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Functional forms of hardening internal state variables

in modeling elasto-plastic behavior
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In this work use is made of functional forms of hardening state variables within a
consistent thermodynamic formulation to model the elasto-plastic behavior of mate-
rials. The formulation is then numerically implemented using the developed plasticity
model. In deriving the constitutive model, a local yield surface is used to determine
the occurrence of plasticity. Isotropic hardening and kinematic hardening are incor-
porated as state variables to describe the change of the yield surface. The hardening
conjugate forces (stress-like terms) are general nonlinear functions of their corre-
sponding hardening state variables (strain-like terms) and can be defined basing on
the desired material behavior. Various exponential and power law functional forms
are studied in this formulation. The paper discusses the general concept of using such
functional forms; however, it does not address the relevant appropriateness of cer-
tain forms to solve different problems. It is shown that, depending on the functions
used, standard models known from the literature can be recovered. The use of this
formulation in solving boundary value problems will be presented in future.

Key words: constitutive behavior, cyclic loading, finite elements.

1. Introduction

Plastic deformation of ductile materials can be explained in terms of the the-
ory of dislocations as being independently introduced in 1934 by Orowan [12],
Taylor [16], and Polanyi [13]. Although movement of the dislocations occurs
due to any loading, this movement is insignificant until a critical threshold (the
yield stress, σyp, in Fig. 1) occurs. At this point, loading causes dislocations to
be generated, moved and stored. The ease with which dislocations are able to
move determines the hardness of the material. With an increase in the dislo-
cation density, there begins to appear more dislocation-dislocation interactions
such that movement becomes more difficult and the stress required to produce
additional plastic deformation increases, i.e. the material hardens.

Plastic material models are used to describe this behavior by defining the
critical stress (the yield stress) through a yield criterion. Various plasticity mod-
els have been used throughout the literature to define the yield surface as well
as the change in size, shape, and position of the yield surface. In this work,
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Fig. 1. Stress-strain curve for a plastically loaded material.

a von Mises-type yield criterion is used with both isotropic hardening (for ex-
ample see Hill [8], Chaboche [3], etc.) corresponding to the change in the size
of the yield surface and the kinematic hardening (for example see Prager [14],
Armstrong and Frederick [1], etc.) corresponding to the change in location
of the yield surface.

The constitutive model is derived using consistent thermodynamics in the
same fashion as the classical rate-independent continuum J2 plasticity model
(e.g. Doghri [6], Simo and Hughes [15], Belytschko [2]). Based on the second
law of thermodynamics, the Helmholtz free energy is introduced to describe the
current state of energy in the material (Malvern [11], Coussy [4]), and is a
function of the strain and the internal state variables under consideration.

In order to derive the model equations, the thermodynamics of irreversible
processes is followed by introducing a local state consisting of state variables
(Malvern [11], Lemaitre and Chaboche [10], Coussy [4], Doghri [6]). A
thermodynamic potential is used which allows the state laws to be defined basing
on the state variables. The evolution of the thermodynamic conjugate forces are
then obtained by assuming physical existence of the dissipation potential at the
macroscale and owing to the use of the theory of functions of several variables
with a Lagrange multiplier.

For convenience in developing the constitutive model and the finite element
algorithm, tensorial notation will be used. Boldface terms indicate tensors of
order one or greater, while italicized terms indicate scalars. Einstein’s summation
convention is used unless otherwise indicated.
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2. Thermodynamic state variables

The local plasticity model is defined through the use of the method of mate-
rial local state identification. In this method, a model is developed such that the
thermodynamic state at a given point in space and time is completely determined
by a given set of state variables at that point in space and time. The observ-
able state variables used here are the total strain denoted by the second-order
tensor ε and the temperature T . These variables can be measured and appear
regardless of the material phenomena such as elasticity and plasticity. For pure
elasticity, these observable state variables entirely define the point; however, for
elasto-plasticity, the material has a history dependence which requires an addi-
tional set of internal state variables. These hardening internal state variables are
unitless, strain-like quantities and are accumulated into a set, Vp of macroscopic
measures of irreversible phenomena:

(2.1) Vp = [r,α],

where the internal state variables considered here are the plasticity-related vari-
ables representing the fluxes of the isotropic and kinematic hardening behaviors,
denoted by the scalar r and the second-order tensor α, respectively. The isotropic
hardening (Hill [8]), corresponds to the change in the size of the yield surface
and the kinematic hardening (Prager [14]) corresponds to the change in loca-
tion of the yield surface. Note also that the strain is assumed to be additively
decomposed into two parts: a recoverable elastic strain, εe, and an irreversible
plastic strain, εp (Fig. 1). The reversible part is related to the stress through the
usual linear elastic equations. Plasticity theory is concerned with characterizing
the irreversible part which remains when external loads are removed.

