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To simulate curing phenomena, for example for the purpose of optimising the
manufacturing processes or to calculate the stress distribution in adhesive seams,
constitutive models representing the thermomechanically-coupled behaviour of adhe-
sives are required. During the curing reaction, the adhesive changes its thermome-
chanical material behaviour from a viscous fluid to a viscoelastic solid. This phase
transition is an exothermal chemical reaction which is accompanied by thermal ex-
pansion, chemical shrinkage and changes in temperature. In this essay we develop a
physically-based theory of finite strain thermoviscoelasticity to represent these phe-
nomena. To this end, we introduce a multiplicative split of the deformation gradient
into a thermal, a chemical and a mechanical part. We define the coordinate of chemi-
cal reaction determined by an evolution equation to describe the temporal behaviour
of the curing reaction. The free energy of the model contains an additional term,
the chemically-stored free energy, which depends on this internal variable. The me-
chanical behaviour of the adhesive is modelled using a constitutive approach of finite
thermoviscoelasticity and the viscosities are functions of the coordinate of chemical
reaction. We show that the model is compatible with the Clausius–Duhem inequality,
derive the equation of heat conduction and illustrate the physical properties of the
theory by a numerical example.

Notations

e1, e2, e3 Cartesian unit vectors,
∆ϑ, Gradϑ Laplace and gradient operators applied to a function ϑ,

tr (X), det (X) trace and determinant of a 2-nd order tensor X,
mr,mca,msol,m0 masses of resin, curing agent, solidified material and total mass,

νr, νca, νsol mass fractions of resin, curing agent and solidified material,
q degree of cure or coordinate of chemical reaction,
F deformation gradient,

FM ,Fθ,FC mechanical, thermal and chemical parts of deformation gradient,
LM ,Lθ,LC mechanical, thermal and chemical velocity gradients,
ϕ (...), g (...) functions describing thermal expansion and chemical shrinkage,

βC coefficient of chemical volume shrinkage,
βθf , βθs thermal expansion coefficients of the fluid and solid adhesive,

T, T̃ Cauchy and 2-nd Piola–Kirchhoff stress tensors,
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T̃M mechanical 2-nd Piola–Kirchhoff stress tensor,
C,E Right Cauchy–Green and Green tensors,

CM ,EM mechanical Right Cauchy–Green and Green-tensors,
ψ, e free energy and internal energy,

s, θ, r entropy, thermodynamic temperature and heat supply,
θγ,qR rate of entropy production and heat flux vector,

FMz (ζ) relative mechanical deformation gradient,
CMz,EMz, eMz relative mechanical Cauchy–Green, Green and Piola-tensors,

z, ζ intrinsic time variables,
Φ (q, θ) , h (θ) chemical and thermal parts of free energy,

M (...) constitutive function for the evolution of the intrinsic time,
µA (z) , µB (z) relaxation functions,

κ (...) coefficient of heat conduction,
G∗ (ω, q) complex dynamic modulus,
µk, zk elastic moduli and relaxation times,

zmax, zmin parameters of the relaxation time distribution,
λ, α, β, γ, n,m, τ+, τ− phenomenological material parameters,

cd (...) specific heat capacity.

1. Introduction

A recent application for polymer adhesives is the bonding of metal sheets
in the automotive industry. The strength of the adhesive under impact loads,
monotonic tension, shear or more complicated combined loads is of main interest
in this area. In order to represent the pure mechanical behaviour of completely
solidified adhesives by the finite element technique, two-dimensional interface
elements (cf. Gerlach et al. [8]) or three-dimensional constitutive models of
rate-independent elastoplasticity with hardening are applied (cf. Mahnken and
Schlimmer [27] or Mahnken [26]).

But in many other applications in automotive, electronics or aerospace indus-
try, constitutive models are needed to represent the time-dependent or degree
of cure-dependent thermomechanical properties of adhesives like polyester or
epoxy resins. A typical application is the production of carbon or glass fibre-
reinforced epoxy laminates or structures (see Kiasat [17]). Other applications
in this context are the agglutination of metal sheets (cf. Hahn et al. [10]) or elec-
tronic components with current-conducting or isolating adhesives (see Ernst et
al. [7]). Since the chemical reactions occurring in many curing resins are exother-
mal, they are accompanied by an increase in temperature which can lead to
pronounced changes in the rate of cure, the specific volume and the mechani-
cal material properties. The phase transition of the resin from a viscous fluid
to a viscoelastic solid is due to crosslinking reactions of polymer chains. This
leads to a decrease in the specific volume by about 1%–10% and is frequently
denoted as curing shrinkage or reactive shrinkage (Böger et al. [5], Kiasat [17]
or Ruiz and Trochu [33]). In the case of fibre-reinforced laminate structures
or thin metal sheets, the temperature and shrinking phenomena can lead to
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significant residual stresses and strains or warping phenomena (cf. Schmöller
[35], Böger et al. [5], Kiasat [17] or Akkerman et al. [1]), depending on the
boundary conditions and the geometrical shape concerned. In order to reduce
the warping effects it is wise to simulate the influence of the processing parame-
ters during the manufacturing process using mathematical material models (see
Böger et al. [5], O’Brien et al. [29]). In processes involving gluing electronic
components to plates, the shrinkage- and temperature-induced stresses can lead
to damage or even to failure of either the adhesive layer or the component under
consideration (cf. Ernst et al. [7]).

Experimental data describing the change in the viscoelastic material prop-
erties during curing reactions can be found, for example, in Ruiz and Trochu
[33], Wenzel [39], Kim et al. [20], Kiasat [17], Ernst et al. [7], Suzuki et al.
[37] or Kim and White [18], to name a few. Typically, the viscoelastic functions
of the resin, i.e. dynamic moduli or compliances in the frequency domain, and
creep or relaxation functions in the time domain, are measured in the region
above the gel point only, i.e. for higher degrees of cure. The material proper-
ties in this area are important for the development of residual stresses. But it
should be emphasized that O’Brien et al. [29] measured also the viscoelastic
functions below the gel point, i.e. for curing degrees in the whole range between
0 and 1. Investigations of this kind are required for a profound understanding
of the cure process and for developing the constitutive models. In the region
below the gel point, i.e. for very small degrees of cure, the authors measured the
dynamic shear modulus using a torsional rheometer and above the gel point,
corresponding to higher degrees of cure, they carried out creep experiments us-
ing the three-point bending technique. Additional experiments connected with
the change in the specific volume during the curing process can be found, for
example, in Kiasat[17].

