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The linear theory of generalized thermoelastic diffusion with one relaxation time
is employed to study the interactions in a homogeneous, isotropic elastic solid, when
a distributed instantaneous source is acting on the free surface of the body. The
eigenvalue approach is adopted for the solution of a two-dimensional problem. The
Laplace–Fourier transform technique is used. The expansions of the stresses, displace-
ment components, temperature, concentration and chemical potential are obtained
analytically. Numerical results are given and illustrated graphically, employing nu-
merical methods for the inversion for transforms. Comparisons are made with the
results predicted by the theory of generalized thermoelasticity and elasticity.
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Notations

λ, µ Lamé’s constants,

ρ density of the medium,

σij components of stress tensor,

eij components of strain tensor,

ui components of displacement vector,

CE specific heat at constant strain,

t time,

T absolute temperature,

T0 reference temperature chosen so that
|T − T0|

T0
¿ 1,

Θ = T − T0,

K thermal conductivity,

ekk dilatation,

δij Kronecker delta,
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P chemical potential per unit mass,

C non-equilibrium concentration,

C0 mass concentration at natural state,

c = C − C0,

D thermodiffusion constant,

τ0 thermal relaxation time,

τ diffusion relaxation time,

a measure of thermodiffusion effect,

b measure of diffusive effects,

β1 = (3λ + 2µ)αt,

β2 = (3λ + 2µ)αc,

αt coefficient of linear thermal expansion,

αc coefficient of linear diffusion expansion,

F0 intensity of the applied mechanical load,

u displacement vector,

φ scalar potential,

ψ vector potential,

δ(·) Dirac delta function.

1. Introduction

The classical uncoupled theory of thermoelasticity predicts two phenomena
not compatible with physical observations. First, the equation of heat conduc-
tion of this theory does not contain any elastic terms. Second, the heat equation
is of parabolic type, predicting infinite speeds of propagation for heat waves.
Biot [1] introduced the theory of coupled thermoelasticity to overcome the first
shortcoming. The governing equations for this theory are coupled, eliminating
the first paradox of the classical theory. However, both theories share the sec-
ond shortcoming since the heat equation for the coupled theory is of mixed
hyperbolic-parabolic type. Keeping this shortcoming in view, a generalization
to the coupled theory was introduced by Lord and Shulman [2], who obtained
a wave-type heat equation by postulating a new law of heat conduction to re-
place the classical Fourier’s law. Since the heat equation of this theory is of the
wave-type, it automatically ensures finite speeds of propagation for heat and
elastic waves. The remaining governing equations for this theory, namely the
equations of motion and constitutive relations, remain the same as those for the
coupled and the uncoupled theories.

This theory was extended by Dhaliwal and Sherief [8] to general aniso-
tropic media in the presence of heat sources. Because of the complicated nature
of these equations, few attempts have been made to solve them. Ignaczak [10]
studied uniqueness of solutions and Sherief [14] proved uniqueness and stabil-
ity. Sherief and Hamza [17, 18] solved some two-dimensional problems and
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studied wave propagation and Sherief and Anwar [13] solved a cylindrically-
symmetric problem with a line source of heat. Sherief and Anwar [15] have
studied the state space formulation for two-dimensional problem of generalized
thermoelasticity with one relaxation time. A detailed study of thermoelastic
plane waves was made by [3, 19, 22].

Diffusion can be defined as the movement of particles from an area of high
concentration to an area of lower concentration until equilibrium is reached. It
occurs as a result of second law of thermodynamics which states that the entropy
or disorder of any system must always increase with time. Diffusion is impor-
tant in many life processes. There is now a great deal of interest in the study
of this phenomenon, due to its many applications in geophysics and industry.
In integrated circuit fabrication, diffusion is used to introduce “dopants” in con-
trolled amounts into the semiconductor substrate. In particular, diffusion is used
to form the base and emitter in bipolar transistors, form integrated resistors,
form the source/drain regions in MOS transistors and dope poly-silicon gates in
MOS transistors. In most of these applications, the concentration is calculated
using what is known as Fick’s law. This is a simple law that does not take into
consideration the mutual interaction between the introduced substance and the
medium into which it is introduced, or the effect of the temperature on this
interaction.