3. Thermodynamic equations of state

In order to determine state laws which relate the internal state variable fluxes
to their conjugate thermodynamic forces, a thermodynamic potential, ψ, defined
as the Helmholtz free energy is used which is a state function of a thermodynamic
system (Malvern [11], Lemaitre and Chaboche [10], Coussy [4], Doghri
[6]). This thermodynamic potential is used to describe the current state of energy
in the material, is a function of the observable state variables and the internal
state variables under consideration, and has been introduced through the the
Clausius–Duhem inequality as follows:

(3.1) σ : ε̇ − ρ
(

ψ̇ + sṪ
)

− q · ∇T
T

≥ 0,

where σ is the second-order Cauchy stress tensor, ρ is the mass density, q is
the heat flux vector, s is the entropy per unit mass representing the amount
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of disorder or randomness in a system, ∇T is the temperature gradient, and ψ̇
is the time derivative of ψ. Expanding ψ̇ through the chain rule and utilizing
the requirement that independent processes should satisfy the Clausius–Duhem
inequality, the following thermo-elastic state laws can be written:

(3.2) σ = ρ
∂ψ

∂εe
,

(3.3) s = −∂ψ
∂T

.

Thus, from the last two equations, the stress, σ, and the enthalpy, s, are
defined as the conjugate forces corresponding to the state variables εe and T ,
respectively. Similarly, a set of conjugate forces, Ap, is defined which corresponds
to the hardening internal state variables:

(3.4) Ap = [R,X] ,

where the scalar R measures the expansion or contraction of the yield surface
in the stress space while maintaining its shape and having a fixed center and
the second-order tensor X measures the movement and distortion of the yield
surface. Whereas the internal state variables are unitless, strain-like quantities,
the thermodynamic conjugate forces are a set of stress-like quantities that are
related to the state variables since the stress is related to the strain. These
conjugate forces are defined in the Clausius–Duhem inequality by the following
set of state laws:

(3.5) Ap = ρ
∂ψ

∂Vp
.

4. Thermodynamic conjugate forces

Since the internal state variables are selected independently of each other,
one can express the analytical form of the Helmholtz free energy in terms of its
internal state variables as:

(4.1) ρψ =
1

2
εe : Ce : εe +W (Vp) − ρTs,

where the fourth-order tensor Ce is the tangent elastic modulus. Using this form
of the Helmholtz free energy and from the state law Eq. (2.21), the stress applied
to extend or compress a body is defined in terms of the elastic strain through
the standard Hookean relationship as follows:

(4.2) σ = Ce : εe.
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The additional term, W (Vp), accounts for the energy introduced into the
system by the hardening terms. In general, the hardening term for the energy
may be introduced as fully coupled for the isotropic and kinematic hardening.
However, in this paper it is assumed that the energy introduced by the hardening
terms is uncoupled, so that the energy term is a sum of two terms:

(4.3) W (Vp) = W r(r) +Wα(α).

The energy term related to the plasticity “isotropic hardening – conjugate
force” relationship can be, but not exclusively, in the form of a power or expo-
nential relationship (Doghri [6]). Similarly, power and exponential relationships
can be defined for the kinematic hardening energy terms (Voyiadjis and Dor-
gan [17], Dorgan and Voyiadjis [5]). Thus, the energy terms can either be
selected from one of the following functional forms:

Power Laws:

W r (r) =
Hr

mr + 1
rmr+1,(4.4)

Wα (α) =
Hα

mα + 1
‖α‖mα+1 .(4.5)

Exponential Laws:

W r (r) = R∞

(

r +
1

γr
e−γrr − 1

γr

)

,(4.6)

Wα (α) = X∞

(

‖α‖ +
1

γα
e−γα‖α‖ − 1

γα

)

.(4.7)

In these relationships, Hi, mi, R∞, and X∞ are material and geometrical
parameters, where i = r, α. For example, for the case of a composite, the geo-
metrical properties may include size, shape and spacing of the fibers. Utilizing
the energy terms in the Helmholtz free energy, the state laws, Eq. (3.5), result
in definitions of the hardening – thermodynamic conjugate forces in the form of
power and exponential relations of the corresponding state variables:

Power Laws:

R = Hrr
mr ,(4.8)

X = Hα ‖α‖mα−1
α.(4.9)
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Exponential Laws:

R = R∞

(
1 − e−γrr

)
,(4.10)

X = X∞
α

‖α‖
(

1 − e−γα‖α‖
)

.(4.11)

Note that these laws are subject to the constraint that X = 0 when ‖α‖ = 0.
The internal “state variable – thermodynamic conjugate force” relationships

are defined basing on the material being investigated, and different relationships
can be selected for the isotropic hardening law and for the kinematic hardening
law. For example, the isotropic hardening relationship can be assumed to be
linear with an exponential law for the kinematic hardening. Though two typical
models, the power and exponential laws, are used here to introduce the isotropic
and kinematic hardening relations, more complex models can be incorporated
in the same manner; however, the analysis of the material model is beyond the
scope of this work. This work is focused on the development of a formulation
based on a general functional form of the thermodynamic conjugate forces. This
allows the constitutive model to be developed without making an assumption
concerning the behavior of the material model such that the conjugate forces
could be written as a general function of their corresponding internal state vari-
able:

(4.12) R = R (r) ; X = X (α) .

For an example of how these relationships can be defined, consider the
isotropic hardening conjugate force in plasticity, R. This conjugate force, which
is a stress quantity, measures the expansion or contraction of the yield surface
in the stress space, while maintaining its shape and having a fixed center. Thus,
the radius of the yield surface, i.e. the current yield stress, is computed as the
sum of the initial yield stress, σys, and the isotropic hardening conjugate force.
Some possible softening curves for the relationship between the current yield
stress and the isotropic hardening are plotted in Fig. 2.