To represent the mechanical properties of resins during the curing process
as well as in the fully cured or solidified state, it is a common practice to as-
sume infinitesimal deformations and to apply constitutive models belonging to
the classical theory of linear viscoelasticity (cf. textbooks of Tschoegl [38]
or Gross [9]). The relaxation times and/or the elastic moduli of these models
(Kelvin or Maxwell chains) depend on the thermodynamic temperature and, in
addition, on the degree of cure (cf. Hahn et al. [10], Ruiz and Trochu [33],
O’Brien et al. [29], Kiasat [17], Ernst et al. [7] or Simon et al. [36]). In this
context, it should be noted that the degree of cure-dependent elastic moduli can
lead to inconsistencies with regard to the second law of thermodynamics: if the
deformation rate is zero during a curing process, the supplied stress power is zero
as well. When, in this case, the elastic moduli of the constitutive model increase
with the degree of cure, the mechanically-stored part of the free energy also
increases. To avoid inconsistencies, additional thermodynamical considerations
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are needed. In addition to models of this type, Ruiz and Trochu [33], Hahn et
al. [10], Akkerman et al. [1] or Simon et al. [36] formulated an ordinary non-
linear differential equation of the first order, describing the temporal evolution
of the degree of cure. A fairly comprehensive overview of the state of the art
in modelling the curing resins is given in Kiasat [17]. It should be remarked
that linear thermoviscoelastic models cannot represent the finite deformation
behaviour of liquid adhesives at the beginning of the curing process or during it
before the gel point is reached. The consideration of finite strains is needed to
model the application and the dispersion behaviour of adhesives. All constitutive
models currently applied in this context are developed to represent the material
behaviour of resins under infinitesimal deformations, but neither the free en-
ergy function is formulated nor the second law of thermodynamics is taken into
account. Currently, there are no constitutive theories of finite thermoviscoelas-
ticity that can be applied to represent the curing phenomena in combination
with changes in the mechanical material properties, chemical shrinkage, ther-
mal deformations and exothermal heating and which are compatible with the
second law of thermodynamics.

It is the aim of this essay to develop a finite strain theory of nonlinear ther-
moviscoelasticity which is compatible with the second law of thermodynamics
and allows for the representation of all relevant phenomena during the curing
reaction of resins. To this end, we first introduce a coordinate of chemical reac-
tion, which corresponds to the degree of cure. Then, we define a multiplicative
split of the deformation gradient into a thermal, a mechanical and a chemical
part. The thermal part describes thermal expansion effects and is a function
of the degree of cure and temperature, the chemical part represents shrinking
phenomena and depends on the chemical coordinate or the degree of cure, and
the mechanical part is the stress-producing part. The free energy of the resin
contains one term describing the mechanically-stored part of free energy, the
second term which represents the chemically-stored free energy and the third
term describing the thermally-stored energy. In order to derive the constitutive
equations for the stress tensor and the chemical coordinate, we evaluate the sec-
ond law of thermodynamics in the form of the Clausius–Duhem inequality. The
equation of heat conduction is derived by evaluating the first law of thermody-
namics. In order to demonstrate the physical properties of the theory, the paper
closes with some numerical simulations and a summary.

2. Fundamental assumptions of the constitutive theory

This section sets out the motivations for, and introduces the main assump-
tions of the constitutive theory and is deriving and discussing the fundamental
equations. The structure of the mechanical or stress-producing part of the con-
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stitutive model is taken from Haupt and Lion [12] and Lion and Kardelky
[22], but in recent literature there are also many other constitutive approaches
to represent the nonlinear viscoelastic material behaviour of polymers (cf. Amin
et al. [2], Heimes [15], Laiarinandrasana et al. [21], Reese [32], Besdo and
Ihlemann [4], Khan and Zhang [16], Miehe and Keck [28], Lion [23], Reese
and Govindjee [31], Lion [24] or Boyce et al. [6], among others). The thermo-
chemical part of the constitutive theory is new and is published and formulated
in this paper for the first time.

2.1. Coordinate of chemical reaction (degree of cure)

In order to represent the chemical reaction between both the resin and the
curing agent on a physically-based, phenomenological basis, let us take a look
at Fig. 1. It illustrates both the preparation of the mixture, in the case of a two-
component adhesive, and the curing process. To simplify the representation and
the line of argumentation, we assume that we have stoichiometric mass fractions
of resin and the curing agent, i.e. after the chemical curing reaction no resin or
curing agent remains, only the solidified material. In addition, we assume that
we have a homogeneous mixture of resin, curing agent and solidified material at
each instant of time. As a consequence of this, there are neither concentration
gradients nor diffusion effects and, accordingly, there is no need to apply the
theory of mixtures which would lead to a system of coupled partial differential
equations (cf. Haupt [13] or Hutter [14], among many others).

Fig. 1. Different steps of the curing process.

The conservation of mass during the curing reaction is described by

(2.1) mr (t) +mca (t) +msol (t) = m0 = const,
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where the time-dependent variables mr (t), mca (t) and msol (t) are the masses
of the resin, the curing agent and the solidified material. The constant m0 is the
total mass of the mixture. Dividing Eq. (2.1) by m0 and introducing the mass
fractions of resin, curing agent and solid

νr (t) =
mr (t)

m0
, νca (t) =

mca (t)

m0
, νsol (t) =

msol (t)

m0

we obtain

(2.2) νr (t) + νca (t) + νsol (t) = 1.

In order to reduce the number of variables, we take the stoichiometry of the
mixture into account, introduce a coordinate of chemical reaction 0 ≤ q (t) ≤ 1
(methods to represent chemical reactions are explained, for example, in the
textbook of Atkins [3]) and formulate the following set of linear relations:

νr (t) = νr0 − nq (t) ,

νca (t) = νca0 −mq (t) ,

νsol (t) = (n+m) q (t) .

At the very beginning of the curing reaction we have q (0) = 0 corresponding
to νr (0) = νr0, νca (0) = νca0 and νsol (0) = 0 as initial conditions and Eq. (2.2)
leads to νr0 + νca0 = 1. At the end of the reaction, i.e. for sufficiently large
times, we have q (∞) = 1, νr (∞) = νca (∞) = 0 and νsol (∞) = 1 what leads to
νr0 = n, νca0 = m and n+m = 1.

Since the mass fractions of the three components of the mixture can be
written in the form of

νr (t) = n (1 − q (t)) ,

νca (t) = (1 − n) (1 − q (t))

and
νsol (t) = q (t)

we only need the variable q (t) to describe them during the chemical reaction as
functions of time. Other authors frequently denote this variable as the degree of
cure (cf. Kiasat [17] or O’Brien et al. [29], and others). Its initial value q (0) = 0
corresponds to the uncured, viscous mixture and its final value q (∞) = 1 to the
fully cured or solidified material. We would point out that in literature the degree
of cure is often defined by the ratio

q(t) =
H(t)

Hu
,
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where the function H (t) is the accumulated, released heat of reaction at the
current time t and Hu = H (∞) is the ultimate heat of reaction after suffi-
ciently long times (cf. White et al. [40] or O’Brien et al. [29] or Ruiz and
Trochu [33]).