Thermodiffusion in the solids is one of a transport process that has great
practical importance. Nowacki [4–7] developed the theory of thermoelastic dif-
fusion. In this theory, the coupled thermoelastic model is used. This implies
infinite speeds of propagation of thermoelastic waves. The cross-effects arising
from the coupling of fields of temperature, mass diffusion and that of strain in
an elastic cylinder, have been discussed by Olesiak and Pyryev [28]. Sherief
et al. [23] developed the theory of generalized thermoelastic diffusion that pre-
dicts finite speeds of propagation for thermoelastic and diffusive waves. The
reflection phenomena of P and SV waves from free surface of an elastic solid
with thermodiffusion was considered by Singh [25]. Sherief and Saleh [24]
worked on a half-space problem of a thermoelastic half-space with a permeat-
ing substance, in contact with the bounding plane in the context of the theory
of generalized thermoelastic diffusion with one relaxation time. Some problems
on distributed loads for an orthotropic micropolar elastic medium have been
solved by Kumar and Choudhary [20, 21]. Recently, Aouadi [26, 27] stud-
ied a problem of variable electrical and thermal conductivity in the theory of
generalized thermoelastic diffusion, and discussed thermoelastic-diffusion inter-
actions in an infinitely long solid cylinder subjected to a thermal shock on its
surface, which is in contact with a permeating substance. The present study is
motivated by the importance of thermoelastic diffusion process in the field of oil
extraction.
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2. Basic equations and problem formulation

Following Sherief et al. [23], the governing equations for an isotropic, homo-
geneous elastic solid with generalized thermodiffusion at uniform temperature
T0 in the undisturbed state, in absence of the body forces and heat loads are:

(i) the equation of motion

ρüi = µui,jj + (λ + µ)uj,ij − β1Θ,i−β2c,i ,(2.1)

(ii) the generalized energy equation

(2.2) KΘ,ii = ρCE(Θ̇ + τ0Θ̈) + β1T0( ˙ekk + τ0 ¨ekk) + aT0(ċ + τ0c̈),

(iii) the generalized diffusion equation

(2.3) Dβ2ekk,ii +DaΘ,ii +ċ + τ c̈−Dbc,ii = 0,

(iv) the constitutive equations

σij = 2µeij + δij(λekk − β1Θ − β2c),(2.4)

P = −β2ekk + bc− aΘ,(2.5)

where τ0, the thermal relaxation time, ensures that heat conduction equation
satisfied by temperature Θ predicts finite speed of heat propagation and τ, the
diffusion relaxation time, ensures that the equation satisfied by the concentration
c also predicts finite speed of propagation of matter from one medium to the
other. The superposed dot denotes the derivative with respect to time.

We use a fixed Cartesian coordinate system (x, y, z) with origin on the surface
z = 0, which is stress-free and with z-axis directed vertically into the medium.
The region z > 0 is occupied by the elastic solid with generalized thermodiffu-
sion. A distributed load in (normal or tangential) direction of magnitude F0 is
assumed to be acting on the surface z = 0 of the medium.

We restrict our analysis to a plane parallel to xz-plane. The boundary of the
medium is assumed to be thermally insulated. The chemical potential is also
assumed to be a known function of time.

We shall use the following non-dimensional variables:

(2.6)

x∗ =
ω

c1
x, z∗ =

ω

c1
z, t∗ = ωt,

u∗x =
ρωc1

β1T0
ux, u∗z =

ρωc1

β1T0
uz, σ∗ij =

σij

β1T0
,

c∗ =
c

C0
, P ∗ =

P

β2
, Θ∗ =

Θ

T0
,

τ∗ = ωτ, τ∗0 = ωτ0,
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where

(2.7) c2
1 =

λ + 2µ

ρ
, ω =

ρCEc2
1

K
.

