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This article deals with a non-classical scale transition devoted, in the long-run, to
the prediction of the nonlinear mechanical behavior of energetic composites. A geo-
metrical and kinematical schematization of the microstructure is defined as a conspic-
uous starting point for further localization-homogenization procedure. Thus, salient
information on the morphology and some intraphase heterogeneity are taken into
account. The first results obtained in a finite strain context for a three-dimensional
periodic microstructure are compared to the finite element solution. Furthermore,
the ability of the methodology to deal with viscohyperelasticity in a direct manner
is illustrated. This is a significant step towards efficient mastery of the scale transi-
tion for viscoelastic aggregates, whose inherent characteristic lies in space/time local
interactions and relative “long-memory” effect.

1. Introduction

This study is part of a long-time research program aiming at predicting the
vulnerability of energetic composites, i.e. highly filled particulate composites
such as propellant-like materials. To this end, a multi-scale modeling able not
only to characterize the macroscopic behavior of the composite by taking into
account structural morphology, but also to provide estimates of local fields had
to be developed. Moreover, the methodology concerned should be adapted to
the random microstructures of the materials studied, characterized notably by a
high proportion (>60% in volume) of irregular grains. A non-classical approach,
seeming suitable for the purpose, has been advanced in 1983 by Christof-

fersen [1] in small strain linear elasticity. Some of the present authors have
developed it further outside this range in order to embrace first the dissipative
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effects and second – the finite deformation context. So, it has been first applied
and extended in small strain viscoelasticity (see Nadot–Martin et al. [2]). Vis-
coelastic behavior is a strong challenge indeed for any credible scale transition
approach as it involves accounting for truly space/time marked interactions of
constituents on the local level and next their macroscopic consequences, notably
the remarkable “long-range memory effect”, see for example [2] and Beurthey

and Zaoui [3]. The latter states, at elementary level, that global behavior of
an aggregate of, say, Maxwellian viscoelastic constituents, is all but Maxwellian
viscoelasticity; the non-Maxwellian contribution signifying the “long-memory”
term, see for example Suquet [4].

In order to match progressively applications at stake for highly filled elas-
tomers, the Christoffersen-type approach has then been reset to finite strain
(see Guiot et al. [5]). The specificity of the approach lies notably in a direct
geometrical schematization of the real microstructure, defined and treated up-
stream, i.e. before proceeding with the scale transition itself. Some rich and
relevant information concerning morphology and internal arrangement of the
constituents is taken into account explicitly in the local and global estimates,
via the geometrical parameters defined during this first schematizing step. This
constitutes an important feature knowing that a fair description of a represen-
tative volume element (R.V.E.) has always been a key issue in the context of
“averaging methods” [6]. For random microstructures, only partial information
is available. Commonly, some statistical information is accounted for using cor-
relation functions, i.e. mathematical tools that may be hardly measurable and
usable. This led Bornert [7] to propose the concept of a “morphologically rep-
resentative pattern”, supposed to be more representative of the real morphology.
The specific geometrical schematization dealt with here responds to the willing-
ness to take into account accurate and relevant morphological information for a
particular class of heterogeneous materials, namely, the particulate composites.
Moreover, the coupling between this morphological insight and a local kinemat-
ics postulated (assumptions regarding notably the matrix-related displacement
field) offers a way to take into account some intraphase heterogeneity in the ho-
mogenized behavior estimate. Thus, the morphology-based approach advanced
faces another current major challenge in nonlinear micromechanics: the intro-
duction of field fluctuation indicators in order to improve the description of local
heterogeneity whose important effect on the nonlinear macroscopic behavior has
been shown (see for example Moulinec and Suquet [8], Ponte–Castañeda

[9, 10], Idiart et al. [11, 12]).
The objectives here are to present the first quantitative evaluation of the

transformed Christoffersen-type method (which will be denoted further as the
“morphological approach”) in the finite strain framework, and then to illustrate
its possible applicability in the context of viscohyperelasticity which is an es-
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sential feature of the energetic composites. To this end, in Sec. 2, the main
ingredients of the morphological approach reset to finite strain by Guiot et al.
[5] are recalled and discussed. Next, the relevance of estimates obtained by this
means is evaluated in the simplified context of a three-dimensional composite
with hyperelastic constituents and periodic microstructure (Sec. 3). The fore-
going “model” microstructure is subjected to various loading paths (uniaxial
compressive deformation, incompressible tension and simple shear). Global as
well as local estimates are compared with the results given by the finite ele-
ment method. This kind of comparison (using numerical tools such as finite
elements, or Fast Fourier Transform [13]) is indeed commonly admitted today
as a possible accuracy standard regarding micromechanics methods’applicability
and reliability, see for example [12, 14]. Finally, Sec. 4 aims at proving the abil-
ity of the method to deal with viscohyperelasticity in a direct manner. Current
challenges mentioned above in the framework of time-dependent behavior of
heterogeneous media are first recalled. Then, the constitutive model describing
the viscohyperelasticity of the matrix is presented (Sec. 4.1) and the particu-
lar algorithm developed to solve the localization-homogenization problem in the
general case of random microstructure is detailed (Sec. 4.2). The latter section
ends by illustrating the qualitative relevance of the first results obtained for the
periodic microstructure considered in Sec. 3.

2. Christoffersen-type approach in the finite strain framework

In this section, the generalization to finite strain of Christoffersen’s orig-
inal approach [1] is given in a Lagrangian framework. The main features of this
methodology (see also Sec. 2 in Guiot et al. [5]) are presented and discussed.

2.1. Geometrical and kinematical schematizations

The approach starts with a geometrical schematization of initial random
microstructure of the considered material. In the initial configuration, the grains
of a highly filled particulate composite are represented by polyhedra; the matrix
phase is discretized by an assembly of thin layers with constant thicknesses
separating the polyhedral grains. This schematization is illustrated in Fig. 1
(two-dimensional representation). For each layer α, a set of four “morphological
parameters” is defined in the non-deformed configuration:

• hα, the constant thickness of layer α;
• Aα, the projected area of layer α; the associated volume is then Aαhα;
• dα, the vector linking the centroids of the two polyhedra (grains) separated

by layer α;
• nα, the unit vector normal to the plane interface grain/layer α.
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Once the grains are replaced by polyhedra (satisfying the condition of paral-
lelism between the interfaces of opposite grains), the parameters dα, nα and
hα are readily determined. For a random microstructure, the projected area
Aα – leading to the definition of the matrix zone between two neighboring grains
called “layer α”– may be determined as follows. Starting from the centroids of
the two considered grains, the two opposite interfaces are projected on the mid-
dle plane of the intergranular zone. Then, an average projection is defined and
chosen as the area Aα. In this way, layer α (associated volume Aαhα) does not
correspond exactly to the matrix zone strictly confined between the two opposite
interfaces. It can be larger as illustrated in Fig. 1.