5. Dissipation potential and flow rules

The evolution of the thermodynamic conjugate forces can be obtained through
the evolution relations of the internal state variables, which are obtained by as-
suming the physical existence of the dissipation potential at the macroscale,
Πp. The energy dissipation processes are set in conjunction with the Clausius–
Duhem inequality with the thermodynamic state laws substituted and are thus
given as the product of the thermodynamic conjugate forces with the respective
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flux variables as follows:

(5.1) Πp = σ : ε̇
p − ρAp · V̇p − q · ∇T

T
≥ 0.

The theory of functions of several variables is used with the Lagrange mul-
tiplier λ̇p to construct the objective function Ω in the following form:

(5.2) Ω = Πp − Fλ̇p,

where F is the plastic potential and will be defined later. In order to obtain
the plastic strain rate, the objective function is extremized so that, for the case
when F ≥ 0, the evolution equations for the plastic strain and for the internal
state variables are given as follows:

ε̇p =
∂F

∂σ
λ̇p,(5.3)

V̇p = − ∂F

∂Ap
λ̇p.(5.4)

The following loading-unloading conditions known as the Kuhn–Tucker con-
ditions (Kuhn and Tucker [9]) must also be enforced:

(5.5) λ̇p ≥ 0; f ≤ 0; λ̇pf = 0.

The first relationship states that the plastic flow rate is always non-negative,
while the second condition shows that the stress state is always within the yield
surface or on the yield surface. The last condition can be met in two different

Fig. 2. Softening curves: possible relations between the isotropic hardening r and the
corresponding conjugate force R.
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loading cases. If the stress is in a state of elastic loading/unloading, then λ̇p = 0
and the condition is met. If, however, there is a plastic loading (λ̇p > 0), then the
last condition makes the stress state to remain on the yield surface (f = 0). In
order for this condition to be satisfied during loading, there can be no evolution
of the yield surface (ḟ = 0). This last implication is the consistency condition for
plasticity, and it will be used to determine the evolution of the plastic multiplier.

6. Plastic potential and yield condition

Associative plasticity can be used here to derive the evolution equations for
the constitutive model such that the plastic potential, F , is set equal to the yield
criterion, f :

(6.1) F = f = ‖ξ‖ −
√

2

3
[σyp +R] ≤ 0

where ‖ξ‖ is the norm of the relative stress tensor, ξ, and is defined in terms of
the deviatoric stress, s, and the backstress, X, as follows:

(6.2) ξ = s − X.

With the plastic potential defined by Eq. (6.1), the normals to the plastic
potential required in Eqs. (5.3) and (5.4) are derived to have the following forms:

(6.3)
∂F

∂σ
=
∂f

∂σ
=

ξ

‖ξ‖ = f,σ,

(6.4)
∂F

∂R
=
∂f

∂R
= −

√

2

3
= f,R,

(6.5)
∂F

∂X
=
∂f

∂X
= f,X = −f,σ.

Thus, the evolution equations for the local plasticity model have been derived
and are written as follows:

(6.6) ε̇
p = f,σλ̇

p; ṙ = −f,Rλ̇
p = ε̇peq; α̇ = −f,Xλ̇

p = f,σλ̇
p.

In these equations, ε̇peq is defined as the evolution of the equivalent plastic
strain and takes the following form:

(6.7) ε̇ p
eq ≡

√

2

3
ε p : ε p =

√

2

3
λ̇ p.



Functional forms of hardening internal state ... 43

7. Plasticity consistency condition

At a plastic state when f = 0, the consistency condition ḟ = 0 results from
the loading-unloading conditions of Eq. (5.5). Thus, since the yield criterion
is a function of the effective Cauchy stress, the backstress and the isotropic
hardening, the consistency condition can be expressed in terms of the conjugate
forces:

(7.1) ḟ =
∂f

∂σ
: σ̇ +

∂f

∂R
Ṙ+

∂f

∂X
: Ẋ ≡ 0.

Since the conjugate forces have been defined as general functions of the state flux
variables as defined in Eqs. (4.12), the consistency condition can be rewritten in
terms of the flux variables as follows:

(7.2) ḟ =
∂f

∂σ
: σ̇ +

∂f

∂R

∂R (r)

∂r
ṙ +

∂f

∂X
:
∂X (α)

∂α
: α̇ ≡ 0.

After substitution of the normals to the yield surface as defined in Eqs. (6.3)
to (6.5) and by the evolution equations for the internal state variables as defined
through Eqs. (6.6)1 and (6.6)2, the plastic multiplier can be obtained from this
consistency condition and expressed in terms of the incremental stress as follows:

(7.3) λ̇p =
1

H
f,σ : σ̇,

where H is defined here as:

(7.4) H = f2
,R

∂R (r)

∂r
+ f,σ :

∂X (α)

∂α
: f,σ.

An alternative form of the increment of the plastic multiplier can be found
by substituting the incremental form of Eq. (4.9) and the evolution of the plastic
strain, Eq. (6.6)1, into the consistency condition, Eq. (7.2). The plastic multiplier
is then expressed in terms of the incremental strain as follows:

(7.5) λ̇p =
1

h
f,σ : Ce : ε̇,

where h is defined here as:

(7.6) h = H + f,σ : Ce : f,σ.