Using the quantities given by (2.6) in Eqs. (2.1)–(2.3), we obtain the equa-
tions in dimensionless form (dropping the asterisks for convenience) as

∂2ux

∂x2
+ a1

∂2uz

∂x∂z
+ a2

∂2ux

∂z2
− ∂Θ

∂x
− a3

∂c

∂x
− ∂2ux

∂t2
= 0,(2.8)

a2
∂2uz

∂x2
+ a1

∂2ux

∂x∂z
+

∂2uz

∂z2
− ∂Θ

∂z
− a3

∂c

∂z
− ∂2uz

∂t2
= 0,(2.9)

τm
∂Θ

∂t
+ b1τm

∂

∂t

(
∂ux

∂x
+

∂uz

∂z

)
+ b2τm

∂c

∂t
− b3∇2Θ = 0,(2.10)

∂

∂x

(∇2ux

)
+

∂

∂z

(∇2uz

)
+ b4∇2Θ + b5τn

∂c

∂t
− b6∇2c = 0,(2.11)

where

(2.12)

a1 =
λ + µ

λ + 2µ
, a2 =

µ

λ + 2µ
, a3 =

β2C0

β1T0
,

b1 =
β2

1T0

ρ2c2
1CE

, b2 =
aC0

CEρ
, b3 =

Kω

ρc2
1CE

,

b4 =
aρc2

1

β1β2
, b5 =

ρC0c
4
1

Dβ1β2T0ω
, b6 =

bρC0c
2
1

β1β2T0
,

τm =
(

1 + τ0
∂

∂t

)
, τn =

(
1 + τ

∂

∂t

)
, ∇2 =

∂2

∂x2
+

∂2

∂z2
.

With the aid of the expressions relating displacement components ux, uz to
the scalar potential φ and vector potential ψ in dimensionless form given by

(2.13) ux =
∂φ

∂x
− ∂ψ

∂z
, uz =

∂φ

∂z
+

∂ψ

∂x
,
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in the Eqs. (2.8)–(2.11), we obtain
[
∇2 − ∂2

∂t2

]
φ−Θ − a3c = 0,(2.14)

∇2ψ − 1
a2

∂2ψ

∂t2
= 0,(2.15)

[
∇2 − 1

b3
τm

∂

∂t

]
Θ − b1

b3
τm

∂

∂t
∇2φ− b2

b3
τm

∂c

∂t
= 0,(2.16)

∇2φ + b4∇2Θ +
[
b5τn

∂

∂t
− b6∇2

]
c = 0.(2.17)

3. Solution of the problem

3.1. Formulation of a vector-matrix differential equation in transform domain

We now apply the Laplace and Fourier transforms defined by

f̂(x, z, p) =

∞∫

0

f(x, z, t), e−ptdt,(3.1)

f̃(ξ, z, p) =

∞∫

−∞
f̂(x, z, p)eιξxdx,(3.2)

where p and ξ are the Laplace and Fourier transform parameters respectively,
so that under the homogeneous initial conditions the Eqs. (2.14)–(2.17) reduce
to the form

d2φ̃

dz2
= R11φ̃ + R12Θ̃ + R13c̃,(3.3)

d2Θ̃

dz2
= R21φ̃ + R22Θ̃ + R23c̃,(3.4)

d2c̃

dz2
= R31φ̃ + R32Θ̃ + R33c̃,(3.5)

[
d2

dz2
−

(
ξ2 +

p2

a2

)]
ψ̃ = 0,(3.6)

where
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(3.7)

R11 = (p2 + ξ2), R12 = 1, R13 = a3,

R21 = f1, R22 = f2, R23 = f3,

R31 =
g1

b6 − a3
, R32 =

g2

b6 − a3
, R33 =

g3

b6 − a3
,

g1 = p4 + f1(1 + b4),

g2 = p2 + (f2 − ξ2)(1 + b4),

g3 = a3(p2 − ξ2) + f3(1 + b4) + b5τ
∗
np + b6ξ

2,

f1 =
b1

b3
τ∗mp3, f2 =

(1 + b1)
b3

τ∗mp + ξ2, f3 =
(b1a3 + b2)

b3
τ∗mp,

τ∗m = 1 + τ0p, τ∗n = 1 + τp.

