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An analysis of the evaluation of the fracture energy

using the DCB-specimen
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The methods to estimate the fracture energy using DCB-specimens as advocated
in common standards. For instance, ASTM D 3433 and BS 7991:2001 are based on
a compliance method, i.e. on linear elastic fracture mechanics (LEFM). Since the
mechanical properties of almost all adhesives are non-linear, errors are generated.
In some of the standards, the non-linear behaviour is compensated for by the use
of correction terms generated from the experiments. An analysis of the methods
of evaluation the fracture energy from experiments is performed. This analysis is
performed first by simulating an experiment using realistic data for an engineering
adhesive and then, by analysing the results with different methods. In this way, the
correct fracture energy is known beforehand and the error in the evaluated fracture
energy can be determined. In the present work it is shown that the magnitude of this
error depends on the length of the crack. The results show that some commonly used
methods generate substantial errors when a large region of non-linear deformation
precedes the crack tip. It is also shown that methods based on nonlinear fracture
methods do not produce this kind of error.

1. Introduction

The DCB geometry is a very common test specimen for studies of strength
of adhesives and delamination of composites. The geometry and notation for
a DCB-specimen are given in Fig. 1. Several methods have been developed to
analyse the specimen. The two main principles are based on linear and non-linear
fracture mechanics. In this paper, for the methods that assume the specimen to
be linear elastic, the fracture energy is denoted GC and for the methods that
consider the nonlinear behaviour, the fracture energy is denoted JC .

The foundation of the methods based on linear elastic fracture mechanics is
developed in [1]. For a linear structure, the fracture energy is given by

(1.1) GC =
F 2

2b

∂C

∂a

where C ≡ ∆/F is the compliance of the specimen and a is the crack length. The
differences between the different methods depend on how the differentiation of



312 A. Biel, U. Stigh

Fig. 1. DCB–specimen with notation. The out-of-plane width of the specimen is b.

the compliance is calculated or measured. Three of the most common methods
are presented in this chapter. In nearly all of these methods the crack length has
to be measured. This is often hard to do experimentally since the crack tip is
difficult to localize, cf. e.g. [2]. In case of a tough engineering adhesive, the crack
tip is often preceded by a substantial damage zone. In [3] the zone is measured
to be about 3 to 30 mm long. In the damage zone, micro-cracks nucleate and
grow. This makes it very difficult to identify the precise location of the crack
tip.

In the methods where the compliance is determined by beam theory, the
adherends are assumed to be clamped at the crack tip. It means that these
methods do not consider the flexibility of the adhesive layer. Nor do these meth-
ods consider the rotation of the adherends1) at the crack tip. Two types of the
beam theory are commonly used; the Euler–Bernoulli and the Timoshenko beam
theory. According to the beam theory, displacement of the loading point is

(1.2) ∆ =
2Fa3

3EI
+
Fh2a

4GI

where I ≡ bh3/12, E is Young’s modulus for the adherends and G their shear
modulus. The second term appears only in the Timoshenko beam theory. Using
the Euler–Bernoulli theory and the definition of the compliance, differentiation
according to Eq. (1.1) gives

(1.3) GC,UB1 (F, a) =
F 2a2

EbI
=

12F 2a2

Eb2h3
.

1)This rotation is due to two mechanisms: (i) rotation due to the flexibility of the adhesive
and (ii) distorsion of the adherends, which are not considered in the beam theory.
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This is the basis for most standards. Three alternative expressions of the
fracture energy can be obtained by means of Eq. (1.2), cf. [4].

GC,UB2 (F, a,∆) =
3F∆

2ba
,(1.4)

GC,UB3 (F,∆) =
F 2

EIb

(

3EI∆

2F

)2/3

,(1.5)

GC,UB4 (a,∆) =
9EI∆2

4ba4
.(1.6)

Equations (1.3) to (1.6) have a varying sensitivity for the measurement of the
crack length. Equation (1.5) is independent of the crack length but needs a mea-
surement of the deflection at the loading point. Equation (1.6) is used to analyse
the cleavage test where ∆ is given by the thickness of the wedge. Obviously, it
needs an accurate measurement of the crack length. Since both the wedge and
the tip of the crack are moving during an experiment this measurement may
be difficult. It is also worth to notice that this equation is independent of the
friction between the wedge and the adherends.