Now again, using the rate form of the Hookean relationship and pre-multiplying
by f,σ, the following relation is obtained:

(7.7) f,σ : σ̇ = f,σ : Ce : ε̇ − f,σ : Ce : f,σλ̇
p.
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Using Eq. (7.5), the above equation can be expressed as follows:

(7.8)
f,σ : σ̇

λ̇p
=

ε̇
p : σ̇
(

λ̇p
)2 = h− f,σ : Ce : f,σ = H.

It can be seen from this equation, since the terms ε̇
p and

(

λ̇p
)2

are always

positive, that the hardening modulus, H, is positive when hardening occurs
(i.e. positive increments of stress), and it is negative when softening occurs (i.e.
negative increments of stress).

8. Elasto-plastic tangent modulus

In order to define the constitutive equation, the rate form of the Hookean
stress must be derived by differentiating the stress-strain relation of Eq. (4.9):

(8.1) σ̇ = Ce : (ε̇ − ε̇
p) .

Using the evolution of the plastic strain and of the plastic multiplier defined
by Eqs. (6.6)1 and (7.5), the constitutive law can now be defined by the following
expression:

(8.2) σ̇ = Dep : ε̇,

where the elastic-plastic continuum tangent modulus, Dep, is expressed as:

(8.3) Dep =







Ce if λ̇p = 0,

Ce − 1

h
Ce : f,σ ⊗ f,σ : Ce if λ̇p > 0.

Alternatively, if the plastic multiplier defined in terms of the incremental
stress, Eqs. (7.3), is used, then the inverse of the elastic-plastic continuum tan-
gent modulus takes the following form:

(8.4) D−ep =







C−e if λ̇p = 0,

C−e +
1

H
f,σ ⊗ f,σ if λ̇p > 0.

9. Conjugate force definitions

Now when the constitutive model has been derived, the definitions of the
conjugate forces are revisited here in order to demonstrate the applicability of
the material models used. In order to understand how these relationships can
be defined, various models of defining the isotropic hardening conjugate force
and the kinematic hardening conjugate force will be considered, and it will be
shown that the hardening models take the form of standard models known from
the literature.
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9.1. Linear isotropic hardening model

The simplest case in plasticity hardening is the assumption of a linear hard-
ening model such that the isotropic hardening conjugate force is a linear function
of the equivalent plastic strain:

(9.1) Ṙ = aε̇peq,

where the coefficient a is a constant derived from a simple monotonic uniaxial
curve. In order to obtain this linear model using the model presented in this
paper, a linear state law is utilized for the isotropic hardening as defined by
setting mr = 1 in Eq. (4.8). By taking the time derivative of this equation
and utilizing the evolution equation Eq. (6.6)2, the evolution equation of the
isotropic hardening conjugate force is obtained in the desired form:

(9.2) Ṙ = Hrε̇
p
eq,

where the previously defined coefficient, a, is defined to be equal to the linear
coefficient, Hr.

The derivative of the linear state law with respect to the isotropic hardening
state variable to be used in Eq. (7.4) is defined as follows:

(9.3)
∂R

∂r
= Hr.

9.2. Chaboche isotropic hardening model

Chaboche [3] introduced a nonlinear relationship between the isotropic
hardening and the equivalent plastic strain such that:

(9.4) Ṙ = a (b−R) ε̇peq.

In order to obtain this Chaboche model using the model presented in this
work, the exponential state law is utilized for the isotropic hardening as defined
by Eq. (4.10). Differentiating this equation, we obtain the following evolution of
the isotropic hardening conjugate force:

(9.5) Ṙ = R∞γre
−γrrṙ.

Use of the original state law, Eq. (4.10), and the evolution equation,
Eq. (6.6)2, results in the desired form analogous to Eq. (9.4):

(9.6) Ṙ = γr (R∞ −R) ε̇peq.

Thus, the Chaboche model has been derived when the previously defined
coefficient, a, is defined to be equal to γr and the coefficient b is defined to be
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equal to R∞. These coefficients can be determined from a plot of R versus r
such that the coefficient R∞ is the saturation stress at large values of r and the
combination of coefficients R∞γr is the initial slope of the curve near εpeq = 0.

The derivative of the linear state law with respect to the isotropic hardening
state variable to be used in Eq. (7.4) is defined as follows:

(9.7)
∂R

∂r
= R∞γre

−γrr.

9.3. Prager kinematic hardening model

The Prager model [14] was introduced to describe the motion of the yield
surface such that the yield surface translates linearly with the plastic strain.
Thus, the evolution of the back-stress can be defined by the following relation-
ship:

(9.8) Ẋ = aε̇p,

where the coefficient a is a constant derived from a simple monotonic uniaxial
curve. In order to obtain this Prager model using the model presented in this
work, a linear state law is utilized for the kinematic hardening as defined by
setting mα = 1 in Eq. (4.9). By taking the time derivative of this equation
and utilizing the evolution equation, Eq. (6.6)3, the evolution equation of the
kinematic hardening conjugate force is obtained in the desired form:

(9.9) Ẋ = Hαε̇
p,

where the previously defined coefficient, a, is defined to be equal to the presented
model’s linear coefficient, Hα.