The system of Eqs. (3.3)–(3.5) can be written in the form of a vector-matrix
differential equation as follows:

(3.8)
d

dz
V (ξ, z, p) = A(ξ, p)V (ξ, z, p),

where

V =
[

U
D∗U

]
, A =

[
O I
A1 O

]
, U =




φ̃

Θ̃
c̃


 , O =




0 0 0
0 0 0
0 0 0


 ,

(3.9)

I =




1 0 0
0 1 0
0 0 1


 , A1 =




R11 R12 R13

R21 R22 R23

R31 R32 R33


 ,

where D∗ denotes the differentiation with respect to z i.e. d/dz.

3.2. Solution of the vector-matrix differential equation

We now proceed to solve Eq. (3.8) by the eigenvalue approach. To solve
Eq. (3.8), we take

(3.10) V (ξ, z, p) = X(ξ, p)eqz,

so that

(3.11) A(ξ, p)V (ξ, z, p) = qV (ξ, z, p),

which leads to an eigenvalue problem. The characteristic equation corresponding
to the matrix A is given by



146 S. Choudhary, S. Deswal

(3.12) det[A− qI] = 0,

which on expansion provides us with

(3.13) q6 − λ1q
4 + λ2q

2 − λ3 = 0,

where

(3.14)

λ1 = R11 + R22 + R33,

λ2 = R11R22 + R22R33 + R33R11 −R12R21 −R23R32 −R31R13,

λ3 = R11(R22R33 −R23R32) + R12(R23R31 −R21R33)

+ R13(R21R32 −R22R31).

The roots of Eq. (3.13), which are the eigenvalues of the matrix A, are ±qi,
i = 1, 2, 3. We assume that real parts of qi are positive. The eigenvector X(ξ, p)
corresponding to the eigenvalues qi can be determined by solving the homoge-
neous equation

(3.15) [A− qI]X(ξ, p) = 0.

The set of eigenvectors Xi(ξ, p), (i = 1, 2, 3, 5, 6, 7) may be obtained as

(3.16) Xi(ξ, p) =
[

Xi1(ξ, p)
Xi2(ξ, p)

]
,

where

Xi1(ξ, p) =




si

ri

1


 , Xi2(ξ, p) =




siqi

riqi

qi


 ,

q = qi; i = 1, 2, 3

Xj1(ξ, p) =




si

ri

1


 , Xj2(ξ, p) =



−siqi

−riqi

−qi


 ,

j = i + 4, q = −qi; i = 1, 2, 3,

(3.17)
si =

si1 − si2 −R23si3

R21si3
,

ri =
R31R13 − (R33 − q2

i )(R11 − q2
i )

R32(R11 − q2
i )−R12R31

,

si1 = (R11 − q2
i )(R22 − q2

i )(R33 − q2
i ),

si2 = R31R13(R22 − q2
i ),

si3 = (R32(R11 − q2
i )−R12R31); i = 1, 2, 3.
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The solution of Eq. (3.8) is given by

(3.18) V (ξ, z, p) =
3∑

i=1

[BiXi(ξ, p)eqiz + Bi+4Xi+4(ξ, p)e−qiz]

and solution of Eq. (3.6) is

(3.19) ψ̃ = B4e
q4z + B8e

−q4z,

where Bi (i = 1, 2, 3, 4, 5, 6, 7, 8) are arbitrary constants and

(3.20) q4 =

√
ξ2 +

p2

a2
.

