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We construct an eighteen-dimensional orbifold that is in a one-to-one correspon-
dence with the space of SO (3)-orbits of elasticity tensors. This allows us to obtain
a local parametrization of SO (3)-orbits of elasticity tensors by six SO (6)-invariant
and twelve SO (3)-invariant parameters. This process unravels the structure of the
space of the orbits of the elasticity tensors.
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1. Introduction

The problem of classifying linear elastic materials — Hookean solids —
goes at least as far back as the work of Lord Kelvin [14, 15], and has been inves-
tigated by many researchers; notably, by Love [16], Voigt [25], Fedorov [10],
Backus [1], Rychlewski [20], Walpole [26], Cowin and Mehrabadi [8],
Helbig [13], Forte and Vianello [11] and Chadwick et al. [5].

The behavior of a material governed by Hooke’s law is encoded in its mass
density and elasticity tensor.

In discussing the elasticity tensors, it is often important to make no distinc-
tion between different orientations of the same tensor. Thus, we want to identify
an elasticity tensor with its orbit under the action of the three-dimensional
orthogonal group. The eighteen-dimensional space of these orbits has a compli-
cated structure; it has been studied by Boehler et al. [2], who showed that
this space can be embedded into a thirty-seven-dimensional Euclidean space.
Boehler et al. [2] states that“what is needed is a parametrization of distinct or-
bits”and for this purpose they construct a set of polynomial invariants that“can
be used to designate a certain set of materials”. Herein, we construct an eighteen-
dimensional orbifold, which is in a one-to-one correspondence with the space of
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orbits of elasticity tensors. Orbifolds are described by Thurston [24, Chap-
ter 13]. This orbifold is modeled by R18, modulo the action of certain symmetry
groups that we discuss below. Therefore, the parametrizations will be given up
to the action of these symmetry groups. We propose a local parametrization
of this orbifold by six SO (6)-invariant parameters and twelve SO (3)-invariant
parameters; we note that the SO (6) invariants are also SO (3) invariants.

The complicated structure of the space of orbits of elasticity tensors does
not allow for global charts, and hence a global parametrization.

An elasticity tensor can be viewed either as a fourth-rank tensor in R3 with
intrinsic symmetries, or as a second-rank symmetric tensor in R6. Examina-
tion of rotations of the elasticity tensor in the context of the first viewpoint
requires the study of fourth-order rotations of orthogonal group O (3) in the
space of elasticity tensors. This approach has been investigated by Coleman
and Noll [7], Podio-Guidugli and Varga [19], Huo and Del Piero [28],
Forte and Vianello [11], Chadwick et al. [5].

The second viewpoint has been formulated and investigated independently
by Walpole [26], Rychlewski [20, 21], and Cowin and Mehrabadi [17, 9].
Lord Kelvin [15, p. 110] described, albeit without the use of tensors, aspects
of matrix representation of elasticity tensors with respect to an orthonormal
basis of the six-dimensional space. Such a representation was considered also by
Fedorov [10], who gave an explicit relation between Kelvin’s and Voigt’s [25]
notations. Examination of rotations in the context of the second viewpoint re-
quires the study of second-order rotations of a subgroup of the orthogonal group
O (6) in the space of elasticity tensors, which has been investigated by Rych-
lewski [20, 21], Cowin and Mehrabadi [17, 9], Helbig [13], Yang et al. [27],
and Bóna et al. [4].

In order to exploit both representations of the elasticity tensor, we build a
group morphism, ψ, between the special orthogonal groups SO (3) and SO (6)
that commutes with the linear action of these two groups. Matrix representation
of this map was considered first by Mehrabadi and Cowin [17], and used
by Helbig [13] and Chapman [6]. This morphism allows us to identify the
twenty-one-dimensional space of elasticity tensors, Ela, with a quotient space of
R6×SO (6), via an equivalence relation. Thus, each elasticity tensor is uniquely
represented by a class of pairs (λ,A) ∈ R6 × SO (6). Using this morphism, we
can identify the twelve-dimensional quotient space SO (6) /ψ (SO (3)) with the
twelve-dimensional Stiefel manifold V3

(
R6

)
, which allows us to identify the space

of orbits Ela/SO (3) with a quotient space of R6 × V3

(
R6

)
. Thus, each orbit of

elasticity tensors is uniquely represented by a class of pairs (λ, V ) ∈ R6×V3

(
R6

)
.