The derivative of the linear state law with respect to the isotropic hardening
state variable to be used in Eq. (7.4) is defined as follows:

(9.10)
∂X

∂α
= Hα.

9.4. Armstrong–Frederick kinematic hardening model

The Armstrong and Frederick model [1] was introduced to describe the
motion of the yield surface, to simulate the multiaxial Bauschinger effect and to
introduce nonlinear hardening. Its kinematic hardening rule was predicted by
the following expression:

(9.11) Ẋ = aε̇p − bε̇peqX

where the constants a and b are determined from uniaxial tests. In order to
obtain this Armstrong–Frederick model using the model presented in this work,
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either a power law or an exponential state law is utilized for the kinematic
hardening as defined by Eqs. (4.9) and (4.11), respectively. By taking the time
derivative of these equations, the following evolution equations are obtained:

Power:

(9.12) Ẋ = Hα ‖α‖mα−1
α̇ −Hα (1 −mα) ‖α‖mα−3 (α : α̇) α.

Exponential:

(9.13) Ẋ = X∞

{
α̇

‖α‖ − α

‖α‖3 (α : α̇)

}(

1 − e−γα‖α‖
)

+X∞γα

α

‖α‖
(

e−γα‖α‖
) (α : α̇)

‖α‖

subject to the constraint that Ẋ = 0 when ‖α‖ = 0.
Use of the original state laws, Eqs. (4.9) and (4.11), and the evolution equa-

tion, Eq. (6.63, results in the desired forms of evolution of the kinematic hard-
ening:

Power:

(9.14) Ẋ =
[

Hα ‖α‖mα−1
]

ε̇
p −

[

(1 −mα)

(
α

‖α‖ :
ε̇

p

ε̇peq

)]

ε̇peqX.

Exponential:

(9.15) Ẋ =

[

X∞

(
1 − e−γα‖α‖

)

‖α‖

]

ε̇
p

−
[(

1 − e−γα‖α‖ (1 + ‖α‖ γα)

‖α‖
(
1 − e−γα‖α‖

)

)(
α

‖α‖ :
ε̇

p

ε̇peq

)]

ε̇peqX.

Thus, a modified form of the Armstrong – Frederick rule given by Eq. (9.11)
has been derived. In this form, the coefficients are no longer constant. The
coefficient a is now a function of the norm of the kinematic hardening flux
variable, ‖α‖, such that:

Power:

(9.16) a = Hα ‖α‖mα−1 .
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Exponential:

(9.17) a = X∞

(
1 − e−γα‖α‖

)

‖α‖
and the coefficient b is now a function of the kinematic hardening flux variable α;
its norm ‖α‖; and the evolutions of the plastic strain ε̇p and accumulated plastic
strain, ε̇peq, such that:

Power:

(9.18) b = (1 −mα)

(
α

‖α‖ :
ε̇

p

ε̇peq

)

.

Exponential:

(9.19) b =

(

1 − e−γα‖α‖ (1 + ‖α‖ γα)

‖α‖
(
1 − e−γα‖α‖

)

)(
α

‖α‖ :
ε̇

p

ε̇peq

)

.

The derivatives of the exponential and power state laws with respect to the
kinematic hardening state variable to be used in Eq. (7.4) are defined as follows:

Power:

(9.20)
∂X

∂α
= Hα ‖α‖mα−1

1 ⊗ 1 +Hα (mα − 1) ‖α‖mα−3
α ⊗ α.

Exponential:

(9.21)
∂X

∂α
= X∞

{
1 ⊗ 1

‖α‖ − 1 ⊗ α + α ⊗ 1

‖α‖3

}(

1 − e−γα‖α‖
)

+X∞γα

(
1 ⊗ α + α ⊗ 1

‖α‖2

)(

e−γα‖α‖
)

subject to the constraint that Ẋ = 0 when ‖α‖ = 0.
Of further interest is the case of a uniaxial tension/compression loading.

As the Poisson’s ratio equals 0.5 for incompressible plasticity, the plastic strain
tensor can be reduced as follows:

(9.22) [εp] =









εp11 0 0

0 −1

2
εp11 0

0 0 −1

2
εp11
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which, from Eq. (6.6)3, allows the backstress flux tensor to be reduced to the
form:

(9.23)







α11

α22

α33







=







α11

−1

2
α11

−1

2
α11







,

[α] =









α11 0 0

0 −1

2
α11 0

0 0 −1

2
α11









.

For this reduced form of the backstress flux tensor, the following relationships
can be used:

(9.24) ‖α‖ =
√

α2
11 + α2

22 + α2
33 =

√

3

2
α11,

(9.25) α : α̇ = α11α̇11 + α22α̇22 + α33α̇33 =
3

2
α11α̇11.

These relations allow the evolution equations for the kinematic hardening in
a 1D state to be written in terms of the uniaxial components as follows:

Power:

(9.26) Ẋ11 = H1/mα
α mα

(√

3

2
X11

)(mα−1)/mα

ε̇peq.

Exponential:

(9.27) Ẋ11 = γα

(

X∞ −
√

3

2
X11

)

ε̇peq.

It is important to note that Eq. (9.27), the nonlinear kinematic hardening
evolution rule for a 1D state, is identical to the standard 1D form of the Arm-
strong – Frederick equation.

