
∫

Γ

Φ1 · ndΓ = 0,

which, in view of the properties (2.30), yields the result

(3.34) Wχ2,n(x, (2̟n)−1Φ1) = O(|x|−n) as |x| → ∞.
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This result is sufficient to show that the fields

u1 = Wχ2,n(·, (2̟n)−1Φ1), q1 = P d
χ2,n(·, (2̟n)−1Φ1)

satisfy the far-field conditions

(3.35) (|u1||∇u1|)(x) = o(|x|1−n), (|u1||q1|)(x) = o(|x|1−n) as |x| → ∞.

In addition, the fields u1 and q1 satisfy the system of equations

∇ · u1 = 0, −∇q1 + (∇2 − χ2)u1 = 0 in CD′,

as well as the property

u+
1 = W+

χ2,n
(·, (2̟n)−1Φ1) = 0 on Γ ′.

Taking into account the uniqueness result of the solution to the exterior Dirichlet
problem (see p. 25 [12]), we thus deduce that

(3.36) u1 = 0, q1 = 0 in R
n \ D′

and hence

(3.37) Σ−(Wχ2,n(·, (2̟n)−1Φ1)) · n

= Σ+(Wχ2,n(·, (2̟n)−1Φ1)) · n = 0 on Γ ′.

Also the relation W+
χ2,n

(·, (2̟n)−1Φ1) = 0 on Γ1 (note that the plus sign
applies here for the internal side of Γ1) together with the uniqueness result of
the solution to the interior Dirichlet problem (see p. 25 [12]) lead to

(3.38) Wχ2,n(·, (2̟n)−1Φ1) = 0, P d
χ2,n(·, (2̟n)−1Φ1) = c0

1 in D1,

and thus

(3.39) Σ−(Wχ2,n(·, (2̟n)−1Φ1)) · n

= Σ+(Wχ2,n(·, (2̟n)−1Φ1)) · n = −c0
1n on Γ1,

where c0
1 ∈ C.

Now, in view of the relations (3.29), (3.37) and (3.39), the formula (3.31)
becomes

(3.40)
∫

D

(χ2|u1|2 + 2Eij(u1)Eij(u1))dx

= −
∫

Γ

{
Σ−(Wχ2,n(·, (2̟n)−1Φ1)) · n

}
· Φ1dΓ = c0

1

∫

Γ1

Φ1 · ndΓ1.
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If ∫

D

(χ2|u1|2 + 2Eij(u1)Eij(u1))dx = 0,

then u1 = 0 in D, and hence u−
1 = 0 on Γ . In addition, u+

1 = 0 on Γ , and thus,
according to the jump formulas (2.34), we obtain Φ1 ≡ 0. This result contradicts
the property Φ1 6= 0 on Γ . (Note that the set {Φ1} is a basis of the null space

N
(

1

2
In + Kχ2,n

)
, and hence Φ1 6= 0 on Γ .) Therefore, we must have

(3.41) c0
1

∫

Γ1

Φ1 · ndΓ1 6= 0,

i.e.,

(3.42)
∫

Γ1

Φ1 · ndΓ1 6= 0, c0
1 6= 0.

3.2. The completion of the boundary integral representations (3.3)

Recall that the boundary integral representation of the velocity field for the
interior Neumann problem in terms of a single-layer potential without any com-
pletion leads to the boundary integral equation (3.4), which admits solutions in
C0(Γ ) only if the condition (3.24) holds.

Let us now consider the completed boundary integral representations

u(x) = Vχ2,n(x, (2̟n)−1Ψ) + β1Wχ2,n(x, (2̟n)−1Φ1), x ∈ D,(3.43)

q(x) = P s
χ2,n(x, (2̟n)−1Ψ) + β1P

d
χ2,n(x, (2̟n)−1Φ1), x ∈ D,(3.44)

where β1 ∈ C is an unknown constant, Ψ ∈ C0(Γ ) is an unknown vector density,

and the set {Φ1} is a basis of the space N
(

1

2
In + Kχ2,n

)
.

Applying the boundary condition (3.2) to the boundary integral representa-
tions (3.43) and (3.44), and using the jump formulas (2.35), we obtain the fol-
lowing Fredholm integral equation of the second kind with unknown density Ψ:

(3.45)
(

1

2
In + Hχ2,n

)
Ψ = T − β1Σ

−(Wχ2,n(·, (2̟n)−1Φ1) · n on Γ.