Consequently, we propose a parametrization of the fifteen-dimensional group
SO (6) that induces a parametrization of the quotient group SO (6) /ψ (SO (3)),
which will be useful for the parametrization of the space of orbits.
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The construction of parametrization of the space of SO(3) orbits of elasticity
tensors shows the structure of this space. This structure is important in under-
standing many properties of elasticity tensors and thus we believe that our work
can serve to further the research in the field.

2. Notation

As stated above, elasticity tensors can be viewed as fourth-rank tensors in R3

with intrinsic symmetries or as a second-rank symmetric tensor in R6. For either
viewpoint, we present the action of the corresponding special orthogonal groups;
namely, SO (3) or SO (6). We discuss the corresponding orbits and symmetry
groups of elasticity tensors with respect to SO (3) or SO (6).

Consider the Euclidean three-dimensional space, R3, and the three-dimen-
sional special orthogonal group, SO (3), which is the group of rotations in R3.
Also consider L2,s

(
R3

)
, the six-dimensional space of symmetric bilinear maps

on R3, which is a Euclidean space with the scalar product given by ω · τ =
Tr

(
ωtτ

)
. For an orthonormal basis {e1, e2, e3} of R3 we define the orthonormal

basis of L2,s

(
R3

)
given by

(2.1) εα(i,j) (e) = 2−1/(2−δij) (ei ⊗ ej + ej ⊗ ei) .

Expression (2.1) is a concise notation for the Cartesian base vectors used by
Mehrabadi and Cowin [17]. Here α : {(i, j) |1 ≤ i < j ≤ 3} −→ {1, 2, . . . , 6}
is the bijection given by

(2.2) α (i, j) = iδij + (1− δij) (9− i− j)

that corresponds to Voigt notation [25], and δij is the Kronecker delta. In this
paper, the Greek indices, α, β, are from 1 to 6 and the Latin indices, i, j, k, l,
are from 1 to 3. An elasticity tensor is a linear map

c : L2,s

(
R3

) −→ L2,s

(
R3

)
,

which is symmetric with respect to the scalar product, c (ω) · τ = ω · c (τ),
and is positive-definite, c (ω) · ω > 0 for ω 6= 0. We denote the components of
an elasticity tensor with respect to the orthonormal basis given by expression
(2.1) by

(2.3) cijkl = c
(
εα(i,j)

) · εα(k,l),

and by Ela the twenty-one-dimensional space of these tensors. The use of the
components of elasticity tensors (2.3) was suggested first by Lord Kelvin with-
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out using the tensorial notation, which was not known at the time, [15, p. 110].
Each elasticity tensor can be written as

(2.4) c =
6∑

α=1

λαωα ⊗ ωα,

due to its symmetry and positive definiteness. This eigendecomposition was
considered by Rychlewski [20], Mehrabadi and Cowin [17] and Helbig [13]
to study properties of the elasticity tensors. Recently, Bóna et al. [4] proved
that such eigendecomposition provides necessary and sufficient conditions for
identifying each of the eight symmetry classes of elasticity tensors. Herein,
0 < λ1 ≤ λ2 ≤ · · · ≤ λ6 are the eigenvalues of the elasticity tensor, which
represent the Kelvin moduli, as referred to by Rychlewski [20], with the cor-
responding eigentensors {ωα}; this means that c (ωα) = λαωα, α ∈ {1, 2, . . . , 6}.
The ordering of the eigenvalues allows us to distinguish between the correspond-
ing eigentensors. We denote the space of ordered positive eigenvalues by

Λ6 =
{
(λ1, λ2, . . . , λ6) ∈ R6 | 0 < λ1 ≤ λ2 ≤ · · · ≤ λ6

}
.

The six eigentensors ωα constitute an orthonormal basis of L2,s

(
R3

)
.

The action of the special orthogonal group, SO (3), on the space of the
second-rank symmetric tensors, L2,s

(
R3

)
, is given by (A,ω) ∈ SO (3)×L2,s

(
R3

)
7→ A · ω ∈ L2,s

(
R3

)
, where

(2.5) (A · ω) (u, v) = ω (Au,Av) , ∀u, v ∈ R3.

Rotation A acts on the six second-rank symmetric tensors of the orthonormal
basis given by expression (2.1) as follows:

(2.6) A · εα (e) = εα (Ae) = 2−1/(2−δij) (Aei ⊗Aej + Aej ⊗Aei) .