The uniaxial forms of the derivatives of the exponential and power state laws
with respect to the kinematic hardening state variable to be used in Eq. (7.4)
are defined as follows:
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Power:

(9.28)
∂X11

∂α11
= mαHα

(√

3

2
α11

)mα−1

.

Exponential:

(9.29)
∂X11

∂α11
= X∞γαe

−γα

q
3
2
α11 .

10. Integration algorithm

In the solution procedure, a linearized form of the equilibrium equation is
solved within an incremental iterative Newton–Raphson solution procedure for
the increment of strain during the time increment ∆tj such that:

(10.1) εj = ε0 + ∆tjdε = ε0 + ∆εj ,

where the subscripts j and 0 indicate that the variable is computed at iteration
j and at the previously converged state, respectively; and the symbol ∆ denotes
a total increment from the previously converged state to the iteration j. The
increment of the plastic multiplier ∆λp

j is then computed and the state of the
material is updated so that:

(10.2) ε
p
j = ε

p
0 + ∆ε

p
j ; rj = r0 + ∆rj ; αj = α0 + ∆αj ,

(10.3) σj = Ce :
(

εj − ε
p
j

)

= σ0 + Ce :
(

∆εj − ∆ε
p
j

)

.

Early computational work would update the state using the plastic multiplier
from Eq. (7.3), λ̇p

0, such that the increment of the plastic multiplier over the time
increment ∆tj would be computed as:

(10.4) ∆λp
j = λ̇p

0∆tj =
∆tj
h0

f,σ0 : Ce : dε

where h0 is written as:

(10.5) h0 = f,σ0 : Ce : f,σ0 + f2
,R0

∂R (r0)

∂r
+ f,σ0 :

∂X (α0)

∂α
: f,σ0

and the unit normal, f,σ0 , is computed basing on the state at the beginning of
the time step. Based on this increment, the state would be updated for a plastic
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state using a simple forward Euler integration scheme, where the increments in
Eqs. (10.2) are defined as follows:

(10.6) ∆ε
p
j = f,σ0∆λ

p
j ; ∆rj = −f,R0∆λ

p
j ; ∆αj = f,σ0∆λ

p
j .

In this scheme, it is not secured that the yield condition at the end of the
time step (time j) should be zero so that the solution will tend to drift from the
yield surface producing inaccurate solutions. In order to obtain more accurate
solutions, integration schemes must be used which secure that fj = 0 at the end
of the time step:

(10.7) Fj = fj =
∥
∥ξj

∥
∥−

√

2

3
[σyp +Rj ] = 0

where the relative stress is defined as follows:

(10.8) ξj = sj − Xj .

The conjugate forces are defined as functions of the state variables such that:

(10.9) Rj = R (rj) ; Xj = X (αj) .

In order to address this type of problem, a return mapping algorithm is
used. This algorithm has an initial elastic-predictor step, followed by a plastic-
corrector step. In the elastic-predictor step, the incremental strains are assumed
to be elastic so that an initial trial stress can be computed as:

(10.10) σtrial
j = σ0 + Ce : ∆εj .

The trial state
(

σtrial
j , εp

0, r0,α0

)

is then used to decide whether an elastic

point enters the plastic regime or whether a plastic point elastically unloads
through a trial yield criterion. For the case when ftrial ≤ 0, the integration

point is assumed to be elastic and the current state
(

σj , ε
p
j , rj ,αj

)

is set to the

trial state
(

σtrial
j , εp

0, r0,α0

)

. Alternatively, when ftrial > 0, the current state

resulting from this trial state lies outside of the yield surface. Plasticity has
occurred and the state must return to the yield surface. Using the definition of
the Cauchy stress from Eq. (10.3) along with the definition of the trial stress,
Eq. (10.10), the Cauchy stress is corrected as follows:

(10.11) σj = σtrial
j − Ce : ∆ε

p
j .

Thus, the correction of the stress during the plastic-corrector phase is defined as:

(10.12) ∆σj = −Ce : ∆ε
p
j .
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While the trial stress is computed basing upon the increment of the total
strain, this plastic corrector is computed basing upon the increment of the plastic
multiplier which is computed basing on the integration scheme used. In this
scheme, the increment of the plastic multiplier is initially assumed to be zero(

∆λ
p(0)
j = 0

)

. At each iteration k, the plastic multiplier is then increased by

dλ
p(k)
j so that:

(10.13) ∆λ
p(k+1)
j = ∆λ

p(k)
j + dλ

p(k)
j .

This increment is computed by using a linearized form of the nonlinear equa-

tion, f
(

∆λp
j

)

, such that:

(10.14) f (k) +
df (k)

d∆λ
p(k)
j

dλ
p(k)
j .

This iterative procedure is followed until the state computed from the plas-
tic multiplier converges. This occurs when the stress has returned to the yield
surface.

11. Fully implicit backward Euler scheme

An implicit backward Euler scheme, as presented in Belytschko et al. [2]
is used for the integration of the constitutive model. This type of integration
scheme is implicit (computed at time j) in the plasticity multiplier, the plastic
strain, the hardening variables, and the plastic flow direction. The integration
scheme is defined by Eqs. (10.1) to (10.3) and Eq. (10.7), where the increments
of the state variables are written as follows:

(11.1) ∆ε
p
j = f,σj

∆λp
j ; ∆rj = −f,Rj

∆λp
j ; ∆αj = f,σj

∆λp
j .