Fig. 1. Microstructure geometrical schematization (two-dimensional illustration)
by Christoffersen [1].

Even if such a geometrical schematization (polyhedral grains, parallelism
of opposite interfaces) is an approximation of the particulate microstructure,
salient information concerning real morphology is nevertheless accounted for
in the considered approach. In the original paper of Christoffersen [1],
dependence of estimates on possible texture of the considered composite, on
grain shapes’ irregularities and on layers’ thicknesses is demonstrated; in finite
strain, this is obviously preserved. From the practical point of view, the chal-
lenge is to optimize the correspondence of the “true” microstructure with the
Christoffersen-schematized one, in order to confer a fair relevance on the mor-
phological parameters involved in the estimates.

The second step of the approach is the formulation of simplifying kinemati-
cal assumptions concerning the local fields in the schematized volume. They are
recalled below and are the direct generalization to finite strain of the Christof-
fersen’s original kinematical hypotheses:
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• the deformation gradient in the grains, denoted f0, is supposed to equal
the macroscopic deformation gradient F at the centroids of the grains;
F is considered as the data of the localization-homogenization problem;

• f0 is assumed to be homogeneous and identical for all the grains;
• the deformation gradient in a layer, denoted fα, is supposed to be homo-

geneous in that layer, but it can vary from one layer to another;
• local disturbances at grain edges and corners (see circled zone in Fig. 1)

are neglected on the basis of thinness of the layers.

2.2. Local problem approach

In this doubly schematized context (morphological and kinematical), using
the continuity of displacements at the interfaces between the grains and layers,
the deformation gradient fα of any layer α can be expressed as a function of the
morphological parameters proper to this layer:

(2.1) fα
iJ = f0

iJ +
(

F − f0
)

iK

dα
K nα

J

hα
.

As a consequence, the deformation gradient in layer χ will be different from
the one in layer α (since its morphological parameters are different from the
ones of layer α). Thus, Christoffersen’s morphology and kinematics framework
extended to finite strain offers a way to take into account some strain heterogene-
ity in the matrix phase represented by an assembly of layers. This constitutes
a positive feature in the context of nonlinear homogenization as it has been
shown that local heterogeneity has to be taken into account to ensure a fair esti-
mate of the macroscopic behavior of a nonlinear heterogeneous body (see in the
finite strain framework the work by Lopez-Pamies and Ponte-Castañeda

[15] for an application of the improved second-order theory, incorporating field
fluctuations [9] to hyperelastic composites).

On the contrary, the hypothesis of identical deformation gradient f0 for all
grains (allowing no heterogeneity in the grain phase) could seem somewhat re-
ductive. However, it remains reasonable for highly-filled particulate composites
where the matrix is much softer than the grains, and where it is the matrix
that accommodates much of the strain, keeping in mind that the deformation
gradient in the matrix phase varies from one layer to another.

The compatibility between local motion defined in the above schematized
context (see Subsec. 2.1) and the macroscopic one, characterized by the given
deformation gradient F, is ensured through the following equation:

(2.2) F = 〈f〉V0
= (1 − c) f0 +

1

V0

∑

α

fαAαhα
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which is valid only if the following “compatibility condition” (2.3) is satisfied:

(2.3)
1

V0

∑

α

dα
I n

α
JA

α = δIJ .

In (2.2) and (2.3) V0 denotes the volume occupied by the polyhedra-and-

layers assembly, c is the layers’ concentration with respect to volume V0

(

c =

1

V0

∑

α

Aαhα
)

and δIJ is the Kronecker symbol. From a practical viewpoint, the

Eq. (2.3) has to be satisfied by the parameters of the schematized microstruc-
ture in order to ensure the compatibility between local and global motions in the
sense of Eq. (2.2). Involving both the size of the volume V0 and the morphology
of the schematized microstructure (and consequently, the one of the real mater-
ial), Eq. (2.3) has to be considered as a double criterion. It has to be taken into
account to determine the size of the mechanical representative volume element
(R.V.E.) associated with the methodology at stake, and then to conclude on the
applicability of the approach itself for a given material.

Using the Hill–Mandel principle of macro-homogeneity –generalized to finite
strain in the case of homogeneous stress boundary conditions and applied in the
context considered – the following system (2.4) is obtained:

(2.4)

S̄Ji = 〈s̄Ji〉V0
= (1 − c)s̄0Ji +

1

V0

∑

α

s̄α
JiA

αhα,

S̄Ji =
1

V0

∑

α

tαi d
α
J ; tαi = s̄α

Iin
α
IA

α.

S, s0 and sα denote the average nominal stress tensors, respectively macro-
scopic and microscopic in the grains and in layer α. Note that, although the
first averaging is “classically” exploited, the second one remains specific to the
Christoffersen-type approach: stresses are seen from a granular viewpoint as
forces transmitted from grain to grain by layers acting as contact zones.

According to the Christoffersen original methodology, the local constitutive
laws are introduced at this stage in order to obtain next the local problem
solution by determination of the grain deformation gradient f0. Indeed, the
latter is searched in such a way that the estimated stress field, associated to
the strain field by the local constitutive laws, satisfies the system (2.4), i.e. the
relationship as follows:

(2.5) (1 − c) s0Ji +
1

V0

∑

α

sα
JiA

αhα − 1

V0

∑

α

sα
Kin

α
KA

αdα
J = 0.

The practical methodology of the solution of the local problem is as follows.
In (2.5), the local constitutive laws concerning the grain and matrix phases allow
to express
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(i) s0 in function of f0,

(ii) sα for each layer α as a function of f0 and F, the macroscopic deformation
gradient for s0 the grain constitutive law is sufficient whereas.

For sα the relation (2.1) is required in addition to the matrix constitutive
law. By doing so, Eq. (2.5) involves now macroscopic deformation gradient F,
the local morphological parameters characterizing the whole set of layers and f0,
the unknown quantity to be determined. It is then numerically solved by consid-
ering F as the data for the localization-homogenization problem characterizing
the loading applied. The knowledge of f0 allows the backwards calculation of
the composite response at both scales. For example, for any layer α, the de-
formation gradient fα is given by Eq. (2.1). The corresponding stress tensor is
then accessible, knowing fα and the constitutive law for the matrix. At last, the
macroscopic nominal stress tensor S̄ is calculated by averaging over the local
field according to (2.4)1.

It should be noted that the homogeneous stress boundary conditions are
used only in a theoretical manner for establishment of the system (2.4) using
the Hill–Mandel principle of macro-homogeneity; in practice, the loading is ap-
plied via the given macroscopic deformation gradient F with respect to the orig-
inal Christoffersen theory. One may prove that the solution of the localization-
homogenization problem obtained for a given loading path represented by F
according to such a strategy, satisfies (2.2) under the morphological condition
(2.3), and the relation S̄:F = 〈s : f〉V0

where S̄ is calculated by S̄ = 〈s〉V0
.