The action of the special orthogonal group SO (3) on the space of the second-
rank symmetric tensors can be extended to the space of elasticity tensors, Ela,
as follows:

(2.7) (A ∗ c) (ω) = A · c (
At · ω)

.

Rotation A acts on an elasticity tensor given by expression (2.4) as follows:

(2.8) A ∗ c =
6∑

α=1

λαA · ωα ⊗A · ωα.
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For an elasticity tensor, c, consider its symmetry group

Gc = {A ∈ SO (3) | A ∗ c = c} .

A symmetry group is a closed subgroup of the connected three-dimensional
Lie group, SO (3). Therefore, the quotient space SO (3) /Gc is a differentiable
manifold and its dimension is given by dim (SO (3) /Gc) = 3−dimGc. The orbit
of an elasticity tensor is given by

Oc =
{
c′ ∈ Ela | ∃A ∈ SO (3) , c′ = A ∗ c

}
.

The orbit is at most a three-dimensional subspace of the twenty-one-dimen-
sional space of elasticity tensors, Ela. More precisely, there is a diffeomorphism
between Oc and SO (3) /Gc, which implies that dimOc = 3 − dimGc. If we
apply this result to each of the eight symmetry classes of the elasticity tensor,
we obtain the dimensions of the corresponding orbits as follows.

If c has isotropic symmetry, then its symmetry group is Gc = SO (3) and
therefore its orbit is zero-dimensional; in fact, in such a case its orbit contains
only one element, Oc = {c}.

If c has transversely isotropic symmetry, then its symmetry group is Gc =
SO (2), which is one-dimensional and therefore its orbit is a two-dimensional
subspace of Ela; hence, it can be parametrized by the two angles that determine
the axis of rotation.

If the elasticity tensor belongs to one of the other six symmetry classes, its
symmetry group is discrete and therefore its orbit is three-dimensional; such an
orbit can be parametrized by the three Euler angles that determine one of the
natural coordinate systems.

Two elasticity tensors, c1 and c2, that belong to the same orbit, which means
that there exists A ∈ SO (3) such that c1 = A ∗ c2, have conjugate symmetry
groups; in other words, Gc1 = AGc2A

t. There are elasticity tensors with conju-
gate symmetry groups that do not belong to the same orbit. It has been shown
by Forte and Vianello [11], Chadwick et al. [5], and Bóna et al. [3], that
there are exactly eight nonconjugate subgroups of SO (3), which are the sym-
metry classes of the elasticity tensor.

3. Spaces of elasticity tensors

There is no canonical way of defining a parametrization of the space of elas-
ticity tensors, Ela, that distinguishes between the orbits. In this section, we
construct a twenty-one-dimensional space that is in a one-to-one correspondence
with the space of elasticity tensors and allows us to find a parametrization that
simplifies the recognition of the orbits. Due to the material symmetries, such
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a parametrization is given only modulo the action of certain symmetry groups.
Moreover, the complicated structure of the space of orbits does not allow for
global parametrizations. Therefore the parametrization we propose is only local
and allows for identification of orbits of elasticity tensors that belong to the
same domain of parametrization. We use the fact that elasticity tensors can be
viewed as second-rank symmetric tensors in R6, as it has been described in the
previous section.

For the rest of the paper, we consider the canonical orthonormal basis of
R6: {Nα}, the canonical orthonormal basis of R3: {ei}, and the orthonormal
basis of L2,s

(
R3

)
: {εα}, which is given by expression (2.1). We define linear

map g : L2,s

(
R3

) −→ R6 by g (εα) = Nα, α ∈ {1, 2, . . . , 6}. This map is a
linear isomorphism and preserves the scalar products of L2,s

(
R3

)
and R6, and

therefore this map is an isometry.
In our approach, we want to relate coordinate transformations in R3 to coor-

dinate transformations in R6. Thus, we define a map between SO (3) and SO (6)
that preserves the group properties and the linear actions of these two groups.
In other words, we define a group morphism ψ : SO (3) −→ SO (6), such that
the following diagram is commutative.

(3.1)

SO (3)× L2,s

(
R3

) −→ L2,s

(
R3

)

ψ×g

y
yg

SO (6)× R6 −→ R6.

The commutativity of diagram (3.1) means that – for all A ∈ SO (3) and ω ∈
L2,s

(
R3

)
– we have

(3.2) g (A · ω) = ψ (A) g (ω) .