It can be seen that the problem defined by this model can be entirely defined
by solving for two unknowns, ∆σj and ∆λp

j , using the following two nonlinear
equations obtained from Eqs. (11.1)1 and (10.7):

(11.2) aj = −ε
p
j + ε

p
0 + f,σj

∆λp
j = 0,

(11.3) fj = ‖ξj‖ −
√

2

3
[σyp +Rj ] = 0.

Making use of Eq. (10.12), these two equations can be linearized as in
Eq. (10.14) so that, for each iteration k, the following equations hold:

a
(k)
j + C−e : dσ

(k)
j + df

(k)
,σj

∆λ
p(k)
j + f

(k)
,σj
dλ

p(k)
j = 0,(11.4)

f
(k)
j + f

(k)
,σj

: dσ
(k)
j + f

(k)

,∆λp
j

dλ
p(k)
j = 0,(11.5)
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where the normals to the yield surface are defined as:

f
(k)
,σj

=

(
∂f

∂σ

)(k)

j

=
ξ

(k)
j

∥
∥
∥ξ

(k)
j

∥
∥
∥

,(11.6)

f
(k)

,∆λp
j

=

(
∂f

∂∆λp

)(k)

j

= −f (k)2
,Rj

∂R
(

r
(k)
j

)

∂r
− f

(k)
,σj

:
∂X

(

α
(k)
j

)

∂α
: f

(k)
,σj
.(11.7)

The increment of the stress normal can be expressed in terms of the incre-
ments of the unknowns such that:

(11.8) df
(k)
,σj

=

(
∂f,σ

∂σ

)(k)

j

: dσ
(k)
j +

(
∂f,σ

∂∆λp

)(k)

j

dλ
p(k)
j ,

where:

(
∂f,σ

∂σ

)(k)

j

=

(
∂f,σ

∂ξ

)(k)

j

=
I − f

(k)
,σj

⊗ f
(k)
,σj

∥
∥
∥ξ

(k)
j

∥
∥
∥

= f
(k)
,σjσj

,(11.9)

(
∂f,σ

∂∆λp

)(k)

j

= −f (k)
,σjσj

:
∂X

(

α
(k)
j

)

∂α
: f

(k)
,σj

= f
(k)

,σj∆λp
j

.(11.10)

After substituting Eq. (11.8) into Eq. (11.4), the increment of the stress can
be expressed as follows:

(11.11) dσ
(k)
j = −A

(k)
j : a

(k)
j − A

(k)
j : A

p(k)
j dλ

p(k)
j

where:

A
(k)
j =

[

C−e + f
(k)
,σjσj

∆λ
p(k)
j

]−1
,(11.12)

A
p(k)
j = f

(k)
,σj

+ f
(k)

,σj∆λp
j

∆λ
p(k)
j .(11.13)

This increment of stress can now be substituted into the linearized yield

condition, Eq. (11.5). The resulting equation is then solved for dλ
p(k)
j to yield:

(11.14) dλ
p(k)
j =

f
(k)
j − f

(k)
,σj

: A
(k)
j : a

(k)
j

f
(k)
,σj

: A
(k)
j :

(

f
(k)
,σj

+ f
(k)

,σj∆λp
j

∆λ
p(k)
j

)

− f
(k)

,∆λp
j

.
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Thus, the increments of the unknown stress and the unknown plastic multi-
plier have been derived at iteration . Using these increments from Eqs. (11.11)
and (11.14), the unknowns are updated as follows:

∆λ
p(k+1)
j = ∆λ

p(k)
j + dλ

p(k)
j ,(11.15)

σ
(k+1)
j = σ

(k)
j + dσ

(k)
j .(11.16)

and the state variables are updated as follows:

ε
p(k+1)
j = ε

p(k)
j − C−e : dσ

(k)
j ,(11.17)

r
(k+1)
j = r

(k)
j + f

(k)
,Rj
dλ

p(k)
j ,(11.18)

α
(k+1)
j = α

(k)
j − C−e : dσ

(k)
j .(11.19)

The Newton iteration procedure is repeated until convergence is obtained by
checking aj and fj from Eqs. (11.2) and (11.3). An algorithm for this solution
procedure is given in Table 1.

Table 1. Fully implicit backward Euler return algorithm.