Now, according to the properties (3.39) and (3.42), we can choose the number
β1 ∈ C such that

(3.46) β1 =



∫

Γ

{
Σ−(Wχ2,n(·, (2̟n)−1Φ1)) · n

}
· Φ1dΓ



−1 ∫

Γ

T · Φ1dΓ.
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Therefore, we get the relation

(3.47)
∫

Γ

{
T − β1Σ

−
(
Wχ2,n(·, (2̟n)−1Φ1)

)
· n
}
· Φ1dΓ = 0,

which is just the condition required by Fredholm’s alternative in order to have
a solution of the Eq. (3.45) in the space C0(Γ ). Recall that {Φ1} is a basis of

the space N
(

1

2
In + Kχ2,n

)
.

Concluding the above arguments, we obtain the following property:

Theorem 3. Let D = D′ \ D1 ⊂ R
n (n ≥ 2) be a bounded domain with

boundary Γ = Γ ′ ∪ Γ1 of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C :
Rez ≤ 0, Imz = 0}. Also, let T ∈ C0(Γ ) be given. Assume that the set {Φ1} is

a basis of the space N
(

1

2
In + Kχ2,n

)
. Then there exists the uniquely determined

constant β1 ∈ C such that the Fredholm integral equation of the second kind (3.45)
has a solution Ψ ∈ C0(Γ ). Moreover, the boundary integral representations (3.43)
and (3.44), obtained with the density Ψ and the constant β1, determine the unique
classical solution of the interior Neumann problem (3.1)–(3.2).

Taking into account the previous property, we can obtain the existence and
uniqueness result for the classical solution of the interior Neumann problem
associated with the non-homogeneous Stokes resolvent system

(3.48) ∇ · u = 0, −∇q + (∇2 − χ2)u = −f in D

(3.49) Σ(u) · n = T on Γ.

This result is given by the following theorem:

Theorem 4. Let D = D′ \ D1 be a bounded domain with boundary Γ =
Γ ′ ∪Γ1 of class C1,α (0 < α ≤ 1) and let χ2 ∈ C \ {z ∈ C : Rez ≤ 0, Imz = 0}.
Also, let f ∈ Cλ(D) be a Hölder continuous vector function in D (0 < λ ≤ 1),
and let T ∈ C0(Γ ) be given. Then the boundary integral representations

(3.50) u(x) = Vχ2,n(x, (2̟n)−1Ψ) + Wχ2,n(x, (2̟n)−1Φ)

+
1

2̟n

∫

D

Gχ2

(x − y) · f(y)dy,

(3.51) q(x) = P s
χ2,n(x, (2̟n)−1Ψ) + P d

χ2,n(x, (2̟n)−1Φ)

+
1

2̟n

∫

D

Πχ2

(x − y) · f(y)dy,
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x ∈ D, determine the unique classical solution of the interior Neumann problem
(3.48)–(3.49), where Ψ ∈ C0(Γ ) is a solution of the Fredholm integral equation
of the second kind

(3.52)
(

1

2
In + Hχ2,n

)
Ψ = T0 − Σ−(Wχ2,n(·, (2̟n)−1Φ)) · n on Γ,

T0 = (T 0
1 , · · · , T 0

n) is the vector function with the components

(3.53) T 0
j (x) = Tj(x) − 1

2̟n
nk(x)

∫

D

Sχ2

jik(x − y)fi(y)dy, x ∈ Γ,

j = 1, . . . , n, and the function Φ ∈ N
(

1

2
In + Kχ2,n

)
is uniquely determined in

the form Φ = β1Φ1, with

(3.54) β1 =



∫

Γ

{
Σ−(Wχ2,n(·, (2̟n)−1Φ1)) · n

}
· Φ1dΓ



−1 ∫

Γ

T0 · Φ1dΓ.

4. Conclusions

In this paper we have used the results of the potential theory for the Stokes
resolvent system in order to obtain the existence and uniqueness result of the
classical solution to the interior Neumann problem, associated with the Stokes
resolvent system in a bounded domain with compact but not connected bound-
ary.
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