For the purpose of modelling the temporal evolution of curing reactions, we
have to formulate a differential equation for the degree of cure. Since several
curing reactions are autocatalytic below a critical degree of cure, the curing rate
dq/dt increases with increasing mass fraction of the solidified material. In this
region, it acts as a catalyst. If the glass transition temperature of the solidified
material is above the curing temperature, the curing reaction is decelerated at
higher degrees of cure by the freezing effects and becomes diffusion-controlled.
The interested reader is referred to Wenzel [39]. Some phenomenological mod-
els applied to represent the degree of cure as a function of time and temperature
are as follows:

q̇(t) = (K1 +K2q
α)(1 − q)β with Ki = Ki0 exp

(

−Ei

Rθ

)

,(2.3)

q̇(t) = A exp

(

− E

Rθ

)

qα(1 − q)β ,(2.4)

q̇(t) = Keff(θ)

(
1

r
− q

)

(1 − q)(b+ q).(2.5)

Equation (2.3) is taken from Kim and Char [19], (2.4) from Akkerman et al.
[1] and (2.5) from Simon et al. [36]. Further phenomenological models describing
the curing rate as a function of the degree of cure and the temperature in combi-
nation with identification techniques can be found in Kim et al. [20], Ruiz and
Trochu [33] or Seiffi and Hojjati [34]. R = 8.314 J/molK is the universal gas
constant, α, β,E,E1, E2,K10,K20, A, b, r are material parameters and Keff (θ) is
an additional material function. The general form of these empirical differential
equations reads as

(2.6) q̇(t) = f(q, t, θ, ...) with q(0) = 0,

where θ is the thermodynamic temperature. An additional variable which may
influence the curing reaction is, perhaps, the hydrostatic pressure.

2.2. Decomposition of the deformation gradient

As we know, curing reactions of resins are accompanied by pronounced chem-
ical shrinking phenomena. Their physical nature is the larger specific volume of
the liquid resin in comparison with that of the solidified adhesive. In the case of
polyester resins, the shrinking in volume is about 10% (Kiasat [17]) and in the
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case of epoxy about 6% (O’Brien et al. [29]). In addition to this, resins also
show temperature-induced expansion effects.

In order to represent these effects, we start with the deformation gradient
F (X, t) which maps material tangent vectors from a point X of the reference
configuration to the corresponding point x = Ω (X, t) belonging to the current
configuration:

F(X, t) = GradΩ (X, t).

In order to simplify the presentation, the space and time dependences of the
variables will be omitted in the following.

As sketched in Fig. 2 and basing on excellent experiences with multiplicative
deformation gradient splittings in finite viscoelasticity, thermoelasticity, ther-
moviscoelasticity and also in thermoviscoplasticity (see Lu and Pister [25],
Lion [24], Haupt [13], Lion [23], Heimes [15] or Amin et al. [2] and citations
therein), we decompose the deformation gradient F into the product of three
terms:

(2.7) F = FMFCFθ.

Approaches of this type correspond to a generalization of one-dimensional
rheological models in the form of systems of springs, dashpots, frictional and
thermal expansion elements to finite deformations. The stress and strain ten-
sors which are attributed to multiplicative deformation decompositions can be
derived by applying the concept of dual variables developed by Haupt and
Tsakmakis [11]. In (2.7), the temperature-dependent, thermal part Fθ of the
deformation gradient is attributed to temperature-induced expansion effects, the
degree of cure-dependent, chemical part FC describes the chemical shrinking and
the mechanical part FM is the stress-producing part. As we see in Fig. 2, the
multiplicative decomposition defines two additional configurations: the thermal

Fig. 2. Decomposition of the deformation gradient.
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intermediate configuration with the mass density ρRθ, and the thermochemical
intermediate configuration with mass density ρθC . It can be written as

(2.8) ρθC =
ρR

det(Fc) det(Fθ)

where ρR is the mass density of the reference configuration, which corresponds
to the liquid adhesive in its uncured state at a given reference temperature,
det (X) is the determinant of a second order tensor X.

Since thermal expansion and chemical shrinking are isotropic in the case of
curing adhesives, we assume the following relations for the corresponding parts
of the deformation gradient:

Fθ = ϕ(...)1/3 1,(2.9)

FC = g(...)1/3 1.(2.10)

The scalar functions g and ϕ describe the degree of cure- and temperature-
induced changes in the specific volume of the curing adhesive and have to be
determined in experiments. In conformity with the principle of equipresence
(see Haupt [13]), they can depend on all internal and external variables of
the constitutive theory, but to formulate the model as simple as possible we
assume that g (...) = g (q) depends only on the degree of cure and ϕ (...) =
ϕ (θ, q) depends on both the degree of cure and the temperature. The principle
of equipresence states that every constitutive function should depend on all
internal and external variables. The second assumption reflects the observation
that the thermal expansion behaviour of the viscous and the solidified adhesive
are different. If experimental data is in contrast to this assumption, the lists of
arguments can easily be extended, without losing the compatibility of the theory
with the Clausius–Duhem inequality. The additional terms occur when we are
calculating the velocity gradients.

In the special case of (2.9), (2.10) the relation FθFC = FCFθ holds and the
constitutive model is independent of the order of sequence.

2.3. Additive split of the stress power

As an essential consequence of the above considerations, the multiplicative
decomposition of the deformation gradient F in (2.7) leads to an additive split
of the stress power. To derive this relation, we start with the definition of the
second Piola–Kirchhoff stress tensor,

T̃ = (det F)F−1TFT−1,

replace the deformation gradient F by the multiplicative decomposition (2.7)
and obtain

T̃ = (detFM )(detFC)(detFθ)F
−1
θ F−1

C F−1
M TFT−1

M FT−1
C FT−1

θ .
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We then define the mechanical second Piola–Kirchhoff stress tensor,

T̃M = (det FM )F−1
M TFT−1

M

and find

(2.11) T̃ = (det FC)(det Fθ)F
−1
θ F−1

C T̃M FT−1
C FT−1

θ .

Next, we take the definition of the Green strain tensor into account, replace F

by (2.7),

(2.12) E =
1

2

(
FT F − 1

)
=

1

2

(
FT

θ FT
C FT

M FM FC Fθ − 1
)

and introduce the mechanical right Cauchy–Green tensor CM and the corre-
sponding Green strain tensor EM :

CM = FT
MFM and EM =

1

2
(CM − 1) .

Then, we calculate the material time rate of (3.12),...

(2.13) Ė =
1

2

(

ḞT
θ FT

CCMFCFθ + FT
θ ḞT

CCMFCFθ + FT
θ FT

CĊMFCFθ

+FT
θ FT

CCM ḞCFθ + FT
θ FT

CCMFCḞθ

)

.

In order to replace the material time derivatives of FC and Fθ in (2.13) we define
the chemical and thermal velocity gradients

(2.14) LC = ḞC F−1
C and Lθ = ḞθF

−1
θ .