In [5], Mostovoy et al. use the Timoshenko beam theory to determine the
compliance, i.e. the full expression in Eq. (1.2). With C ≡ ∆/F , G = E/2(1+ν)
and Poisson’s ratio ν = 1/3, the fracture energy is

(1.7) GC,SB (F, a) =
4F 2

Eb2

[

3a2

h3
+

1

h

]

=
12F 2a2

Eb2h3

(

1 +
1

12

(

h

a

)2
)

,

where the second term in the parenthesis of the last expression is identified
as the compensation due to shear deformation of the adherends. As apparent,
the effect of shear deformation of the adherends is important if a is small in
comparison with h. If h = 1.1a the fracture energy evaluated by Eq. (1.7) is
about 10% larger than that evaluated by Eq. (1.3).

To compensate for the rotation of the adherends at the crack tip and for the
flexibility of the adhesive layer, the crack length is sometimes increased with a
correction term δ, cf. e.g. [6]. According to the Euler–Bernoulli beam theory and
with the corrected crack length (a+ |δ|), the compliance is given by

(1.8) C (a) =
8

Eb

(a+ |δ|)3
h3

.

Since the compliance contains (a + |δ|)3 the correction term, |δ|, is given as a
segment on the a-axis in a plot of the experimental compliance, C1/3 vs. the
crack length a, cf. Fig. 2. This method is used experimentally to determine |δ|.
Differentiating Eq. (1.8), the fracture energy is given by

(1.9) GC,CLC (F, a,∆) =
3F∆

2b (a+ |δ|) .
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Fig. 2. Plot of the cubic root of the compliance vs. the crack length.

The same principle can be used with Timoshenko beam theory, cf. Eq. (1.7) and

e.g. [7]. By taking ν ≡ 1/3, the fracture energy is

(1.10) GC,SCC (F, a) =
4F 2

Eb2

(

3 (a+ |δ|)2
h3

+
1

h

)

.

According to [7], |δ| ≈ h/3 from experiments.

Berry [8] proposes to determine the compliance by an empirical approach.

This method is directly based on Eq. (1.1). The compliance is approximated by

a power law,

(1.11) C = kan

where n and k are determined experimentally. Differentiation yields after some

manipulation,

(1.12) GC,EC =
nF∆

2ba
.

The exponent n is determined experimentally by plotting log C vs. log a,

cf. Fig. 3. It can be noted that according to the Euler–Bernoulli beam theory,

with the adherends assumed as clamped at the beginning of the adhesive layer,

n = 3. Alternative methods used to empirically determine the fracture energy

by power laws are given in [9].

An alternative method to evaluate the DCB-specimen is to use the concept

of energetic forces introduced in [10]. This concept was developed to the two-
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Fig. 3. Plot of the logarithm of the compliance vs. the logarithm of the crack length.

dimensional J-integral approach in [11]. The J-integral is given by

(1.13) J =

∫

S

(

Wdy − T · ∂u
∂x
ds

)

where W is the strain energy density, u is the displacement vector, and T is the
traction vector acting on the area S circumscribing the crack tip. Paris and
Paris [12] use the integral to evaluate J for a DCB-specimen. By assuming the
applied forces to be distributed over a small horizontal increment dx, the energy
release rate is derived as

(1.14) J =
2Fθ

b
.