Expression (3.2) determines uniquely the map ψ. If we let g (ω) ∈ {N1, . . . , N6},
we obtain ψ (A) Nα = g

(
A · g−1 (Nα)

)
, and, therefore, the matrix representa-

tion of ψ (A) with respect to the fixed orthonormal bases can be written using
bijection α given by expression (2.2) as follows:

(3.3) ψ (A)α(i,j)α(k,l) = 2−(δij+δkl)/2 (AikAjl + AilAjk) .

This matrix was considered first by Mehrabadi and Cowin [17] and used by
Helbig [13], Chapman [6], Bóna et al. [4], to study properties of the elasticity
tensors under the action of ψ (SO (3)). Herein, Aij is the matrix representation
of rotation A in SO (3) with respect to the orthonormal basis, {e1, e2, e3},
of R3. The next theorem presents algebraic properties of map ψ.
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Theorem 1. Map ψ, given by expression (3.2), or — in terms of coordinates
— by expression (3.3), is a group isomorphism between the special orthogonal
group, SO (3), and its image, ψ (SO (3)) ⊂ SO (6) .

P r o o f. Isomorphism g is an isometry and ψ preserves the action of the
two special orthogonal groups, namely SO (3) and SO (6). Thus, we obtain
ψ (A) ∈ SO (6) for all A ∈ SO (3). Using expression (3.2), we show that ψ
is a group morphism between SO (3) and SO (6). Namely, ψ (A ·B) (g (ω)) =
g ((AB) · ω) = g (A ·B · ω) = ψ (A) ψ (B) (g (ω)), for all A,B ∈ SO (3).

Since ψ : SO (3) → SO (6) is a group morphism, using expression (3.3), we
see that if A ∈ SO (3) so that ψ (A) = I6, then A = I3. This means that the
kernel of ψ is the identity; in other words, kerψ = {I3}. Consequently, ψ is a
monomorphism of groups and, hence, it is an isomorphism between SO (3) and
its image ψ (SO (3)).

Each elasticity tensor is determined uniquely by its eigenvalues and the cor-
responding eigenspaces. These eigenspaces are defined by an orthonormal frame
in R6 identified with an element of SO (6), which might be not unique. The rela-
tion between pairs (λ,A) ∈ Λ6 × SO (6) and elasticity tensors can be expressed
by map f : Λ6 × SO (6) −→ Ela,

(3.4) f (λ,A) =
6∑

α=1

λαg−1 (ANα)⊗ g−1 (ANα) .

Map f is well-defined; it is onto but it is not one-to-one. For the elasticity
tensor f (λ,A), λα, α ∈ {1, . . . , 6} are its eigenvalues with the correspond-
ing eigentensors g−1 (ANα). The elasticity tensor c = f (λ,A) can be viewed
as a second-rank symmetric tensor in R6 denoted by C = F (λ,A), where
F : Λ6 × SO (6) −→ L2,s

(
R6

)
,

F (λ,A) =
6∑

α=1

λαANα ⊗ANα.

The symmetry group of C = F (λ,A) is a closed subgroup of the Lie group
SO (6), namely,

(3.5) GF (λ,A) = {B ∈ SO (6) |F (λ,A) = F (λ,BA)} .

Using map f , we want to build a new map whose domain will be in a one-
to-one correspondence with the space of elasticity tensors, Ela. To identify the
pairs in Λ6 × SO (6) that correspond to the same elasticity tensor, we define
the following equivalence relation (λ,A) ∼ (λ′,A′) if f (λ,A) = f (λ′,A′). Each
equivalence class [(λ,A)] = f−1 (f (λ,A)) corresponds uniquely to an elasticity
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tensor. For each elasticity tensor f (λ,A), the corresponding set in Λ6 × SO (6)
is given by

(3.6) f−1 (f (λ,A)) = F−1 (F (λ,A)) = {λ} ×GF (λ,A)A,

due to expression (3.5). We conclude this discussion by the following proposition
and theorem.

Proposition 1. 1. The quotient space Λ6 × SO (6) / ∼ is in a one-to-one
correspondence with the twenty-one-dimensional space of elasticity tensors.

2. Two elasticity tensors, f (λ,A) and f (λ′,A′), coincide with one another
if and only if λ = λ′ and A′ · A−1 ∈ GF (λ,A).