We then consider the definition of the stress power per unit mass (cf.
Haupt [13]) expressed as the scalar product of the second Piola–Kirchhoff stress
tensor T̃ and the material time rate of the Green strain,

w =
1

ρR
T̃ · Ė,

insert (2.11) and (2.13), take the relation A · B =
(
BTA

)
· 1 into account and

find

w =
(detFC) (detFθ)

2ρR

(

F−1
θ F−1

C T̃MFT−1
C FT−1

θ

(

ḞT
θ FT

CCMFCFθ

+ FT
θ ḞT

CCMFCFθ + FT
θ FT

CĊMFCFθ

+FT
θ FT

CCM ḞCFθ + FT
θ FT

CCMFCḞθ

))

· 1.
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Rearranging terms and considering (2.8) in combination with (2.14) and
mathematical relations valid for scalar products between tensors, we obtain the
intermediate result

w =

(

T̃MFT−1
C

LT

θ
FT

C
CM+T̃MLT

C
CM + T̃M ĊM + T̃MCMLC + F−1

C
T̃MCMFCLθ

)

·1
2ρθC

and finally

(2.15)
1

ρR
T̃ · Ė =

1

ρθC

(

T̃M · ĖM + CM T̃M ·
(
FCLθF

−1
C

)
+ CM T̃M · LC

)

.

This expression shows that the total stress power can be written as the sum
of three terms: the first term T̃M · ĖM is the mechanical part, the second term
CM T̃M ·

(
FCLθF

−1
C

)
represents the thermal part and the third term CM T̃M ·LC

is the chemical part of the stress power.

2.4. Clausius–Duhem inequality

Basing on the additive splitting of the stress power (2.15), we can reformulate
the second law of thermodynamics in the form of the Clausius–Duhem inequality.
The rate of energy dissipation is given by the expression

(2.16) θγ = −ψ̇ +
1

ρR
T̃ · Ė − sθ̇ − qR · Gradθ

ρRθ

and the Clausius–Duhem inequality requires its non-negativity for arbitrary
thermomechanical processes (see, for example, Haupt [13]):

(2.17) γ ≥ 0.

This is a natural law of thermodynamics and it has to be satisfied by any
constitutive model for arbitrary thermomechanical changes. The variables s and
ψ are the specific entropy and the free energy per unit of mass, qR is the vector
of heat flux, θ is the thermodynamic temperature and γ is the specific entropy
production.

Combining (2.15) and (2.16), the modified expression for the rate of energy
dissipation is given by

(2.18) θγ = −ψ̇ +
1

ρθC

(

T̃M · ĖM + CM T̃M ·
(
FCLθF

−1
C

)
+ CM T̃M · LC

)

− sθ̇ − qR · Gradθ

ρRθ
.
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As a consequence of the constitutive assumptions (2.9) and (2.10) and the con-
clusion (2.14), the chemical and thermal velocity gradients LC and Lθ are pro-
portional to the rates q̇ and θ̇. Hence, the time derivatives occurring in (2.18)
are those of EM , θ and q. Since the free energy is a state function, this prop-
erty motivates ψ to be a functional of the mechanical Green strain EM , the
thermodynamic temperature θ and the degree of cure q.

2.5. Free Energy

To formulate the constitutive model as simply as possible, incompressibil-
ity under mechanical loads in the form of detFM = 1 is assumed. In spite of
this, the specific volume of the curing adhesive can vary under changes of both
the temperature θ and the degree of cure q. If more experimental information
about the stress-induced volumetric behaviour of curing resins is available, this
assumption can be dropped or modified. Motivated by this discussion and the
last section, we propose the following free energy function:

(2.19) ψ = −
z∫

−∞

(

µA (z − ζ)
d

dζ
tr (eMz (ζ)) + µB (z − ζ)

d

dζ
tr (EMz (ζ))

)

dζ

+ Φ (q, θ) + h (θ) ,

ż(t) = M(...) ≥ 0, z(t) =

t∫

−∞

M(...)dτ, ζ =

s∫

−∞

M(...)dτ.

By virtue of successfulness in other projects (Haupt and Lion [12] or Lion
and Kardelky [22], the first term in (2.19) is applied to model the mechanical
part of the free energy. It corresponds to the viscoelastic material behaviour,
depends on the history of the mechanical deformation and is formulated with
respect to an intrinsic time variable z (t) instead of the physical time t. This part
can easily be replaced by a different formulation, for example, by a free energy
based on multiplicative viscoelasticity in the form of FM = FeFin (cf. Amin
et al. [2] or Reese [32]). The constitutive functions µA (z) , µB (z) ≥ 0 with
µ′A, µ

′
B ≤ 0 and µ′′A, µ

′′
B ≥ 0 describe the relaxation behaviour of the material

(see Haupt and Lion [12] or Lion and Kardelky [22]). The driving forces
for this part of free energy are the relative Piola and Green strain tensors which
are defined below. The relative mechanical deformation gradient FMz (ζ) maps
the material tangent vectors from the current configuration at the time z to
a previous configuration at the time ζ, as illustrated in Fig. 3. It reads as

FMz (ζ) = FM (ζ)F−1
M (z) ⇒ FMz (z) = 1
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and the relative Cauchy–Green, Green and Piola tensors are defined as

(2.20) CMz (ζ) = FT−1
M (z)CM (ζ)F−1

M (z) ⇒ CMz (z) = 1,

EMz (ζ) =
1

2
(CMz (ζ) − 1) ⇒ EMz (z) = 0,(2.21)

eMz (ζ) =
1

2

(
C−1

Mz (ζ) − 1
)

⇒ eMz (z) = 0.(2.22)

In order to represent the temperature-dependent and degree of cure-dependent
viscoelastic behaviour of resins, the mechanical part of the free energy is formu-
lated as a function of the intrinsic time.

Fig. 3. Relative mechanical deformation gradients.

The temporal change of the intrinsic time z (t) with respect to the physical
time t is described by the constitutive function M (...) which can depend, in
principle, on the thermomechanical and thermochemical process histories. The
second contribution Φ to the free energy depends on both the degree of cure and
the thermodynamic temperature. This part is the chemically-stored free energy
and the third term is the thermally-stored energy, which can also depend on q.

Remark. If we assume M = 1 leading to z = t or ζ = s and constant
relaxation functions µA (z) = µA0 and µB (z) = µB0, we obtain the follow-
ing expression for the mechanical part of free energy: ψM = −µA0 (tr (eMt (t))
−tr (eMt (−∞)))−µB0 (tr (EMt (t)) − tr (EMt (−∞))). Taking the initial condi-
tion FM (−∞) = 1 as well as (2.20), (2.21) and (2.22) into account, the conse-
quences eMt (−∞) = 1/2 (BM (t) − 1) and EMt (−∞) = 1/2

(
B−1

M (t) − 1
)

can
be derived. Since we also have EMt (t) = 0 and eMt (t) = 0, the mechanical
part of the free energy reduces to the Mooney–Rivlin model of hyperelasticity:
ψM = µA0/2 (trBM − 3)+µB0/2

(
trB−1

M − 3
)
. These properties are discussed in

a more general context by Haupt and Lion [12].
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3. Evaluation of the Clausius–Duhem inequality