The same result has been derived in two similar analyses. In [13], Stigh

and Andersson derive the result directly based on the concept of equilibrium
of energetic forces. In [14], Andersson and Stigh use the J-integral and the
Euler-Bernoulli beam theory. The result is also implicit in [15] and has recently
been extended to large deformations in [16]. An important requirement for Eq.
(1.14) to provide the energy release rate is that the material acts as if it was
elastic. This is often the case if no material point is subject to unloading from
an inelastically deformed state. If effects of unloading from an inelastic state can
be ignored, Eq. (1.14) gives a good estimate of the energy release rate. Since a
does not appear in Eq. (1.14), it can be used to measure the instantaneous value
of the fracture energy, JC , during crack propagation.

It can be noted here that since the energy release rate can be evaluated
instantaneously from Eq. (1.14) and since there is a close connection between
the stress-elongation relation and the energy release rate, there is an opportunity
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to determine the stress-elongation relation for the adhesive layer. In this way
Stigh and Andersson [14]2) derive,

(1.15) σ (w) =
2

b

d (Fθ)

d
w

where w is the elongation of the adhesive layer at the beginning of the adhesive
layer, cf. Fig. 1. A similar approach, but with moments applied instead of forces,
has been used in [17]. In [3, 13] experimental results evaluated by means of Eq.
(1.15) are reported. These results are used in the present paper to model the
behaviour of the adhesive.

As compared to the methods based on LEFM, these methods are exact pro-
viding a unique strain energy density for the adhesive layer and the problem can
be considered as two-dimensional.

2. Standards

The use of standards, for instance, the British Standard BS7991 [18] and
the ASTM D 3433 [19], is very common when analysing the fracture energy of
adhesive layers. Similar standards have also been developed for delamination in
composites. The standards propose different methods to evaluate the fracture
energy. All these methods are based on LEFM. Table 1 summarise the equations
used in each standard. The British Standard BS7991 insists that all the methods
should be used if possible. Equations (1.9) and (1.12) are assumed to give a
better accuracy than Eq. (1.7). It is argued that since Eqs. (1.9) and (1.12) are
based on linear plots, only Eq. (1.7) should be used if stick-slip occurs during
crack propagation.

Table 1. Equations used in the standards.

ASTM Use Eq. (1.7). This standard is based on the geometry given in
D 3433 (1999) Fig. 5.

British Standard Use Eq. (1.7), Eq. (1.9), and Eq. (1.12). The two latter methods
BS 7991 (2001) are considered to be the most accurate. According to this standard,

a non-adhesive insert (PTFE-film) is put in the adhesive to initiate
the crack. This insert shall be thinner than 13 µm.

3. Comparison between different methods of evaluation

In order to make an investigation of the different methods to evaluate exper-
iments with the DCB-specimen, a FE-simulation is first made with the adhesive

2)It should be noted that Eq. (1.15) was originally derived by Olsson and Stigh [15].
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layer represented by non-linear springs, with a force-elongation relation adopted
to reflect the stress-elongation relation determined from the experiments, cf.
Figs. 4 to 6 and [3]. Simulations show that the adhesive at the beginning of
the layer experiences a monotonically increasing elongation. However, at some
distance into the layer, the adhesive first experiences compression and later,
when the crack starts to propagate, elongation. In the simulations, the maxi-
mum compressive stress is always less than 18 MPa, i.e. less than the level giving
non-linear behaviour of the adhesive. Thus, the full constitutive behaviour of the
adhesive incorporating unloading from an inelastic state needs not to be known
for the present study.

Fig. 4. FE-model of the upper part of the specimen.

Fig. 5. The geometry according to ASTM D 3433.
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Fig. 6. Stress elongation relation from experiments and adopted for nummerical analysis.