To understand better the set {λ}×GF (λ,A)A, which determines uniquely the
elasticity tensor f (λ,A), we write GF (λ,A), which is a subgroup of SO (6), as

(3.7) GF (λ,A) = SO (m1)× · · · × SO (mr) ,

where r is the number of distinct Kelvin moduli, λα, and mα ≥ 1 are the
corresponding multiplicities, with m1 + · · · + mr = 6, with SO (mα) acting on
the eigenspace corresponding to λα.

Remark 1. Expression (3.6) tells us that each elasticity tensor c = f (λ,A)
is determined by the pair (λ,A) ∈ Λ6 × SO (6) modulo the symmetry group
GF (λ,A), which is given by expression (3.7).

To exemplify this, consider a pair (λ,A), where all Kelvin moduli λα are
distinct. In this case, the symmetry group of F (λ,A) ∈ L2,s

(
R6

)
is given by

(3.8) GF (λ,A) = {diag (η1, η2, . . . , η6) , ηα ∈ {±1} , η1 · · · η6 = 1} .

According to Proposition 1, the elasticity tensor f (λ,A) is uniquely deter-
mined by its distinct eigenvalues λα and eigenvectors ±g−1 (ANα). This case
corresponds to one of the following symmetry classes: orthotropic, monoclinic
or anisotropic. Thus, an elasticity tensor c = f (λ,A) that is either orthotropic,
monoclinic or anisotropic, is uniquely determined by the pair f (λ,A) modulo
rotations by π around ANα.

We will treat this case of distinct eigenvalues in more details below, after
we discuss the parametrization of elasticity tensors modulo the corresponding
rotations.

4. Space of orbits of elasticity tensors

In this section, we use the space of elasticity tensors derived in the previous
section, namely,

Ela ' Λ6 × SO (6) / ∼,



Space of SO (3)-orbits of elasticity tensors 131

to describe the space of orbits of elasticity tensors, Ela/SO (3). We showed in
the previous section that an elasticity tensor c = f (λ,A) could be described by
the pair (λ,A) modulo GF (λ,A). Therefore, its orbit could be described by the
pair (λ,A) modulo GF (λ,A) · ψ (SO (3)). We show that the actions of the two
groups commute. Using these properties and the fact that the quotient space
SO (6) /ψ (SO (3)) is the Stiefel manifold V3

(
R6

)
, we can describe the orbit of

an elasticity tensor c = f (λ,A) by the corresponding element of V3

(
R6

)
modulo

GF (λ,A).
The next theorem gives an explicit form for the orbit and the symmetry

group of an elasticity tensor.
Theorem 2. For a pair (λ,A) ∈ Λ6 × SO (6), the orbit of the elasticity

tensor f (λ,A) is given by

(4.1) Of(λ,A) = {f (λ, ψ (B)A) | B ∈ SO (3)} .

For a pair (λ,A) ∈ Λ6 × SO (6), the symmetry group of the corresponding elas-
ticity tensor f (λ,A) is given by

(4.2) Gf(λ,A) = {B ∈ SO (3) | f (λ,A) = f (λ, ψ (B)A)} .

P r o o f. Using expressions (3.4) and (2.8) we obtain

(4.3) B ∗ f (λ,A) =
6∑

α=1

λαB · g−1 (ANα)⊗B · g−1 (ANα) .

If we apply g−1 to both sides of expression (3.2), we obtain B·ω=g−1(ψ(B)g(ω)).
For ω = g−1 (ANα), this implies that

(4.4) B · g−1 (ANα) = g−1
(
ψ (B) g

(
g−1 (ANα)

))
= g−1 (ψ (B)ANα) .

Using expression (4.4), one can write expression (4.3) as follows:

(4.5) B ∗ f (λ,A) =
6∑

α=1

λαg−1 (ψ (B)ANα)⊗ g−1 (ψ (B)ANα)

= f (λ, ψ (B)A) .

Expression (4.5) implies that the orbit of the elasticity tensor f (λ,A) is given
by Eq. (4.1), while the symmetry group is given by expression (4.2).

In the previous section, we have seen that each elasticity tensor can be ex-
pressed uniquely by an equivalence class [(λ,A)] = {λ} × GF (λ,A)A. Using the
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first part of Theorem 2, the orbit of a given elasticity tensor expressed by the
equivalence class [(λ,A)] is

(4.6) O[(λ,A)] = {[(λ, ψ (B)A)] |B ∈ SO (3)}

= {λ} × ψ (SO (3))A ⊂ Λ6 × SO (6) .