At last, one may emphasize that the knowledge of the local deformation
gradients f0 and fα allows to calculate both the pure strain and rotation in
grains and layers by using the polar decomposition. Furthermore, one could
access to any measures of strain and stress in the constituents. This is another
essential advantage to be pointed out in addition to the relative simplicity of
the above detailed solving procedure.

3. Evaluation involving hyperelastic behavior of constituents

The previous approach being applied to a real material, the difference be-
tween experimental curves and numerical ones will be due to three error sources:
the description of constituents’ behavior, the geometrical schematization and
the kinematical one. The two last factors are proper to the approach exposed
in Sec. 2 and have to be quantified in order to conclude on the performance of
the method. Furthermore, the simplifying kinematical assumptions have to be
checked first in a geometrically nonlinear context. This section constitutes an es-
sential preliminary stage towards this aim. This is done by making comparisons
between finite element (F.E.) results (using Abaqus R©) and estimates given by
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the morphological approach (M.A.) (using Mathematica R©), considering a par-
ticular microstructure and using the same constitutive laws in both methods to
describe the constituents’ hyperelasticity.

3.1. Material geometry and relative representations

A three-dimensional composite with periodic microstructure is considered
in orthonormal basis (e1, e2, e3). It is constituted of cubic grains (size: 0.2mm)
regularly arranged in the matrix occupying 25 per cent of the volume as shown
in Fig. 2 (distance between two grains: 0.02mm). This microstructure has been
chosen for three reasons. At first, the requirements of the geometrical pattern
proposed by Christoffersen are respected (polyhedral grains, plane and parallel
opposite interfaces, thin layers). Consequently, only the effects of the kinemat-
ical hypotheses will be evaluated. Secondly, thanks to the periodicity of the
microstructure, F.E. calculations to be performed on a unit cell can be done
easily in the three-dimensional case. On the contrary, for a random microstruc-
ture, the question of the size of the R.V.E. and the one of CPU time – for
nonlinear context at stake – would arise. At last, analysis of local response is
simplified because of microstructure simple geometry, which is important for a
first quantitative evaluation.

Fig. 2. Three-dimensional periodic microstructure studied.

Regarding the F.E. modeling, the unit cell considered is composed of one
cubic grain (size Tg = 0.2 mm) embedded in a hollow cube of matrix (thickness
= 0.01 mm = half of the intergranular distance). As shown in Fig. 3, the grain
is meshed with 1000 identical hybrid cubic elements (C3D8H in Abaqus R©) and
the matrix with 21184 identical elements of the same type. The latter has been
finely meshed because it is more compliant than the grain (as already mentioned
at the beginning of Sec. 2.2); it will then accommodate most of the deformation.
Furthermore, effects such as local heterogeneity will probably concentrate in this
phase.
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Remark 1. More calculations have been performed using a finer mesh (in
the grain and in the matrix phase); similar results were obtained.

Fig. 3. Eighth of the unit cell regarding the finite element modeling.

In the morphological approach (M.A.), both the volume V0 concerned, for
which Equation (2.5) will be solved, and the morphological parameters char-
acterizing the layers (defined in Sec. 2.1) have to be defined. As previously
mentioned, the microstruture considered conforms with the geometrical schema-
tization’s requirements. Because of the periodicity of the microstructure, it is
sufficient to consider only one grain (size Tg = 0.2 mm) together with three
layers: “layer 1” whose normal unit vector n1 is e1, “layer 2” whose normal unit
vector n2 is e2 and “layer 3” whose normal unit vector n3 is e3. The distance
between two grains being the same in the three directions e1, e2 and e3 , the
three layers naturally have:

• the same thickness h = 0.02 mm,
• vectors d with the same norm d = ‖d‖ = Tg + h = 0.22 mm but different

orientations: d1 = d e1, d2 = d e2 and d3 = d e3,
• the same projected area A.
In this particular case, the projected area A, defining the volume Ah of each

layer, can be calculated so that the ”compatibility condition” (2.3) is exactly
satisfied, i.e. so that the compatibility between local and global motions will be

ensured by Eq. (2.2). Indeed, for I 6= J equality
1

V0

3
∑

α=1

dα
I n

α
JA = 0 is satisfied

(because of the orientations of dα and nα) and for I = J , one obtains the

following condition to be satisfied by A:
1

V0
dA = 1 with V0 = T 3

g + 3Ah. This

leads to A = 0.05 mm2 > T 2
g . Consequently, for the periodic microstructure
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considered, the volume Ah occupied by each of the three layers is greater than
the one of the matrix zone strictly confined between the facets of two opposite
grains. In this way, around the edges (and corners) of the grain, layers have a
“common zone” that will be called “junction zone” in the following. The latter
corresponds, in the general random case, to the circled zone in Fig. 1 (2D planar
section).

As illustrated for the particular composite studied, the representative volume
associated to the M.A. in the periodic case does not correspond to a classical
unit cell (since the geometry of the whole real composite cannot be strictly re-
constructed by paving the space with this cell). The periodicity is taken into
account through geometrical parameters characterizing the layers and the vol-
ume V0 may be viewed as an “equivalent” elementary “morphological pattern”
proper to the Christoffersen-type approach.

3.2. Hyperelasticity of the phases

The form of the potential (i.e. the free energy per unit volume) for the matrix
phase is given by the compressible Mooney–Rivlin model:

(3.1) ωmatrix(I1, I2, J) = C10

(

I1 − 3
)

+ C01

(

I2 − 3
)

+
K

2
(J − 1)2

with I1 = I1J
−2/3 = tr(C)J−2/3, I2 = I2J

−4/3 =
1

2

(

(tr(C))2 − tr(C)2
)

J−4/3,

J = (det(C))1/2. C10, C01 and K are respectively the Mooney–Rivlin coefficients
and the bulk modulus. C denotes the right Cauchy–Green stretch tensor.

The grains are also supposed to display hyperelastic behavior. Their strain
energy is related to the one of the matrix through a contrast coefficient as follows:

ωgrain = contrast × ωmatrix.

Remark 2. The form (3.1) of the energy is not polyconvex as shown by
Hartmann and Neff [16]. Nevertheless, using the subroutine proposed in
Abaqus R©, the stability of (3.1) in the sense of Drucker has been verified for
the values of material parameters and the strain domains considered in the fol-
lowing.

3.3. Loading paths

The composite considered is subjected to an uniaxial compressive deforma-
tion, an incompressible tension and a simple shear, respectively defined by the
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following average deformation gradients:

F comp =





λ 0 0
0 1 0
0 0 1



 , 0.3 ≤ λ ≤ 1;

F tens =





κ 0 0
0 1/κ 0
0 0 1



 , 0 ≤ κ ≤ 2;

F shear =





1 β 0
0 1 0
0 0 1



 , 0 ≤ β ≤ 0.6.