Having introduced the main physical fundamentals, we can proceed to the
evaluation of the Clausius–Duhem inequality (2.17); the expression for the rate
of dissipation is given by (2.18) and the following relations are needed for the
calculation. For the mathematical details, we refer the reader to Haupt and
Lion [12] or Lion and Kardelky [22]:

tr (eMz (z)) = 0, tr (EMz (z)) = 0,

d

dζ
tr (eMz (ζ))

∣
∣
∣
∣
ζ=z

= 0,
d

dζ
tr (EMz (z))

∣
∣
∣
∣
ζ=z

= 0,

∂2

∂z∂ζ
tr (eMz (ζ)) = 2e′M (ζ) · E′

M (z) ,(3.1)

∂2

∂z∂ζ
tr (EMz (ζ)) = −2C−1

M (z)E′
M (ζ)C−1

M (z) · E′
M (z) .(3.2)

In (3.1) and (3.2), the superscript primes denote the derivatives with respect to
the argument of the corresponding deformation tensors, i.e. e′M (ζ) = deM (ζ)/dζ,
E′

M (ζ) = dEM (ζ)/dζ and E′
M (z) = dEM (z)/dz. Based on the constitutive

assumptions (2.9) and (2.10) together with the simplifications ϕ (...) = ϕ (θ, q)
and g (...) = g (q), we obtain the following relations for the thermal and chemical
velocity gradients:

(3.3)

Lθ =
1

3ϕ

(
∂ϕ

∂θ
θ̇ +

∂ϕ

∂q
q̇

)

1,

LC =
g′(q)

3g
q̇1.

In the case of g (...) = g (θ, q), an additional term would occur in (4.3) and
the evaluation of the Clausius–Duhem inequality becomes more complex. We
can now calculate the thermal and chemical parts of the stress power occurring
in the Clausius–Duhem inequality

(3.4) CM T̃M ·
(
FCLθF

−1
C

)

= tr




(
FT

MFM

)



(detFM )
︸ ︷︷ ︸

=1

F−1
M TFT−1

M



FC

(
1

3ϕ

(
∂ϕ

∂θ
θ̇ +

∂ϕ

∂q
q̇

)

1

)

F−1
C





=
tr (T)

3ϕ

(
∂ϕ

∂θ
θ̇ +

∂ϕ

∂q
q̇

)

,
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(3.5) CM T̃M · LC = tr




(
FT

MFM

)



(detFM )
︸ ︷︷ ︸

=1

F−1
M TFT−1

M




g′

3g
q̇1





=
g′

3g
tr (T) q̇

and the material time rate of the free energy:

(3.6) ψ̇ = −
z∫

−∞

(

µ′A (z − ζ)
d

dζ
tr (eMz (ζ))+ µ′B (z − ζ)

d

dζ
tr (EMz (ζ))

)

dζż (t)

− 2

z∫

−∞

(
µA (z − ζ) e′M (ζ) − µB (z − ζ)C−1

M (z)E′
M (ζ)C−1

M (z)
)
dζ · ĖM (t)

+
∂Φ

∂q
q̇ +

(
∂Φ

∂θ
+ h′ (θ)

)

θ̇.

In order to demonstrate the thermomechanical consistency of the constitutive
model, we apply the rule of integration by parts, assume the asymptotic prop-
erties

lim
z→∞

µ′A (z) = 0 and lim
z→∞

µ′B (z) = 0

for the relaxation functions, consider (2.21) and (2.22) and reformulate the first
term in (3.6):

(3.7) −
z∫

−∞

(

µ′A (z − ζ)
d

dζ
tr (eMz (ζ)) + µ′B (z − ζ)

d

dζ
tr (EMz (ζ))

)

dζż (t)

= −
z∫

−∞

(
µ′′A (z − ζ) tr (eMz (ζ)) + µ′′B (z − ζ) tr (EMz (ζ))

)
dζż (t) .

Due to the assumption of mechanical incompressibility, det (FM ) = 1, we obtain

tr (eMz) ≥ 0 and tr(EMz) ≥ 0.

Inserting (3.4), (3.5) and (3.6) in combination with (3.7) and the rate of dis-
sipation (2.18) into the Clausius–Duhem inequality (2.17) and rearranging the



74 A. Lion, P. Höfer

terms, we obtain the following expression, which has to be non-negative:

θγ =

(

1

ρθC
T̃M + 2

z∫

−∞

(
µA (z − ζ) e′M (ζ)

−µB (z − ζ)C−1
M (z)E′

M (ζ)C−1
M (z)

)
dζ

)

· ĖM

+

z∫

−∞

(
µ′′A (z − ζ) tr (eMz (ζ)) + µ′′B (z − ζ) tr (EMz (ζ))

)
dζż (t)

+

(
tr (T)

3ρθC

(
g′

g
+
∂ϕ/∂q

ϕ

)

− ∂Φ

∂q

)

q̇

−
(

s− ∂ϕ/∂ϕ∂θ

3ρθCϕ
tr (T) +

∂Φ

∂θ
+ h′ (θ)

)

θ̇ − qR · Grad θ

ρRθ
≥ 0.

In order to satisfy this inequality for arbitrary temporal changes in both the tem-
perature and the mechanical deformation tensor compatible with the constraint
det (FM ) = 1, we obtain the constitutive relation

(3.8) T̃M = −pC−1
M − 2ρθC

z∫

−∞

(
µA (z − ζ) e′M (ζ)

−µB (z − ζ)C−1
M (z)E′

M (ζ)C−1
M (z)

)
dζ

for the mechanical second Piola–Kirchhoff stress tensor and

(3.9) s =
∂ϕ/∂θ

3ρθCϕ
tr (T) − ∂Φ

∂θ
− h′ (θ)

for the specific entropy per unit of mass. The first term −pC−1
M in (3.8) is the

constraint stress which is caused by the mechanical incompressibility. It can
be derived by differentiating the constraint detCM = 1 with respect to time.
The result is d/dt (detCM ) = ĊM · C−1

M = 0, i.e. the scalar product between

the mechanical deformation rate ĊM or ĖM and the inverse Right Cauchy–
Green tensor C−1

M is zero. Since the power between the constraint stress and the
deformations has to be zero (principle of virtual work), the constraint stress is
proportional to the tensor C−1

M .
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In order to satisfy the residual inequality

θγ =

z∫

−∞

(
µ′′A (z − ζ) tr (eMz (ζ)) + µ′′B (z − ζ) tr (EMz (ζ))

)
dζż (t)

+

(
tr (T)

3ρθC

(
g′

g
+
∂ϕ/∂q

ϕ

)

− ∂Φ

∂q

)

q̇ − qR · Grad θ

ρRθ
≥ 0

we choose

q̇ = λ

(
tr (T)

3ρθC

(
g′ (q)

g
+

1

ϕ

∂ϕ (θ, q)

∂q

)

− ∂Φ

∂q

)

to describe the temporal evolution of the coordinate of chemical reaction and

qR = −κGrad θ

for the heat flux vector. The material parameter or constitutive function λ(...)≥0
influences the evolution of the chemical coordinate and can depend on the ther-
momechanical process history and on q itself. The quantity κ (...) ≥ 0 is the
heat conductivity which can also depend on the thermomechanical process his-
tory and the chemical coordinate.