The Eqs. (3.18) and (3.19) represent a solution of the general problem in
the case of generalized thermodiffusion elasticity by employing the eigenvalue
approach and therefore, they can be applied to a broad class of problems in the
domain of Laplace and Fourier transforms.

4. Application: interactions due to distributed load

In this section, the general solution for displacement, stresses, temperature
field, concentration and chemical potential presented in Eqs. (3.18) and (3.19),
will be used to yield the response of a half-space subjected to a load distributed
over a strip of width 2l, at the free surface of the medium. The constants Bi will
be determined by imposing the proper boundary conditions. These constants,
when substituted in Eqs. (3.18) and (3.19), enable us to obtain the required
physical quantities in the Fourier and Laplace transformed (ξ, z, p) domain. The
final solution in the original domain (x, z, t) is obtained by a numerical inversion
of both transforms.

Case 1. Load in normal direction. In the half-space, the load F (x) is acting
in normal direction. The surface z = 0 is assumed to be thermally insulated so
that there is no variation of temperature and concentration on it. Therefore, for
this loading case the boundary conditions are

(4.1) σzz = −F (x)δ(t), σzx = 0,
∂Θ

∂z
= 0,

∂c

∂z
= 0, at z = 0,

where F (x) = F0(H(x + l)−H(x− l)).

Case 2. Load in tangential direction. In the half-space, the load F (x) is
acting in the tangential direction. The boundary conditions in this case are
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(4.2) σzz = 0, σzx = −F (x)δ(t),
∂Θ

∂z
= 0,

∂c

∂z
= 0, at z = 0.

It can be seen that eight unknowns are to be determined in Eqs. (3.18) and
(3.19) and only four boundary conditions appear in each case. For the half-space
the radiation conditions imply outgoing waves with decreasing amplitudes in the
positive z-direction. Therefore, the radiation conditions require that B1 = B2 =
B3 = B4 = 0.

We obtain the expressions for the displacement components, stresses, tem-
perature field, concentration and potential as

σ̃zz = e1B5e
−q1z + e2B6e

−q2z + e3B7e
−q3z + e4B8e

−q4z,(4.3)

σ̃zx = k1B5e
−q1z + k2B6e

−q2z + k3B7e
−q3z − k4B8e

−q4z,(4.4)

ũx = −ιξ[s1B5e
−q1z + s2B6e

−q2z + s3B7e
−q3z] + q4B8e

−q4z,(4.5)

ũz = −[s1q1B5e
−q1z + s2q2B6e

−q2z + s3q3B7e
−q3z]− ιξB8e

−q4z,(4.6)

Θ̃ = r1B5e
−q1z + r2B6e

−q2z + r3B7e
−q3z,(4.7)

c̃ = B5e
−q1z + B6e

−q2z + B7e
−q3z,(4.8)

P̃ = M1B5e
−q1z + M2B6e

−q2z + M3B7e
−q3z,(4.9)

where

(4.10)

Bi+4 =
2 sin(ξl)∆i

ξ∆
; i = 1, 2, 3, 4,

Mi = −e∗(q2
i − ξ2)si +

bC0

β2
− aT0ri

β2
; i = 1, 2, 3,

∆ = (r3 − r2)q2q3(e1k4 + e4k1) + (r1 − r3)q1q3(e2k4 + e4k2)

+ (r2 − r1)q1q2(e3k4 + e4k3),

ei = q2
i si − a∗si − ri − b∗; i = 1, 2, 3, e4 = ιξq4

(
1− λ

ρc2
1

)
,

ki =
2ιξsiqiµ

ρc2
1

; i = 1, 2, 3, k4 =
µ

ρc2
1

(ξ2 + q2
4),

e∗ =
β1T0

ρc2
1

, a∗ =
λξ2

ρc2
1

, b∗ =
β2C0

β1T0
.