As an alternative to the use of spring elements, cohesive elements can be
used. However, cohesive elements with Newton–Cotes integration are numeri-
cally equivalent to spring elements and we prefer the use of nonlinear springs
in this study. In previous studies it has been shown that FE-simulations give
good accuracy as compared to experimental results, cf. [3, 13, 14]. With this
procedure, the correct fracture energy is known a priori; JC = 700 N/m. The
FE-model consists of 3394 elastic beam elements with E = 213 GPa and 3138
spring elements. The distance between the spring elements is 0.1 mm. This dis-
tance is very small as compared to the length of the damage zone, here defined
as the distance from the crack tip to the first element behaving linearly elastic.
The maximum crosshead displacement, ∆max, is set to 6 mm in the analysis
which corresponds to a substantial crack growth during the simulation. The re-
sult of the FE-analysis is used to evaluate the fracture energy by use of all the
experimental methods presented above. The geometry is chosen according to the
recommendation in ASTM D 3433, cf. Fig. 5. This geometry is also acceptable
according to British Standard BS7991. Figures 7 to 12 show the results of the
simulation.

Figure 12 shows the force vs. the length of the damage zone. As previously
mentioned, the damage zone is defined as the part of the adhesive layer where the
adhesive behaves nonlinearly, i.e. for the present model, w is between 3 µm and
60 µm. Up to an applied force of about 500 N the adhesive deforms elastically.
With increasing loading, the length of the damage zone increases until the crack
starts to propagate. During crack propagation the length of the damage zone
decreases.
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Fig. 7. Force vs. diplacement at the loading point.

Fig. 8. Force vs. crack length during crack propagation.

Fig. 9. Rotation vs. diplacement at the loading point.
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Fig. 10. Rotation vs. crack length during crack propagaton.

Fig. 11. Displacement vs. crack propagaton.

Fig. 12. Force vs. length of damage zone.
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3.1. Evaluation by the methods based on LEFM

These methods accounts only for the flexibility of the adherends between the
crack tip and the loading point.

3.1.1. Compliance determined by the beam theory. Five different methods to
evaluate the fracture energy are based on the beam theory where the adherends
are assumed to be clamped at the beginningof the adhesive layer. Four of these,
Eqs. (1.3) to (1.6), are based on the Euler-Bernoulli beam theory and one on
the shear-corrected Timoshenko beam theory, Eq. (1.7). Using the simulated
experimental result and these methods, the evaluated fracture energy is given
in Fig. 13.

Fig. 13. Normalised fracture energy vs. crack length for a propagating crack. Evaluation
based on the beam equations (note: GC,SB and GC,UB1 do almost coincide).

It is noted that only one of these methods, GC,UB3 provides a stable value
of the fracture energy, i.e. a value that does not vary with crack propagation. It
is interesting to note that this expression for the fracture energy is independent
of the crack length. Thus, a virtual crack extension as suggested in Eqs. (1.9)
to (1.10) does not contribute to the expression since a is not present. One may
also expect that the variation of fracture energy with crack propagation which is
sometimes reported, i.e. the R-curve, might be an effect of errors in the method
of evaluation if some of the other methods are used.

For the present specimen, the difference is very small between the shear
corrected beam theory, GC,SB and the uncorrected beam theory GC,UB1. Thus,
the influence of the shear deformation is insignificant. The equation for GC,UB3

which does not contain the crack length, evidently gives the best accuracy. The
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figure clearly shows that other methods for evaluating the fracture energy are
not able to determine the correct value.

3.1.2. Compliance determined by the beam theory and a correction term. These
methods are based on Eqs. (1.9) and (1.10). They are based on the Euler-
Bernoulli or Timoshenko beam theory and a correction term corresponding to
an increase in the crack length. The correction term for the method that is based
on the Euler–Bernoulli beam theory, is determined by a plot of the cubic root
of the compliance vs. the crack length. The result of the simulation is given in
Fig. 14. For this geometry and adhesive, the length correction is about 22 mm.

Fig. 14. Cubic root of the compliance vs. the crack length.

Fig. 15. Normalised fracture enery vs. crack length propagation.
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The evaluated fracture energies vs. the crack length for these two methods are
given in Fig. 15. Using the method based on the Timoshenko beam theory, the
correction term is taken as h/3, as suggested in [7].