Practically, applying such loading paths in the morphological approach is
easy: no boundary conditions have to be explicitly posed since the macro-
scopic deformation gradient is the only data for the corresponding localiza-
tion-homogenization problem (see the end of Sec. 2.2). The periodicity of the
microstructure is taken into account via the morphological parameters of the
layers.

On the contrary, for the finite element modeling, defining a loading through
an average deformation gradient is less evident. It cannot be used directly. In the
following, it is shown that applying of such a loading can be done by imposing
special conditions linking the displacements of the points located on the opposite
external faces of the unit cell considered. To this end, the methodology advanced
by Michel et al. [14] in the small strain framework is generalized to the finite
strain one. Consider a sample constituted of multiple unit cells. Its boundary is
supposed to be subjected to homogeneous deformation gradient F. The resulting
displacement gradient h(x) in a unit cell located far from the boundary of the
sample can be decomposed as follows (x denotes a point of the considered unit
cell): h(x) = H + h′(x). In the previous equation, H = F− δ (δ is the classical
second-order identity tensor) is the displacement gradient that would exist in any
point of any unit cell of the sample if it were homogeneous whereas h′ represents
local fluctuations existing in the real heterogeneous material. The average of h′

on the unit cell vanishes so that 〈h(x)〉V = H (V denotes the volume of the
unit cell), and because of microstructure periodicity, h′ is also periodic. It can
be proved that the displacement field can be split as follows:

(3.2) u(x) = H.x + u′(x)

with u′ periodic. It is then possible to link the displacement of two opposite
points P and P ′ (with coordinates xP and xP ′

) of the unit cell faces by the
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following equation, resulting from (3.2) and the periodicity of u′:

(3.3) uP − uP ′

= H
(

xP − xP ′

)

.

Thus, for each loading program defined by an average deformation gradient,
Eqs. (3.3) have to be established and programmed in the F.E. modeling. The
preprocessing summarized above concerning the finite element method (F.E.M.)
is thus more involved than the one for the morphological approach (M.A.).
Moreover, the former requires more CPU time (3400 s for the F.E.M. and 130
s for the M.A. on SG station in the case of uniaxial compressive deformation
simulation).

3.4. Estimates compared to finite element results

For the comparisons presented in this section, Mooney-Rivlin coefficients
and bulk modulus of the matrix are chosen as follows: C10 = C01 = 0.5 MPa,
K = 100 MPa (leading to a Poisson’s ratio of 0.49). The contrast between grain
and matrix is 10.

For the M.A. and for each loading path previously defined, Eq. (2.5) is solved
in order to find the grain deformation gradient f0 according to the methodol-
ogy exposed at the end of Sec. 2.2 and using the Newton–Raphson algorithm
programmed in Mathematica R©. The knowledge of f0 allows to estimate the com-
posite response at both scales: fα (via (2.1)) for each of the three layers defined
in Sec. 3.1, the corresponding stresses in the grain and in the three layers by the
local constitutive laws and finally, the homogenized nominal stress tensor S̄ via
(2.4)1.

Using F.E. modeling, local quantities (deformation gradient, first Piola–
Kirchhoff stresses) are obtained at integration points. The homogenized first

Piola–Kirchhoff stress tensor Π (Π = S
T
) is then calculated by averaging the

local one over the elements constituting the unit cell.
For each of the three loading paths considered, the homogenized first Piola–

Kirchhoff stress tensors will be first compared. Then, the quality of local esti-
mates will be evaluated, notably in order to quantify –for the composite studied–
the relevance of kinematical description constituting the upstream basis of the
methodology. It is recalled that in the M.A., local deformation gradient is sup-
posed to be piecewise homogeneous in the matrix (i.e. homogeneous within each
of the three layers defined in Sec. 3.1), and homogeneous in the grain. Moreover,
as explained in Sec. 3.1, each layer is larger than the matrix zone – designated
in the following as an intergranular zone – strictly confined between the facets
of the grains it separates. For more clarity, Fig. 4 provides a bi-dimensional rep-
resentation of the foregoing zones in the finite element model: the black region
corresponds to the intergranular zone 1 normal to e1 and the hatched one to the
intergranular zone 2 normal to e2.
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Fig. 4. Illustration of the intergranular zones in the finite element approach
(2D planar section).

For quantitative evaluation of the local estimates, F.E.M “local averages”
are computed in the grain and in the three intergranular zones. In this way, the
homogeneous deformation gradient of layer 1 for the M.A will be compared to
the average of local deformation gradients obtained at each integration point
of each element of the intergranular zone 1 normal to e1 (corresponding to
the black region in the bi-dimensional illustration Fig. 4). The homogeneous
deformation gradient of layer 2 for the M.A will be compared to the average of
local deformation gradients obtained at each integration point of each element
of the intergranular zone 2 normal to e2 (hatched region in Fig. 4), the same for
the intergranular zone 3 normal to e3, not represented in Fig. 4.

3.4.1. Uniaxial compressive deformation. The composite is here subjected to
uniaxial compressive strain defined by the average deformation gradient Fcomp

(see Subsec. 3.3).
First, macroscopic responses are confronted. In Fig. 5, evolution of diagonal

components of the homogenized first Piola–Kirchhoff stress tensor Π with load-
ing factor λ is given. Considering the geometry of the periodic microstructure
and the loading symmetry, there is Π22 = Π33. Compared with homogenized
responses obtained by F.E. modeling, macroscopic estimates given by M.A. are

highly relevant (greatest relative error =100 × |ΠM.A.
11 −ΠF.E.M.

11 |
|ΠF.E.M.

11 | is inferior

to 3%).
In order to discuss the pertinence of the hypothesis of piecewise homogeneity

of local deformation gradient f, the diagonal components of f for the unit cell,
obtained by the F.E. calculations have been examined. All along the loading
concerned, it appears that local heterogeneity is located near the edges of the
unit cell, namely near the edges of the grain (in the intergranular zones coming
close to the“junction zones”and in the“junction zones”themselves). This feature
is illustrated in Fig. 6 for a load factor λ equal to 0.72.
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Fig. 5. Comparison of homogenized stresses Π11 and Π22 = Π33 obtained by both methods
(F.E.M. and M.A.) for simulated uniaxial compressive deformation.

a) b)

Fig. 6. F.E.M.: diagonal components of local deformation gradient f for the eighth of the
unit cell (3D view) during simulated uniaxial compressive deformation (λ = 0.72):

a) f11; b) f22.