Since we assumed a non-negative curvature µ′′A, µ
′′
B ≥ 0 for the relaxation

functions and have tr (eMz) , tr (EMz) ≥ 0 as well as a non-negative rate ż (t) of
the intrinsic time, the constitutive theory is compatible with the second law of
thermodynamics in the form of the Clausius–Duhem inequality. The final form
of the rate of dissipation reads as

θγ =

z∫

−∞

(
µ′′A (z − ζ) tr (eMz (ζ)) + µ′′B (z − ζ) tr (EMz (ζ))

)
dζż

+ λ

(
tr (T)

3ρθC

(
g′

g
+
∂ϕ/∂q

ϕ

)

− ∂Φ

∂q

)2

+
κ |Gradθ|2

ρRθ

and is non-negative for arbitrary thermomechanical process histories.

4. Equation of heat conduction

We proceed to derive the equation of heat conduction in order to calculate the
temporal changes in temperature that are caused by exothermal curing reactions,
inelastic deformation-induced energy dissipation or by other physical effects. To
this end, we consider the first law of thermodynamics:

ė =
1

ρR
T̃ · Ė − 1

ρR
Div qR + r.
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The variable e is the internal energy per unit mass, DivqR = ∂qRX/∂X +
∂qRY /∂Y + ∂qRZ/∂Z is the divergence of the heat flux vector qR in Cartesian
coordinates and r is the volume-distributed heat supply. Since we have already
formulated the free energy function (2.19), we now express the internal energy
using the free energy, the entropy and the thermodynamic temperature,

e = ψ + θs

and replace the stress power 1/ρRT̃ · Ė with (2.15) in conjunction with (3.4)
and (3.5):

ψ̇ + θṡ+ sθ̇ =
1

ρθC
T̃M · ĖM +

tr (T)

3ρθCϕ

∂ϕ

∂θ
θ̇

+
tr (T)

3ρθC

(
g′ (q)

g
+
∂ϕ/∂q

ϕ

)

q̇ − 1

ρR
DivqR + r.

Assuming κ = const and considering (2.8), (2.9), (2.10), Div (Grad θ) = ∆θ,
where ∆ = ∂2

/
∂X2 + ∂2

/
∂Y 2 + ∂2

/
∂Z2 is the Laplace operator in Cartesian

coordinates and ρθC = ρR/(gϕ), we obtain

(4.1) ψ̇ + θṡ+ sθ̇ =
gϕ

ρR
T̃M · ĖM +

tr (T)

3ρR
g (q)

∂ϕ

∂θ
θ̇

+
tr (T)

3ρR

(

g′ϕ+ g
∂ϕ

∂q

)

q̇ +
κ

ρR
∆θ + r.

The time derivative of the specific entropy s (t) is calculated using the fol-
lowing simplifying assumptions:

• chemical shrinking depends linearly on the degree of cure and not on tem-
perature;

• thermal expansion depends linearly on both the degree of cure and the
change in temperature

g(q) = 1 + βCq, βC ≤ 0,

ϕ (θ, q) = 1 + ((1 − q)βθf + qβθs) (θ − θ0) , βθf , βθs ≥ 0.

The parameter βθf is the volumetric coefficient of thermal expansion of the fluid
adhesive corresponding to q = 0 and βθs – that of the fully solidified material,
i.e. for q = 1. Considering the potential relation (3.9) for the entropy, its rate is
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given by the following expression:

(4.2) ṡ =
((1 − q)βθf + qβθs) (1 + βCq)

3ρR
tr
(

Ṫ
)

−
(
∂2Φ

∂θ2
+ h′′ (θ)

)

θ̇

+

(
tr (T)

3ρR
(βC ((1 − q)βθf + qβθs) − (1 + βCq) (βθf − βθs)) −

∂2Φ

∂q∂θ

)

q̇.

Inserting (3.6) and (4.2) into the first law of thermodynamics in the form of
(4.1) and defining the specific heat capacity

cd (q, θ) = −θ
(
∂2Φ

∂θ2
+ h′′ (θ)

)

which can depend on both the thermodynamic temperature and the degree of
cure, we obtain the equation of heat conduction:

cd (q, θ) θ̇ =
κ

ρR
∆θ + r − θ ((1 − q)βθf + qβθs) (1 + βCq)

3ρR
tr
(

Ṫ
)

+ θ

(
∂2Φ

∂q∂θ
− βC ((1 − q)βθf + qβθs) − (1 + βCq) (βθf − βθs)

3ρR
tr (T)

)

q̇

+

z∫

−∞

(
µ′′A (z − ζ) tr (eMz (ζ)) + µ′′B (z − ζ) tr (EMz (ζ))

)
dζż (t) +

q̇

λ

2

.

Contrary to an “a priori postulated equation of heat conduction” (cf. Park and
Lee [30]), this partial differential equation is derived on the basis of the free
energy function of the resin and the first and second laws of thermodynamics.
In the case of a variable heat conductivity, for example in the form of κ = κ(θ, q),
additional terms occur when calculating Div(qR) = Div (κ(θ, q)Grad θ) .

In the case of a stress-free curing process without any volume-distributed
heat supplies, i.e. when we have r = 0, this equation simplifies to

cd (q, θ) θ̇ =
κ

ρR
∆θ + θ

(
∂2Φ

∂q∂θ

)

q̇ − ∂Φ

∂q
q̇.

In order to interpret this equation and to obtain a solution in a closed form,
let us assume for simplicity that the specific heat capacity cd is constant, the
chemically-stored part Φ of the free energy is independent of the temperature
and the boundary conditions are adiabatic. Then, we obtain

(4.3) cdθ̇ = − d

dt
Φ(q) or cd (θ∞ − θ0) = − (Φ (q (∞)) − Φ (q (0))) .
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In the case of an ideal or a complete curing process, i.e. q (0) = 0, q (∞) = 1 and
Φ (1) = 0, the total change in temperature is given by θ∞ − θ0 = Φ (0)/cd. This
result illustrates the physical significance of Φ as the chemically-stored part of
the free energy.

At the end of this section, we summarize the most essential constitutive
equations in a tabular form:
Deformation gradient:

(4.4) F = FMFCFθ, detFM = 1.

Thermal deformations:

(4.5)
Fθ = ϕ(θ, q)1/31,

ϕ (θ, q) = 1 + ((1 − q)βθf + qβθs) (θ − θ0) , βθf , βθs ≥ 0.

Chemical shrinking:

(4.6) FC = g(q)1/31, g(q) = 1 + βCq, βC ≤ 0.

Mechanical deformations:

(4.7) FMz (ζ) = FM (ζ)F−1
M (z) .