1. Initialize and compute trial elastic state for iteration k = 0

∆λ
p(0)
j = 0

σ
(0)
j = σ

trial
j = σ0 + Ce : ∆εj

ε
p(0)
j = ε

p
0; r

(k)
j = r0; α

(k)
j = α0

2. Check convergence for iteration iteration k

f
(k)
j =

ξ(k)
j

−r2

3

h
σyp +R

(k)
j

i
a

(k)
j = −ε

p(k)
j + ε

p
0 + f

(k)
,σj

∆λ
p(k)
j

if f
(k)
j < TOL1 and

a(k)
j

 < TOL2 then:

σj = σ
(k)
j

ε
p
j = ε

p(k)
j ; rj = r

(k)
j ; αj = α

(k)
j

exit

end if



Functional forms of hardening internal state ... 55

3. Compute increments of unknowns

dλ
p(k)
j =

f
(k)
j − f

(k)
,σj

: A
(k)
j : a

(k)
j

f
(k)
,σj

: A
(k)
j :

�
f

(k)
,σj

+ f
(k)

,σj∆λ
p

j

∆λ
p(k)
j

�
− f

(k)

,∆λ
p

j

dσ
(k)
j = −A

(k)
j : a

(k)
j −A

(k)
j :

�
n

(k)
σj

+ f
(k)

,σj∆λ
p

j

∆λ
p(k)
j

�
dλ

p(k)
j

4. Update state

∆λ
p(k+1)
j = ∆λ

p(k)
j + dλ

p(k)
j

σ
(k+1)
j = σ

(k)
j + dσ

(k)
j

ε
p(k+1)
j = ε

p(k)
j −C−e : dσ

(k)
j

r
(k+1)
j = r

(k)
j + f

(k)
,Rj
dλ

p(k)
j

α
(k+1)
j = α

(k)
j −C−e : dσ

(k)
j

k ← k + 1 go to 2

12. Consistent tangent operator

The trial stress can be used to predict whether the integration point has
entered the plastic regime, and the internal state variables can then be updated
using the integration scheme. In order to obtain proper quadratic convergence,
the choice of a tangent operator must be consistent with the integration scheme.
The consistent tangent operator is defined as follows (e.g. Simo and Taylor
[15]):

(12.1) D
alg
j =

(
dσ

dε

)

j

.

Following the procedure given in Belytschko et al. [2], the following set of
equations is used which corresponds to the integration scheme of the previous
section:

dσj = Ce :
(

dεj − dεp
j

)

,(12.2)

dεp
j = df,σj

∆λp
j + f,σj

dλp
j ,(12.3)

dfj = f,σj
: dσj + f,∆λp

j
dλp

j = 0,(12.4)
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where the normals to the yield surface and the increment of the stress normal
are defined by evaluating Eqs. (11.6) to (11.8) at time step j. After substituting
the increment of the plastic strain, Eq. (12.3), and the increment of the stress
normal, Eq. (11.8), at time step j, into Eq. (12.2), the increment of the stress is
determined

(12.5) dσj = Aj : dεj − Aj :
(

f,σj
+ f,σj∆λp

j
∆λp

j

)

dλp
j

where:

(12.6) Aj =
[

C−e + f,σjσj
∆λp

j

]−1
.

This increment of stress can now be substituted into the incremental con-
sistency condition, Eq. (12.4). The resulting equation is then solved for dλp

j

leading to:

(12.7) dλp
j =

f,σj
: Aj : dεj

f,σj
: Aj :

(

f,σj
+ f,σj∆λp

j
∆λp

j

)

− f,∆λp
j

.

Substitution of the above relation in Eq. (12.5) gives the algorithmic relation
between the increment of the stress and the elastic strain as follows:

(12.8) dσj = D
alg
j : dεj

where D
alg
j , the algorithmic elastic stiffness operator which is defined as follows:

(12.9) D
alg
j = Aj −




Aj :

(

f,σj
+ f,σj∆λp

j
∆λp

j

)

⊗ f,σj
: Aj

f,σj
: Aj :

(

f,σj
+ f,σj∆λp

j
∆λp

j

)

− f,∆λp
j



 .

In order to solve a boundary value problem, the finite element approach
can be adopted such that the displacement field is discretized. The algorithm
requires a weak satisfaction of the equilibrium condition such that:

(12.10)

∫

V

δε : Dalg
j : dεjdV =

∫

V

δu : bjdV +

∫

Γt

δu : t̂jdΓ −
∫

V

δε : σjdV.

Note that this equation is enforced within the entire body, including both
the plastic domain and the elastic domain. The governing equation can be lin-
earized consistently and a finite element procedure is then followed to solve the
equations. The problem defined by this set of equations is nonlinear since the
stiffness and the load residuals are a functions of the body deformation. The
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degrees of freedom thus cannot automatically be determined from the system
of equations. An iterative procedure is thus necessary to obtain the degrees of
freedom such that the left-hand side of the governing equations is in equilib-
rium with the load vector residuals of the right-hand side. A typical procedure
is the Newton–Raphson method; however, other methods such as the modified
Newton–Raphson may also be used.

13. Conclusions

In this work, thermodynamically consistent theoretical formulations and the
numerical implementation of a classical continuum plasticity model have been
presented. Following standard thermodynamics and using local state variables,
a complete set of constitutive equations were derived where a local yield surface
was used to determine the occurrence of plasticity. This elasto-plastic model for
materials is introduced here within a framework that uses functional forms of the
isotropic hardening and the kinematic hardening internal state variables. The
hardening conjugate forces (stress-like terms) were defined as general functions
of their corresponding hardening state variables (strain-like terms). Various ex-
ponential and power-law functional forms are studied in this formulation, and
it was shown that, depending on the functions used, standard models from the
literature can be recovered.

The use of this formulation in solving boundary value problems will be pre-
sented in future work where the finite element approach must be adopted, so
that the displacement field will be discretized. The fully implicit backward Euler
scheme will be used in a Newton–Raphson solution procedure.
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