The accuracy is better than 2 % for the method based on the Euler–Bernoulli

beam theory. The error is larger than 40 % for the method based on Timoshenko

beam theory for short crack lengths. The methods are sensitive to the choice of

correction term. If the fracture toughness is varying along the adhesive layer or

if only a few measurements are collected, it is difficult to make a good estimate

of the correction term by a linear fit, cf. e.g. [4].

3.1.3. Compliance determined by empirical approaches. The fracture energy de-

termined by Eq. (1.12) requires that a linear fit should be made to the logarithm

of the compliance vs. the logarithm of the crack length. This plot is presented

in Fig. 16. For this specific case, the slope is determined to be 2.1. An alter-

native value is given by the use of the instantaneous slope n(a). The fracture

energies from both methods are presented in Fig. 17. Using the linear fit, the

fracture energy is overestimated for short crack lengths and underestimated for

long crack lengths. The accuracy of the tested geometry and crack lengths is

better than 20 %. The accuracy is increased by use of the instantaneous slope.

However, this method appears to be difficult to use experimentally considering

scatter in the fracture energy along the adhesive layer.

Fig. 16. Logarithm of the compliance vs. logarithm of the crack length and an
approximation of the slope.
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Fig. 17. Normalised fracture energy vs. crack length for a propagating crack.

3.2. Methods based on non-linear fracture mechanics

This method is based on Eq. (1.14). Theoretically, this method should gen-
erate the fracture energy 700 N/m independently of the crack length. The result
of the analysis made with this method is shown in Fig. 18. The deviation is

Fig. 18. Normalised fracture energy vs. the crack length for a propagating crack.
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smaller than all the other methods. The deviation is due to numerical errors in
the FE-simulation. It should be noted that the rotation θ in Eq. (1.14) is the
rotation of the neutral axis of the beam, which differs from the rotation of the
cross-section due to shear deformation.

4. Conclusion

A number of methods are available to evaluate the fracture properties of ad-
hesives obtained by experiments using the DCB-specimen. Most of these meth-
ods are based on LEFM and most of them need an accurate measurement of
the length of the crack. Since the fracture process almost always leads to the
nucleation of multiple micro-cracks in a long damage zone heading the crack tip,
this measurement is difficult to do. Moreover, these micro-cracks often appear
at several points across the thickness of the layer. These micro-cracks make it
virtually impossible to locate the crack tip during an experiment.

The comparison of methods used for evaluation of the fracture energy from
the experiments shows that many of the methods lead to large errors of the frac-
ture energy. However, the British Standard BS7991, [18], provides one method
that gives small errors; smaller than 2% for the present adhesive, cf. Eq. (1.9).
The two other methods give errors larger than 20%. It is also noted that one
of the methods suggested by Tamuzs et al. [4] gives good accuracy; the error
is smaller than 1.5%, cf. Eq. (1.5). For the method presented in ASTM D3433
[19], the error for short crack propagation, a− a0 < 50 mm, is larger than 40%.

It is doubtful if the standards can be used with any confidence for mod-
ern tough engineering adhesives. Curves similar to the ones shown in Figs. 13
and 17 can be obtained by analysing DCB-specimens with these methods, cf.
e.g. [20].

The use of methods based on nonlinear fracture mechanics is shown to be
superior to all the other methods, cf. Eq. (1.14). In principle this is due to two
properties of the method: it is theoretically exact and there is no need to measure
the crack length.

In the evaluations of the simulated experiment, no consideration has been
given to the errors of measurement. It should be stressed that the crack tip is
very often difficult to localize in an experiment and the methods relying on an
accurate value of the crack length may lead to large errors. Considering these
arguments, the methods based on expressions without the crack length, i.e.
Eqs. (1.5) and (1.14), are recommended. However, Eq. (1.5) depends explicitly
on the bending stiffness of the adherends, i.e. the beam height raised to the third
power. This means that a small error in the measurement of the beam height
leads to large errors in the evaluated fracture energy.
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