Free Energy:

(4.8) ψ = −
z∫

−∞

(

µA (z − ζ)
d

dζ
tr (eMz (ζ)) + µB (z − ζ)

d

dζ
tr (EMz (ζ))

)

dζ

+ Φ (q, θ) + h (θ) .

Intrinsic time:

(4.9) ż (t) = M (...) ≥ 0.

Stress:

(4.10) T̃M = −pC−1
M − 2ρθC

z∫

−∞

(
µA (z − ζ) e′M (ζ)

−µB (z − ζ)C−1
M (z)E′

M (ζ)C−1
M (z)

)
dζ.

Entropy:

(4.11) s =
∂ϕ/∂θ

3ρθCϕ
tr (T) − ∂Φ

∂θ
− h′ (θ) .
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Coordinate of chemical reaction:

(4.12) q̇ = λ

(
tr (T)

3ρθC

(
g′ (q)

g
+

1

ϕ

∂ϕ (θ, q)

∂q

)

− ∂Φ

∂q

)

, λ(...) ≥ 0.

Heat flux vector:

(4.13) qR = −κGrad θ, κ(...) ≥ 0.

The material functions and parameters occurring in the above equations have
to be determined on the basis of experimental tests. In (4.5) and (4.6) the scalar
functions ϕ (θ, q) and g (q) describe thermal expansion and chemical shrinking.
In (4.8) the relaxation functions µA (z) and µB (z) modelling the mechanically-
stored parts of the free energy as well as the chemically- and thermally-stored
parts Φ (q, θ) and h (θ) have also to be identified. The constitutive function
M (...) in (4.9) describes the influence of the temperature, the degree of cure
and other variables on the stress evolution. The most simple approach for this
function is M = 1−q. In the heat flux model (4.13), the heat conductivity κ (...)
is the corresponding material function. Since the curing adhesive passes a transi-
tion from a viscous fluid to a viscoelastic solid, the heat conductivity depends on
the degree of cure and, perhaps in addition, on temperature and other variables.
A very first approach for the heat conductivity is the linear interpolation
κ (θ, q) = (1 − q)κf + qκs, where κf is the heat conductivity of the liquid adhe-
sive and κs – that of the solidified material. In this case, the term Div (qR) =
Div (κ(q)Grad θ) has to be calculated newly.

5. Numerical example

In order to illustrate the essential physical properties of the developed con-
stitutive theory and to demonstrate the meaning of the material functions, we
investigate an initial problem, which can be dealt with in a closed form. It is
sketched in Fig. 4 and corresponds to a homogeneous specimen of a curing resin
under adiabatic boundary conditions.

Fig. 4. Curing specimen under dynamic shear and adiabatic boundary conditions.
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The prescribed deformation is a dynamic process in simple shear. The me-
chanical part of the deformation gradient is expressed by

FM = γMe1 ⊗ e2 +

3∑

i=1

ei ⊗ ei,

where the shear angle γM is a sinusoidal function of time

(5.1) γM = γ0 sin (ωt) = Im (γ0 exp (iωt)) .

The amplitude of the shear deformation is given by the constant γ0 and ω is the
angular frequency of excitation.

To simulate the stress evolution during the adiabatic curing process under
dynamic shear, we introduce the following constitutive assumptions. The re-
laxation function µA is represented as the sum of N decreasing exponential
functions and µB is set to zero, i.e.

µA (z) =
N∑

k=1

µk exp (−z/zk), µB(z) = 0.

For the sake of simplicity, the material parameters µk and zk are assumed to be
constant. In this case, the stress functional in (4.10) can be transformed into a
set of differential equations of the first order for partial stress tensors σk of the
Cauchy type:

σ̇k − LMσk − σkL
T
M = 2ρRµkDM − ż

zk
σk.

Since the quantity ż (t) = M (...) appears in all equations, the differential equa-
tions, are coupled. The mechanical velocity gradient is defined by LM = ḞMF−1

M .
In order to simulate a fluid-like behaviour at the very beginning of the curing
process, i.e. for q = 0, and an elastic material behaviour in the fully-cured state,
i.e. for q = 1, the rate of the intrinsic time is described by the linear differ-
ential equation ż = 1 − q. For simplification, we also assume βθf = βθs = βθ

i.e. ϕ = ϕ (θ). This corresponds to identical coefficients of thermal expansion of
both the liquid and the solid adhesive. The Cauchy stress tensor T is given by
the expression

(5.2) T = −p1 +
1

gϕ

N∑

k=1

σk.

which is obtained from (4.10) by the push-forward transformation T = 1/
(detFM )FM T̃MFT

M . The chemically-stored part of the free energy is assumed
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to be temperature-independent,

(5.3) Φ (q) =
1

λ

(

nαmβ (1 − q)1+α+β

τ+ (1 + α+ β)
− 1 − qγ+1

τ− (1 + γ)

)

,

where λ, α, β, γ, n,m, τ+, τ− are material parameters. This function corresponds
to the integral of the second part of (5.4) with respect to q and describes a

chemical reaction kinetics (stress-free) in the form of q̇ = nαmβ (1 − q)α+β
/

τ+−
qγ/τ−. If other empirical models are used for the evolution of the degree of cure,
for example in the form of (2.3, 2.4, 2.5) or (2.6), the chemically-stored part of
the free energy can be calculated by partial integration with respect to q. The
differential equation for the degree of cure is obtained by (4.12) in combination
with (5.3) and reads as:

(5.4) q̇ =







λg′ (q)

3ρθCg (q)
tr (T) +

nαmβ

τ+
(1 − q)α+β − 1

τ−
qγ , if q < 1,

0, else.

Evaluating the constitutive model for the specimen geometry illustrated in
Fig. 4, we obtain the tensor representation

σk = τk (e1 ⊗ e2 + e2 ⊗ e1) +
3∑

i=1

σkiei ⊗ ei

for the partial stresses and the temporal behaviour of their components is de-
scribed by the following differential equations:

σ̇k1 − 2τkγ̇M = −1 − q

zk
σk1,(5.5)

τ̇k = ρRµkγ̇M − 1 − q

zk
τk,(5.6)

σ̇k2 = −1 − q

zk
σk2, σ̇k3 = −1 − q

zk
σk3.(5.7)

If we assume that the time constants determining the dynamics of the curing
reaction in (5.4) are large compared with the duration of one cycle of the si-
nusoidal shear process, i.e. (τ−, τ+) ≫ 2π/ω, the degree of cure changes very
slowly or hardly changes at all during one oscillation in shear. For the purpose
of solving the differential equations (5.5), (5.6) and (5.7) in conjunction with
the excitation (5.1), the internal variable q can accordingly be assumed to be
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constant. The complex dynamic shear modulus G∗ (ω, q) corresponding to (5.6)
can be calculated in a closed form,