Looking also into the unit cell one can conclude that in the grain, and in
each intergranular zone, the deformation gradient can be considered to be ho-
mogeneous and this, all along the loading. Indeed, no significant heterogeneity
is noticed in the grain and the extent of heterogeneity that may be observed
in each of the three intergranular zones in the very close neighborhood of the
grain edges, namely when coming close to the “junction zones”, remains limited.
Fig. 7a and b, showing respectively the 11 and 22 components of deformation
gradient in the middle plane of the unit cell orthogonal to e3 for λ = 0.86
provides an illustration of this feature.
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a) b)

Fig. 7. F.E.M.: diagonal components of local deformation gradient f in a quarter of the unit
cell (2D planar section) during simulated uniaxial compressive deformation (λ = 0.86):

a) f11; b) f22.

Figure 8 compares the average principal stretches, in directions 1 and 2, in the
intergranular zones and in the grain obtained by both methods (see explanations
in Sec. 3.4). The results of the F.E.M. are represented by crosses and the ones
of the M.A. by solid lines.

One may observe a good agreement all along the loading. Indeed, except for
intergranular zone 1 in the direction 1, respectively 2 in the direction 2, for which
a maximum relative error of 14% is selectively reached (for 0.65 < λ < 0.7), the
error is less than 3%. This shows a small effect of strain heterogeneity observed in
the three intergranular zones on their average strain states and furthermore, the
quantitative accuracy of local stretches estimated by the M.A. in these regions
and in the grain.

a) b)

Fig. 8. Local average principal stretches for simulated uniaxial compressive deformation:
a) in direction 1; b) in direction 2.
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In direction 1, all constituents (grain and intergranular zones) are com-
pressed. As expected, the intergranular zone 1 normal to the direction of com-
pression is the most compressed. Moreover, the stretches of intergranular zones 2
and 3 are identical due to the geometry-and-loading symmetry (see also Fig. 6a).
For the M.A. these stretches are exactly equal to the stretch of the grain. In-
deed, using Eq. (2.1) with the morphological parameters defined at the end of

Sec. 3.1, one obtains: f layer i
11 = f0

11 for i = 2, 3. Regarding the F.E. modeling,
it is also the case in the parts where the stretches are homogeneous, namely
everywhere except very close to the “junction zones”. This is illustrated by the
cartography of Fig. 7a where most of the elements of the interganular zone 2 are
shown to have the same contraction as the grain in the direction 1. Contrary to
what was expected by the authors of [5] before confrontation, this feature is in
fact fully relevant. The very slight difference in Fig. 8a between red crosses (for
intergranular zones 2 and 3) and black crosses (for the grain) in the direction
1 shows the very small influence of strain heterogeneity in intergranular zones
induced by the effects in the “junction zones”.

In direction 2 (see Fig. 8b), the intergranular zone 2 is compressed whereas
the grain and the other intergranular zones are stretched. Due to the geometry-
and-loading symmetry, the intergranular zones 1 and 3 have the same stretches
in this direction (see also Fig. 6b for F.E.M). Moreover, according to the M.A.

the following equality is given by Eq. (2.1): f layer i
22 = f0

22 for i = 1, 3 since
d1 = d e1 and d3 = d e3. It is also the case in the F.E.M. as illustrated by
Fig. 7b where the intergranular zone 1 is seen to have almost everywhere the
same stretch in direction 2 as the grain.

Local stretches in direction 3 are not given since they do not provide ad-
ditional information. Actually, in direction 3 the conclusions are analogous to
those for direction 2, except that the roles of intergranular zones 2 and 3 are
inverted.

Figure 9 representing evolution of the local average first Piola-Kirchhoff
stresses (components 11 and 22) with macroscopic loading factor λ, shows the
relative pertinence of the M.A. compared with the F.E.M. regarding the local
response estimates. As for the stretches, the greatest relative error in the direc-
tion 1, respectively 2, is obtained for the intergranular zone 1, respectively 2. It
increases progressively to attain a maximum of 18%.

As a conclusion, except for the matrix zones not comprised between the grain
facets (“junction zones”) and in a very close neighborhood of these zones, local
stretches estimated by the M.A. are satisfactory when compared to the “exact”
F.E. solution. Moreover, the local average stresses are correctly estimated. One
may emphasize that the absence of a correct description of the local effects in the
“junction zones” does not affect (for the loading and microstructure considered)
the quality of the estimates obtained at both scales.
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a) b)

Fig. 9. Local average first Piola-Kirchhoff stresses for simulated uniaxial compressive
deformation: a) in direction 1; b) in direction 2.

3.4.2. Incompressible tension. As a first illustration of the M.A to deal with
incompressible loading paths, the composite is subjected here to an incompress-
ible tension defined by the average deformation gradient Ftens (see Sec. 3.3).
The macroscopic responses obtained by both methods are compared (see Fig. 10
representing the homogenized first Piola–Kirchhoff stresses as a function of load-
ing factor κ). From a macroscopic viewpoint, the estimates obtained via M.A.
are satisfactory approximations of the numerical solution given by the F.E.M.

(maximum relative error = 100 ×
∣

∣ΠM.A.
22 −ΠF.E.M.

22

∣

∣

ΠF.E.M.
22

= 5.9%).

Fig. 10. Comparison of homogenized stresses Π11, Π22, and Π33 obtained by both methods
(F.E.M. and M.A.) during simulated incompressible tension.
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When examining the local strain heterogeneity within the grain and each
of the three intergranular zones, it appears more pronounced – in terms of extent
– than for a uniaxial compressive loading path (Subsec. 3.4.1). In particular,
strain heterogeneity observed in each of the three intergranular zones may not
be located in the very close neighborhood of the “junction zones”, as illustrated
in Fig. 11 showing the distribution of f11 through the unit cell for κ = 1.5.

a) b)

Fig. 11. F.E.M.: component 11 of local deformation gradient for simulated incompressible
tension (κ = 1.5) a) eighth of the unit cell (view on the matrix); b) in the unit cell (planar

section normal to e3).

In order to exemplify the relevance of local estimates, Fig. 12 presents the
average principal stretches in intergranular zone 1 where the correlation be-
tween M.A. and F.E. results is less significant (compared with that obtained
for grain and intergranular zones 2 and 3). As it can be seen, a good quanti-
tative agreement is nevertheless obtained in the directions 2 and 3. The great-
est relative error is obtained in the direction 1: it increases to attain 10% for
κ = 1.5 and 15% at the end of the loading. The deformed shapes of the struc-
ture for two different loading factors during the simulation are also given in
Fig. 12. It is shown that the elements in intergranular zone 1 are considerably
deformed.

So, even if the hypothesis of piecewise homogeneity of the local deformation
gradient in the matrix phase is here less evident than for the uniaxial com-
pressible loading path previously studied, the M.A. provides nevertheless an
acceptable approximation of the average strain state in the grain and in each
intergranular zone. Moreover, one may note once again, that the absence of
a correct description of the junction zones does not affect the quality of the
estimates at the macroscopic level (see Fig. 10).
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Fig. 12. Average principal stretches in intergranular zone 1 (M.A. and F.E.M.) as functions
of κ and associated deformed shape (F.E.M.) of a quarter of the unit cell (2D planar section),

for simulated incompressible tension.