Since the eigenspaces of a second-rank tensor are preserved by its symmetry
group, we write

O[(λ,A)] =
{
(λ, ψ (B) DA) | B ∈ SO (3) , D ∈ GF (λ,A)

}

= {λ} × ψ (SO (3))GF (λ,A)A.

The one-to-one correspondence between Λ6×SO (6) / ∼ and Ela induces a one-
to-one correspondence between the corresponding orbits O[(λ,A)] and Of(λ,A)

under the action of SO (3). Since for a fixed (λ,A),

ψ (SO (3))GF (λ,A)A = GF (λ,A)ψ (SO (3))A,

we can write

Ela/SO (3) ' (
Λ6 × SO (6) / ∼)

/ψ (SO (3)) ' (
Λ6 × SO (6) /ψ (SO (3))

)
/ ∼ .

Both groups SO (3) and SO (6) are compact connected Lie groups of di-
mensions three and fifteen, respectively. Map ψ, given by expression (3.3), is an
embedding. It follows that ψ (SO (3)) is a closed Lie subgroup of SO (6) and
therefore the quotient space SO (6) /ψ (SO (3)) is a twelve-dimensional mani-
fold. This manifold is diffeomorphic with the twelve-dimensional Stiefel compact
manifold,

(4.7) V3

(
R6

)
=

{
V ∈ M6×3 (R) | V t · V = I3

}
,

of isometries from R3 to R6. Therefore, we can view the space of orbits of
elasticity tensors Ela/SO (3) as

Ela/SO (3) ' Λ6 × V3

(
R6

)
/ ∼ .

Note that all the manifolds presented above do not have global charts,
therefore parametrizations of such manifolds will be only local. Our aim is
to find parametrizations of the fifteen-dimensional space SO (6) that induces
parametrizations of the twelve-dimensional space V3

(
R6

) ' SO (6) /ψ (SO (3)).
A local parametrization of the eighteen-dimensional orbifold (Λ6×V3(R6)/∼

will determine a local parametrization of the eighteen-dimensional space of orbits
of elasticity tensors Ela/SO (3).
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5. Parametrization of elasticity tensors

In this section, we propose a parametrization of the eighteen-dimensional
space Λ6 × V3

(
R6

)
that will result in a parametrization of the space of or-

bits of elasticity tensors. The proposed parameters do not determine uniquely
an elasticity tensor c = f (λ,A), they are given modulo GF (λ,A). We propose
a parametrization of the twenty-one-dimensional space of elasticity tensors by
eighteen parameters and the three Euler angles in such a way that the Euler
angles determine the orientation of a natural coordinate system. Six of these
parameters will represent the rigidity moduli λα of the elasticity tensor, an-
other twelve parameters γa will determine the six orthonormal eigentensors ωα

with respect to the three orthonormal eigenvectors of ω1. The twelve para-
meters γa and the three Euler angles parametrize SO (6) in such a way that
SO (6) /ψ (SO (3)) is parametrized by γ. This parametrization is a local chart
of the manifold SO (6) /ψ (SO (3)).

We consider the canonical orthonormal basis {e1, e2, e3} of R3 and the cor-
responding orthonormal basis {εα} of L2,s

(
R3

)
given by expression (2.1). We

define first the six orthonormal second-rank symmetric tensors,

ωα : (γa, A) ∈ R12 × SO (3) 7→ ωα (γa, A) ∈ L2,s

(
R3

)
,

as follows:

(5.1) ω1 (γ,A) = γ1A · ε1 + γ2A · ε2 + x1 (γ) A · ε3.

We note that Ae = {Ae1, Ae2, Ae3} are the eigenvectors of the second-rank
symmetric tensor ω1, while x1 (γ) is chosen in such a way that ω1 is unitary,
which means that γ2

1 +γ2
2 +x2

1 = 1. Second-rank symmetric tensor ω1 depends on
two parameters γ1, γ2 and the three Euler angles represented by the orthogonal
matrix A.

The second tensor, ω2, is defined by

(5.2) ω2 (γ,A) = γ3A · ε1 + γ4A · ε2 + x2 (γ) A · ε3

+ x3 (γ) A · ε4 + γ7A · ε5 + γ8A · ε6.