(5.8) G∗ (ω, q) = ρR

N∑

k=1

iωzkµk

(1 − q) + iωzk
,

and depends on both the angular frequency and the degree of cure. To this end,
one has to insert the dynamic deformation process γM = γ0 exp (iωt) in combi-
nation with the assumption τk = τ̂k exp (iωt) for the stationary shear stress re-
sponse into (5.6). A short calculation yields τ̂k = iωzkρRµk/((1 − q) + iωzk)γ0 =
G∗

k (ω, q) γ0 for the partial dynamic shear modulus G∗
k and calculation of the sum

leads to (5.8). If the relaxation times zk were temperature-dependent, G∗ would
also depend on the temperature. This interesting result shows that the expres-
sion of the dynamic shear modulus of the curing resin reduces to that of a linear
viscoelastic fluid (cf. Tschoegl [38])

G∗ (ω, 0) = ρR

N∑

k=1

iωzkµk

1 + iωzk

in the initial state of the resin which corresponds to q = 0. In the asymptotic or
completely solidified state, we have q = 1 and (5.8) leads to

G∗ (ω, 1) = ρR

N∑

k=1

µK

which corresponds to an elastic solid. In the real case of an incomplete curing
process ending at qmax < 1 we obtain the expression

G∗ (ω, qmax) = ρR

N∑

k=1

iωzkµk

(1 − qmax) + iωzk

corresponding to a viscoelastic material.
In the following numerical simulations, the angular frequency of excitation

is ω = 20πrad/s, the shear amplitude is γ0 = 0.01, the elasticity parameters
µk are set to a constant value. For the relaxation times zk for k = 1, ..., N
we assume a linear distribution on a logarithmic scale which is given by the
following function:

zk = zmin(zmax/zmin)
(k−1)/(N−1).

The other assumed material parameters are specified in the following two tables:
Tables 1, 2 and the simulation results are shown in Figs. 5–9.
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Table 1. First part of the assumed material parameters.

α (−) β (−) γ (−) m (−) n (−) βθ (K−1) βC (−) τ+ (s) τ− (s) ρR (kg/m3)

1.0 1.0 1.0 0.5 0.5 10−4 −0.1 102 108 103

Table 2. Second part of the assumed material parameters.

cd (J/kg K) θ0 (K) zmin (s) zmax (s) µk (m2/s2) λ (kg/J) N (−)

103 293 10−5 10−3 500 10−7 16

The constitutively undetermined pressure p in (5.2) can be determined on

the basis of the assumption of only one normal stress component σ orthogonal

to the shear plane,

(5.9) T = τ (e1 ⊗ e2 + e2 ⊗ e1) + σe1 ⊗ e1

and one shear stress τ . The nonlinear evolution equation (5.4) for the inter-

nal variable q was solved using the mathematical software system MATLAB.

Since we have assumed a homogenous mixture of the liquid and the solid

adhesive, our constitutive model leads only to one global temperature in the

curing material. The exothermal increase in the specimen temperature can be

calculated on the basis of adiabatic solution of the equation of heat condu-

ction (4.3):

θ (t) = θ0 +
Φ (0) − Φ (q (t))

cd
.

The numerical results for the chemical coordinate as a function of time are

shown in Fig. 5 for different values of the material parameter τ+ which changes

over four orders of magnitude. As we can see, the constitutive theory describes

the temporal evolution of the degree of cure. To adapt this model to the ex-

perimental data of a given adhesive system, we have to identify the numerical

values of the material constants in (5.4). If the adhesive under consideration

has a different curing characteristic, for example an autocatalytic time depen-

dence, we can replace (5.4) by a different differential equation without loosing

the thermodynamical consistency of the theory.

The shrinkage in volume, which is influenced by the phase transition of the

adhesive from a viscoelastic fluid to a viscoelastic or elastic solid, is also repro-

duced by the constitutive theory and shown in Fig. 6. The next Fig. 7 illustrates

the corresponding time-dependent behaviour of the storage and the loss modulus

corresponding to the real and imaginary parts of (5.8).
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Fig. 5. Time dependence of the chemical coordinate (degree of cure).

Fig. 6. Time dependence of shrinkage in volume.

The increase in the storage modulus is by about three orders of magnitude
and the loss modulus shows a less pronounced maximum. The time dependence
of these curves is influenced by the temporal evolution of the degree of cure.
The maximum of the loss modulus at intermediate times is caused by the fact,
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Fig. 7. Time dependence of real (cont. lines) an imaginary (dashed lines) parts of G∗(ω, q).

that the liquid adhesive corresponding to q ≈ 0 and the solidified adhesive
corresponding to q ≈ 1 have small loss moduli. But in the case of 0 ≪ q ≪ 1,
the curing adhesive becomes more and more viscous and then more and more
elastic, leading to the maximum. Figure 8 shows the frequency dependence of

Fig. 8. Frequency dependence of the absolute value of G∗(ω, q).
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the absolute value of G∗ (ω, q) for constant values of the degree of cure. In the
initial state of the adhesive, corresponding to q = 0, the frequency dependence
is linear in a good approximation and in the completely solidified state of q = 1
the frequency dependence vanishes.

The temporal changes in the specimen temperature during the curing process
are simulated under the simplifying assumptions of both the temperature-inde-
pendent material behaviour and adiabatic boundary conditions, which are illus-
trated in Fig. 9. This is not the case in reality, but this simulation is intended to
demonstrate that the theory developed here reproduces all the thermomechan-
ical phenomena that occur during curing of the adhesives. Since homogeneous
conditions were assumed, the temperature distribution is independent of the
location.

Fig. 9. Temperature change during the reaction.

6. Conclusions

In this essay we have developed a general physically-based approach of fi-
nite thermoviscoelasticity to represent the curing behaviour of adhesives. The
model is compatible with the second law of thermodynamics in the form of
the non-isothermal Clausius–Duhem inequality and allows for the simulation
of chemical-induced shrinkage in volume, temperature-induced deformations,
exothermal temperature evolution caused by the chemical curing reactions and
dissipative deformation-induced heating, as well as the temporal evolution of
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stresses during the curing process. This approach can therefore be employed to
estimate the internal stress distribution in adhesive seams during the manufac-
turing processes. The main reason for the formulation of a finite strain theory
is that it can be applied to simulate both the application and the dispersion be-
haviour of liquid adhesives (before the gel point is reached). Since the mixture
of the resin and the curing agent is assumed to be homogeneous, the consti-
tutive theory is applicable to one-component and two-component adhesives. If
the adhesive under consideration does not show any exothermal heat genera-
tion, the corresponding term in the free energy has to be set to zero. In order
to formulate the constitutive equations for the thermal expansion and chemical
shrinking effects as simply as possible, we have assumed an uncoupled behav-
iour, i.e. chemical shrinking depends only on the degree of cure and thermal
expansion only on the temperature. This restriction is not necessary and the
theory can easily be modified: the velocity gradients contain additional terms
and the evaluation of the Clausius –Duhem inequality becomes more difficult.

In a further research project the evolution equations, material functions and
parameters of the constitutive model are identified on the basis of comprehensive
experimental investigations of different adhesives. There are plans to implement
the model in a finite-element program in the future.
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