3.4.3. Simple shear loading. A simple shear loading defined by Fshear (see Sub-
sec. 3.3), is now considered. The maximum macroscopic loading level is β = 0.6.
The strong distortion of zones A and B illustrated in Fig. 13 shows how such a
loading path is severe for the microstructure considered.

Components 12 and 21 of the homogenized first Piola–Kirchhoff stress ten-
sor Π as functions of β are given in Fig. 13. As it can be seen, M.A. results
concerning Π12 are satisfactory (relative error is selectively equal to 7.7% for
β = 0.3 smaller than 6% otherwise), whereas Π21 is poorly approximated for
β > 0.3.

Fig. 13. Comparison of homogenized stresses Π12 and Π21 obtained by both methods
(F.E.M. and M.A.) and associated deformed shape (F.E.M.) of the unit cell

(2D planar section), during simulated simple shear.
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Local deformation gradients have been examined in all the regions of the
unit cell (grain, each of the three intergranular zones, “junction zones”) all along
the loading. First, the hypothesis of homogeneous deformation gradient for the
grain is debatable especially for component 21. The agreement between the
F.E.M. and M.A. results is nevertheless good for all the components (relative
error less than 2 %) except for the 21 component for which the error increases
progressively to attain 20% at the end of the loading.

As for the uniaxial compressive loading path, the heterogeneity in each of
the three intergranular zones – due to effects in the junctions zones – remains
located in a very close neighborhood of the grain edges (low extent). On the con-
trary, the effect of this heterogeneity is not always negligible. Such a situation is
particularly pronounced for f21 in the intergranular zones 2 and 3. As illustrated
by the cartography 3D in Fig. 14 for β = 0.3, the value of f21 in the homoge-
neous regions (blue in Fig. 14) is much lower than the corresponding values near

Fig. 14. F.E.M.: component 21 of local deformation gradient for simulated simple shear
(β = 0.3) in a quarter of the unit cell (view on the matrix).

Fig. 15. Component 21 of local deformation gradient in intergranular zone 2 for simulated
simple shear: average and point-wise value in the homogeneous region (F.E.M.), estimated

value (M.A.).
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the “junction zones” with the intergranular zone 1. The average values of f21 in
intergranular zones 2 and 3 are highly influenced by this heterogeneity (despite
its low extent) and are poorly approximated by M.A. (error greater than 50 %).
It is to be noted that M.A. approximation is in better agreement with point-
wise F.E. estimation in the homogeneous blue region in Fig. 14. The foregoing
features are illustrated for the intergranular zone 2 by the curves presented in
Fig. 15. The relative error between the estimate and the local (point-wise) value
in the homogeneous region is here around 10%.

For the other components of the deformation gradient, the agreement is bet-
ter. When the heterogeneity, slightly extended in the intergranular zones, has no
significant influence on the average values (which therefore are close to the val-
ues in the homogeneous parts), there is a good convergence between the F.E.M.
and M.A. results (relative error lower than 6 %). Such a situation concerns all
the components, except f22 in intergranular zone 2 and f12 in intergranular zone
3, for which the errors remain nevertheless acceptable (around 15% at the end of
the loading). For illustration, Fig. 16 presents the confrontation results for f12.

Fig. 16. Average local deformation gradient (component 12) for simulated simple shear.

The scope of the present paper (triple loading path, three-dimensional, lo-
cal/global M.A./F.E. comparison and evaluation in finite elasticity plus, in Sec. 4
further, viscohyperelastic direct treatment, algorithm and application) did not
reasonably allow us to open in this text another issue, namely the problem of
incompressibility. This issue, i.e. the eventual incompressibility constraint for
respective phases and/or for the global response, may be considered as one
of the probing criteria for scale transition modelling in the context of (visco)-
hyperelasticity (see for example [25]). We let the Reader with the preliminary
analysis regarding effect of the Poisson ratio for the matrix material on the 21
component of f0 under simple shear (see Fig. 17). The Poisson ratio effect is
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studied within the interval [0.41, 0.4995]. The 21 component values of f0 vs the
loading parameter β illustrate here the fact that the M.A. response appears
more sensitive to Poisson’s ratio close to the incompressibility limit than the
F.E. solution. To explain this effect further simulations are necessary, possi-
bly involving varying contrast and more complex microstructures. This is the
subject of prospective works.

Fig. 17. Average local deformation gradient in the grain (component 21) for simple shear
simulations (F.E.M. and M.A.) with different Poisson ratio ν.

3.4.4. Discussion. Parallel setting of uniaxial compressive deformation and sim-
ple shear for the three-dimensional albeit regular microstructure under consider-
ation, allows for the first quantitative evaluation of the potentialities and limits
of the kinematic prerequisite of the M.A.. In particular, some remarks can be
made about the role of the junctions zones. In a way, for both loading paths, the
heterogeneity of deformation in the intergranular zones is preponderantly due
to what happens in the junction zones. For the uniaxial compressive deforma-
tion, the junction zones are involved to a lesser degree in aggregate deformation
features, and the M.A. provides good estimation of local fields. The situation is
more contrasted for the simple shear where junction zones take a major part of
deformation (see Figs. 13, 14 for this effect in “horizontal” junction zones). This
event and the corresponding influence on the distribution of heterogeneities in
the intergranular zones cannot be neglected notably for the 21 component of the
deformation gradient. Consequently, the corresponding local average values are
poorly estimated.

Moreover, the hypothesis of homogeneity in the grain is questionable for this
second loading path. Despite it, it can be conjectured that the results obtained
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allow to qualify globally the method as a promising one. More general situations
including random microstructures should be considered to clarify the statement.
It is expected that for random configurations of intergranular zones, the role of
the junction zones will be less pronounced than for the periodic microstructure
under simple shear. It is to be reminded that the method is destined primarily
to treat random microstructures. Finally, when comparing the grain morphology
assumed within the M.A. framework with the class of engineering composites at
stake (smoother grains), it is evident that the effect of sharp edges of polyhedral
grains inherent to M.A. tends to accentuate the concentration in the junction
zones in F.E. calculations. Paradoxically, the material response given via M.A.
(which introduces the sharp edges of grains while considering the deformation
homogeneous in the layers) may be closer to the F.E. solution for the compos-
ite with blunt grains than to the F.E. evaluation with polyhedral grains. This
conjecture is to be confirmed in forthcoming studies focusing specifically on
geometrical features.