If x1 (γ) 6= 0, then the function x2 (γ) is uniquely determined from the or-
thogonality condition ω1 ⊥ ω2, which implies γ1γ3 + γ2γ4 + x1 (γ) x2 (γ) = 0.
Function x3 (γ) is determined up to the sign by the condition that ω2 is unitary,
which means that γ2

3 + γ2
4 + γ2

7 + γ2
8 + x2

2 + x2
3 = 1. We observe that ω2 depends

on four parameters γ3, γ4, γ7, γ8.
The remaining four tensors are defined as follows:

(5.3) ω3 (γ,A) = γ5A · ε1 + x4 (γ) A · ε2 + x5 (γ) A · ε3

+ x6 (γ) A · ε4 + γ9A · ε5 + γ10A · ε6,
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(5.4) ω4 (γ,A) = x7 (γ) A · ε1 + x8 (γ) A · ε2 + x9 (γ) A · ε3

+ x10 (γ) A · ε4 + γ11A · ε5 + γ12A · ε6,

(5.5) ω5 (γ,A) = x11 (γ) A · ε1 + x12 (γ) A · ε2 + x13 (γ)A · ε3

+ x14 (γ) A · ε4 + x15 (γ) A · ε5 + γ6A · ε6,

(5.6) ω6 (γ,A) = x16 (γ) A · ε1 + x17 (γ) A · ε2 + x18 (γ)A · ε3

+ x19 (γ) A · ε4 + x20 (γ) A · ε5 + x21 (γ) A · ε6.

Functions x4 (γ) , . . . , x21 (γ) are determined up to the sign by the condition that
{ωα} forms an orthonormal basis of L2,s

(
R3

)
.

For a rotation A ∈ SO (6), we consider the orthonormal basis
{
g−1 (ANα)

}
of L2,s

(
R6

)
. One can associate with this orthonormal basis twelve parameters

γ and the three Euler angles determined by expressions (5.1)–(5.6) by setting
ωα = g−1 (ANα). We note that the parameters γ are given uniquely and the
three Euler angles are given up to an element in the symmetry group of ω1 =
g−1 (AN1). Since these spaces do not have global charts, one cannot obtain a
global parametrization of SO (6). One can see that the process of associating
parameters γ described by expressions (5.1)–(5.6) does not cover the case when
x1 (γ) = 0 (which corresponds to the case when one of the eigenvalues of ω1 =
g−1 (AN1) is zero) and for similar cases when x4 (γ) = 0, etc. To build another
chart of a complete atlas for SO (6), we have to change γ2 with x1 in (5.1), γ5

with x4 in (5.2), etc.
This way we have parametrized SO (6) by twelve SO (3)-invariant parame-

ters γ and the three Euler angles contained in A ∈ SO (3). Consider U ⊂ SO (6),
the domain of the parametrization described by expressions (5.1)–(5.6), and
let ϕ : U ⊂ SO (6) −→ ϕ (U) ⊂ R12 × SO (3) be the map that realizes this
parametrization. Due to the nonuniqueness of the three Euler angels, the do-
main of such a map can be defined in several ways. The matrix representation
of A ∈ SO (6) in terms of γ and A is given by

(5.7) A (γ, A) Nα = g (ωα (γ, A)) , α ∈ {1, 2, . . . , 6} .

With respect to this local chart of SO (6), the map f given by expression
(3.4) can be expressed in our parameters as follows:

f̂ = f ◦ (
Id× ϕ−1

)
: Λ6 × ϕ (U) ⊂ Λ6 × R12 × SO (3) −→ Ela,

where

(5.8) f̂ (λ, γ,A) =
6∑

α=1

λαωα (γ, A)⊗ ωα (γ,A) .



Space of SO (3)-orbits of elasticity tensors 135

We note that function f̂ is well-defined, it is onto but not one-to-one. A dif-
ferent approach was proposed by Rychlewski [20] and Cowin et al. [9], where
the authors start from the space of elasticity tenors and associate with each
elasticity tensor eighteen parameters λα and γa and the three Euler angles. This
process, which corresponds to considering f̂−1, is not well-defined since to an
elasticity tensor with eigenvalues of higher multiplicity one cannot associate an
orthonormal basis of eigentensors ωα in a unique way. Also, the Euler angles
corresponding to the basis in which ω1 is diagonal, are given up to a rotation
form the symmetry group of ω1.