4. Application to visco-hyperelasticity

In the nonlinear homogenization framework, the treatment of time-dependent
behavior where both elastic and viscous effects coexist (viscoelasticity, elastovis-
coplasticity) still constitutes a challenge (see Bornert et al. [17] for example).
First of all, the difficulty linked to the description of space-time couplings be-
tween the constituents and their macroscopic consequence – the so-called “long-
range memory effect” (see Suquet [4]) – has been shown in some works. Second,
the strong influence of the microstructure (finely linked to local heterogeneity)
on the macroscopic response for heterogeneous viscoelastic composites has been
highlighted (see for example Beurthey and Zaoui [3]). Finally, most of the
current classical approaches make use of the correspondence principle and the
Laplace-Carson transform to deal with viscoelastic composites. Except for very
particular microstructures, it results in highly involved calculations, notably
when proceeding with the inversion of the Laplace–Carson transforms. New
methods have been recently proposed to simplify the numerical treatment of
viscoelastic composites (see the“time integration approach”proposed by Lahel-

lec and Suquet [18] and the “direct inversion method” advanced by Brenner

and Masson in [19]).
In this context, Christoffersen’s original approach has been extended to small

strain viscoelasticity by Nadot et al. [2]. In a direct manner –namely without
using the Laplace–Carson transforms– qualitatively satisfactory results were
obtained in terms of local viscoelastic interactions and consequent long-range
memory effect. Considering also the encouraging relevance of the first results
obtained in the finite strain framework (see Sec. 3.4), the objective is here to
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apply the M.A. (Sec. 2) to viscohyperelasticity. Such a behavior is indeed far
more representative of the mechanical response displayed by the materials (en-
ergetic composites) to which the M.A. is devoted.

After a brief presentation of the thermodynamic viscohyperelastic law of
the matrix phase (Sec. 4.1), the direct numerical local problem solving proce-
dure, complying with the methodology presented in Sec. 2.2, is detailed. Finally,
the first results obtained for the particular periodic microstructure presented in
Sec. 3.1 are presented.

4.1. Viscohyperelastic model

In order to describe the viscoelasticity of the matrix, a thermodynamic ap-
proach with internal variable, based on the previous works of Trumel et al.
[20, 21], is used. The additive decomposition of both thermodynamic potential
w and the second Piola–Kirchhoff stress tensor S into an elastic part (superscript
(r)) and a viscous part (superscript (v)) is assumed, as proposed for example
by Reese and Govindjee [22]:

w = w(r) + w(r); S = S(r) + S(v).

The reversible (equilibrium) and viscous (non-equilibrium) parts of S are ob-
tained by partial differentiation of the free energy w with respect to the state
variables E (Green–Lagrange strain tensor) and γ (symmetric strain-like internal
variable describing the dissipative viscoelastic relaxation process) respectively:

S(r) =
∂w

∂E
, S(v) =

∂w

∂γ
.

The hyperelastic part S(r) is described by the constitutive law presented in
Sec. 3.2 (Eq. (3.1)) while the viscous part S(v) is assumed to be linear in γ as
follows: S(v) = L(v) : γ, where L(v) is a fourth-order tensor of viscous moduli.
The evolution of the internal variable γ is assumed to be given by the following

Eq. (4.1), where τ denotes a unique relaxation time and Ė the time-derivative
of the deviatoric part of E:

(4.1) γ̇ +
1

τ
γ = Ė; γ(t = 0) = 0.

The form of (4.1) ensures the thermodynamic admissibility for the model
(positive viscoelastic dissipation). More comments concerning this viscoelastic
model can be found in [2, 20, 21].
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4.2. Numerical solution

In accordance with the methodology exposed at the end of Sec. 2.2, the local

constitutive relations for the matrix and the grains are included in Eq. (2.5). The

grains are here considered hyperelastic, using the compressible Mooney–Rivlin

model described in Sec. 3.2 and the matrix viscohyperelastic, following the con-

stitutive relationships defined in the above section. It is reminded that in the

approach considered (i.e. the M.A.), the matrix is generally schematized by an

assembly of layers with different thicknesses and orientations. As stressed in Sec.

2.2, the deformation gradient in layer α, depending explicitly on the morphologi-

cal parameters proper to layer α (see Eq. (2.1)), is different from the deformation

gradient in another layer. Thus, a different Green-Lagrange strain tensor is asso-

ciated with each layer; it is denoted by Eα for layer α
(

Eα = 1/2
(

fαT
fα − δ

))

.

Consequently Ė also varies from one layer to another, which means (via (4.1))

that each layer has its proper current relaxation state, denoted γα for the layer

α. Furthermore, as many internal variables as the number of layers are required

to deal with the whole relaxation state of the matrix phase. In this way, when

introducing local constitutive laws, Eq. (2.5) – used to determine the unknown

f0 – is to be completed by a time-differential system relative to the evolution of

all the internal variables. More precisely, the following equations must be solved

simultaneously:

(4.2)

(1 − c) s0Ji +
1

V0

∑

α

sα
JiA

αhα − 1

V0

∑

α

sα
Kin

α
KA

αdα
J = 0,

γ̇α
KL +

1

τ
γα

KL = Ė
α

KL; γα
KL(t = 0) = 0 ∀α,

where

(i) s0 is a function of f0;

(ii) sα for each layer α is a function of f0, F, the given macroscopic defor-

mation gradient and the internal variable γα (via (2.1) in addition to the

matrix law);

(iii) E
α

for each layer α is a function of f0 and F (via (2.1)).

All the equations constituting System (4.2) are thus strongly coupled. In order

to solve (4.2), the following particular algorithm has been developed.

The starting point consists in considering that the unknown grain deforma-

tion gradient f0 varies linearly with time for each time step considered (which

is an acceptable strategy if the chosen time step is sufficiently small). Consider

the time step n. The initial values f0
n−1 and γα

n−1 for each layer α are known

(for the first time step i.e. for the non deformed and perfectly relaxed material,
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f0
0 = δ, γα

0 = 0 ∀α, and for the following steps, these values have been calculated

at the previous time step). With the foregoing assumption, Ė
α

n for each layer α

is expressed in function of unknown final value f0
n of f0. Each internal variable

γα
n is then expressed as a function of unknown f0

n through Eqs. (4.2)2. Reporting

all these expressions in (4.2)1, f0
n is numerically calculated using the Newton–

Raphson subroutine proposed in Mathematica R©. Once f0
n is determined, numer-

ical values of internal variables at time tn − γα
n ∀α – are computed; they are

used together with f0
n as initial conditions for the next time step. By doing so,

numerical values for deformation gradient f0 and viscoelastic variables γα are

known at each time tn and, consequently, every local or global quantity can be

computed following the methodology exposed at the end of Sec. 2.2.

4.3. First estimates

In order to illustrate the ability of the morphological approach (M.A.) to

deal with viscohyperelasticity, the previous general algorithm is processed for

the microstructure proposed in Sec. 3.1. The coefficients used to describe the

reversible part of matrix behavior (hyperelasticity) are taken from the literature

(Heuillet and Dugautier [23]) as follows: C10 = 0.21 MPa, C01 = 0.02 MPa,

and K = 100 MPa, and for the grain: C0
10 = 2.1 MPa, C0

01 = 2.1 MPa and

K0 = 1000 MPa (contrast of 10). Concerning the viscous part of the matrix

behavior, L(v) is supposed to be isotropic and defined by E(v) = 50 MPA and

ν(v) = 0.49; at last, τ = 15s.