For an elasticity tensor c consider the six eigenvalues 0 < λ1 ≤ · · · ≤ λ6 with
corresponding eigentensors ωα. The eigenvalues are invariant under the action
of the group SO (6) and therefore, they are invariant under the action of the
group SO (3). Consider {Ae1, Ae2, Ae3}: three eigenvectors of eigentensor ω1.
We associate twelve SO (3) invariant parameters γa that are uniquely defined
by expressions (5.1)–(5.6) with the fixed frame {ωα}. We can associate different
orthonormal frames {ωα} with the same elasticity tensor c, two such orthonormal
frames being connected by a symmetry of the corresponding tensor C.

The relation among different sets of parameters γ that are determined by
the same elasticity tensor, can be stated as follows:

Proposition 2. Two triples (λ, γ,A) and (λ′, γ′, A′) represent the same
elasticity tensor, from the domain of the same local parametrization, if and only
if λ = λ′ and

(5.9) A (γ, A)A−1
(
γ′, A′

) ∈ GC .

This is a reformulation of Proposition 1.
We will use the remainder of this section to describe the class of parameters

we associate with an elasticity tensor in more detail. As discussed above, each
elasticity tensor is described by its six ordered eigenvalues 0 < λ1 ≤ · · · ≤ λ6

and the corresponding normalized eigentensors ω1, . . . , ω6. This description is
not unique: the eigentensors are given up to the multiplication by elements
from GC and/or by −1. The set of the six orthonormal eigentensors can be
parametrized by the Euler angles that define a basis in which ω1 is in a diagonal
form, its two eigenvalues γ1, γ2, and the ten parameters γ3, . . . , γ12 that describe
the orientation of the remaining ωs with respect to ω1. The Euler angles are not
unique, they are given up to rotations from the symmetry group Gω1 ⊂ SO (3)
of ω1.

In the case when the eigenvalues λα are distinct, the normalized eigentensors
are given up to the multiplication by −1. The space of elasticity tensors with
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distinct eigenvalues can be parametrized by:

{λ1, . . . , λ6}SO (3) /Gω1

× {
(γ1, γ2, x1, 0, 0, 0) |γ2

1 + γ2
2 ≤ 1, (γ1, γ2, 0, 0, 0, 0) ∼ − (γ1, γ2, 0, 0, 0, 0)

}

× {
(γ3, γ4, x2, x3, γ7, γ8) |γ2

3 + γ2
4 + γ2

7 + γ2
8 + x2

2 ≤ 1,

(γ3, γ4, x2, 0, γ7, γ8) ∼ − (γ3, γ4, x2, 0, γ7, γ8)
}

× {
(γ5, x4, x5, x6, γ9, γ10) |γ2

5 + x2
4 + x2

5 + γ2
9 + γ2

10 ≤ 1,

(γ5, x4, x5, 0, γ9, γ10) ∼ − (γ5, x4, x5, 0, γ9, γ10)
}

× {
(x7, x8, x9, x10, γ11, γ12) |x2

7 + x2
8 + x2

9 + γ2
11 + γ2

12 ≤ 1,

(x7, x8, x9, 0, γ11, γ12) ∼ − (x7, x8, x9, 0, γ11, γ12)
}

× {
(x11, x12, x13, x14, x15, γ6) |x2

11 + x2
12 + x2

13 + x2
14 + γ2

6 ≤ 1,

(x11, x12, x13, x14, 0, γ6) ∼ − (x11, x12, x13, x14, 0, γ6)
}
,

where x1, . . . , x14 are determined by the orthonormality of ωs and the last
four braces represent parametrization of ω2, ω3, ω4 and ω5. From this expres-
sion we can see that parameters λ and γ parametrize orbits of SO (3) /Gω1 .
To parametrize the orbits of SO (3), we need to identify parameters which de-
scribe ω that differ by action of Gω1 . To do so, we consider the case when the
eigenvalues of ω1 are all distinct. In such a case,

Gω1 = {A = diag(±1,±1,±1)| det A = 1} ,

and we have to identify

(γ3, γ4, x2, x3, γ7, γ8) ∼ (−γ3,−γ4, x2,−x3,−γ7,−γ8)

∼ (γ3,−γ4,−x2,−x3, γ7, γ8) ∼ (−γ3, γ4, x2,−x3,−γ7,−γ8)

for ω2 and similarly for the rest of ωs.
This section completes the description of a local parametrization of the space

of orbits of elasticity tensors.
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