According to the model at stake, the truly viscoelastic effects affect the de-

viatoric part of the strain tensor Eα. That is why the application presented in

the following involves the simple shearing loading/unloading path, despite the

fact that the corresponding hyperelastic confrontation M.A./F.E. presented in

Sec. 3 is less satisfactory than the one for uniaxial compressive deformation. The

deformation gradient is then Fshear =









1 β 0

0 1 0

0 0 1









with 0 ≤ β ≤ 2, β = v.t; v

denotes shearing velocity.

In Fig. 18, evolution of homogenized first Piola–Kirchhoff shear stresses

Π12 with loading factor β is given for two loading velocities: the bold line

corresponds to v = 5.10−3s−1 and the thin one to the lowest velocity

v = 2.10−3s−1. Experimentally observed phenomena, such as increase of stiff-

ness and hysteresis dependent on the loading velocity, are qualitatively well

predicted by the M.A..
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Fig. 18. M.A. simulations for two shear rates v: homogenized stresses Π12 for simple shear
loading.

5. Conclusion

The purpose of this paper was to provide the first quantitative evaluation

in the finite strain framework of a non-classical scale transition methodology

for highly-filled particulate composites – the so-called “morphological approach”

(M.A.), and to show its possible applicability in the context of time-dependent

behavior such as viscohyperelasticity. This approach, consisting in the gener-

alization to finite strain performed by Guiot et al. [5] of the earlier linear

framework by Christoffersen [1], makes use of two essential incipient stages

for the further localization-homogenization process. The first stage, consisting

in “geometrical schematization”, represents the real composite microstructure

by an aggregate of polyhedral grains separated by thin layers of matrix. Salient

information on the morphology of the real material – regarding spatial arrange-

ment and shape of the grains, preferential orientations of the interfaces – is

conserved through the definition of “morphological parameters”. The second

stage, called “kinematical schematization”, consists in simplifying assumptions

concerning the local motion within the foregoing grain/layers aggregate. As a

result of this starting procedure, the deformation gradient in a layer of matrix

is explicitly related to the morphological parameters of the considered layer;

some strain heterogeneity is then described in the matrix phase viewed as an

assembly of layers with different morphological parameters. Another advantage

lies in the simple accessibility to an estimate of local fields (everywhere except

around grain edges) in a nonlinear context (regarding kinematics and consti-

tutive laws).
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Moreover, most of existing nonlinear homogenization schemes are referred

to the notion of equivalent linear composite and need prior linearization of the

constitutive behavior. This linearization procedure and the choice of the defin-

ition of the linearized moduli are two sources of approximation, which have a

strong influence on the global estimates (see e.g. Rekik et al. [24], Moulinec

and Suquet [8]). Is it noticeable that for the M.A. the nonlinear constitutive

laws do not need any prior modification.

In order to evaluate the relevance of the kinematical description in a geomet-

rically nonlinear context (finite deformation), M.A. global and local estimates

have been compared to the finite element results for a three-dimensional com-

posite with periodic microstructure and hyperelastic constituents described by

compressible Mooney–Rivlin laws. Very good results at both scales are obtained

for uniaxial compressive deformation whereas they are less satisfactory under

a simple shear. For the latter loading path, the hypothesis of homogeneity of

deformation gradient in the grain and the absence of a correct description of

effects in the junction zones appear as limits.

An important technical advantage of the M.A. is that periodicity conditions

relative to the geometry of the microstructure are “naturally” taken into account

and that the loading is applied by imposing simply the macroscopic deforma-

tion gradient. On the contrary, in the finite element method, the periodicity

and the “average loading” require a specific preprocessing procedure regarding

the degrees of freedom of the external nodes of the unit cell, that must be re-

established for every new loading case. Moreover, the CPU time required by the

M.A. is much smaller than for the F.E. analysis.

As the M.A. is addressed in the long-run to deal with energetic composites, its

ability to treat viscohyperelasticity (which characterizes the behavior displayed

notably by the matrix phase in these materials) has been shown. The numeri-

cal solving procedure relative to the corresponding localization-homogenization

problem, in the general case of a random microstructure, is put forward by

means of a specific algorithm able to treat the coupling induced by the relax-

ation internal variables. As for the recent method proposed by Lahellec and

Suquet [18], the solving procedure at stake regards directly the time-domain.

It is a step-by-step procedure where all the quantities at the end of the time

step are deduced only from those at the beginning of the step.

If qualitatively satisfactory results have been obtained at a macroscopic scale

in viscohyperelasticity for the three-dimensional periodic microstructure previ-

ously considered, the quantitative relevance has to be evaluated further. This

will be done once again by confronting both the global and local estimates, with

the finite element results for loading paths for which the M.A. estimates are

good in hyperelasticity.
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As a future work, more complex (random) microstructures will be considered

in order to come closer to the engineering composites. These microstructures will

be numerically generated in order to respect the requirements of the geometrical

schematization (polyhedral grains, parallelism of opposite interfaces). According

to the application context, some predominance will be given to highly compres-

sive loading paths. So, even if some matrix intergranular zones are subjected

to sliding, one may hope that the contribution of the “junction zones” to the

strain state of the random aggregate will be weaker than for the periodic mi-

crostructure under simple shear. Moreover, it will be interesting to quantify the

influence of the hypothesis of identical deformation gradient for all grains whose

eventual limits could not be evaluated in the periodic case studied before. Such

prospective studies, for random microstructures and also different contrasts, in-

volving further parallel M.A./F.E.M. computations, should definitely quantify

the validity domain of the kinematical description constituting the very basis of

the scale transition at stake and the origin of its specificity and main advantages.

In parallel, some investigations are under way regarding the crucial geomet-

rical schematization step for a real propellant-like composite material. X-ray

tomography together with available tools of morphological analysis of 3D im-

ages, are being used to optimize the correspondence of ‘true’ microstructure with

the Christoffersen-like one, from which the morphological parameters required

by the M.A. have to be identified. Afterwards, comparisons with experimental

results will be searched for a real propellant.
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11. M.I. Idiart, P. Ponte–Castañeda, Field fluctuations and macrocopic properties for
nonlinear composites, Int. J. Solids Structures, 40, 7015–7033, 2003.

12. M.I. Idiart, H. Moulinec, P. Ponte-Castañeda, P. Suquet, Macroscopic behavior
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25. P. Ponte-Castañeda and E. Tiberio, A second-order homogenization method in
finite elasticity and applications to black-filled elastomers, J. Mech. Phys. Solids, 48,
1389–1411, 2000.

Received December 29, 2006; revised version July 19, 2007.