Case 1. In normal direction. The values of ∆i; i = 1, 2, 3, 4, when the dis-
tributed load is acting in normal direction, are
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(4.11)

∆1 = F0k4(r2 − r3)q2q3,

∆2 = F0k4(r3 − r1)q3q1,

∆3 = F0k4(r1 − r2)q1q2,

∆4 = F0 [k1(r2 − r3)q2q3 + k2(r3 − r1)q1q3 + k3(r1 − r2)q1q2] .

Case 2. In tangential direction. The solution for this case as in Eqs. (4.3)–(4.9),
only with the replacement of ∆i; i = 1, 2, 3, 4 as:

(4.12)

∆1 = F0e4(r2 − r3)q2q3,

∆2 = F0e4(r3 − r1)q3q1,

∆3 = F0e4(r1 − r2)q1q2,

∆4 = −F0[e1(r2 − r3)q2q3 + e2(r3 − r1)q1q3 + e3(r1 − r2)q1q2].

Particular Case I. By taking c = D = a = b = β2 = 0, we obtain the
expressions for displacement components, stresses and temperature field in the
generalized thermoelastic medium as:

σ̃zz = e∗1B
∗
4e−q∗1z + e∗2B

∗
5e−q∗2z + e∗3B

∗
6e−q∗3z,(4.13)

σ̃zx = k∗1B
∗
4e−q∗1z + k∗2B

∗
5e−q∗2z − k∗3B

∗
6e−q∗3z,(4.14)

ũx = −ιξ[s∗1B
∗
4e−q∗1z + s∗2B

∗
5e−q∗2z] + q∗3B

∗
6e−q∗3z,(4.15)

ũz = −[s∗1q
∗
1B

∗
4e−q∗1z + s∗2q

∗
2B

∗
5e−q∗2z]− ιξB∗

6e−q∗3z,(4.16)

Θ̃ = B∗
4e−q∗1z + B∗

5e−q∗2z,(4.17)

where

(4.18) q∗2i =
λ∗1 + (−1)i+1

√
λ∗21 − 4λ∗2

2
; i = 1, 2,

are the roots of the equation

(4.19) q4 − λ∗1q
2 + λ∗2 = 0,
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where

(4.20)

λ∗1 = R11 + R22, λ∗2 = R11R22 −R21R12,

q∗3 = q2
4, B∗

i+3 = 2 sin(ξl)∆∗
i /ξ∆∗; i = 1, 2, 3,

∆∗ = q∗1(e
∗
2k
∗
3 + e∗3k

∗
2)− q∗2(e

∗
3k
∗
1 + e∗1k

∗
3),

e∗i = q∗2i s∗i − a∗s∗i − 1; i = 1, 2, e∗3 = ιξq∗3

(
1− λ

ρc2
1

)
,

k∗i =
2µ

ρc2
1

(ιξq∗i s
∗
i ) ; i = 1, 2, k∗3 =

µ

ρc2
1

(
q∗23 + ξ2

)
,

s∗i = −R22 − q∗2i

R21
; i = 1, 2.

Case 1. In normal direction. The values of ∆∗
i ; i = 1, 2, 3, when the dis-

tributed load is acting in normal direction, are

(4.21) ∆∗
1 = F0q

∗
2k
∗
3, ∆∗

2 = −F0q
∗
1k
∗
3, ∆∗

3 = F0 [q∗2k
∗
1 − q∗1k

∗
2] .

Case 2. In tangential direction. The solution for this case as in Eqs. (4.13)–
(4.17), only with the replacement of ∆∗

i ; i = 1, 2, 3, as:

(4.22) ∆∗
1 = F0q

∗
2e
∗
3, ∆∗

2 = −F0q
∗
1e
∗
3, ∆∗

3 = F0 [q∗1e
∗
2 − q∗2e

∗
1] .

Particular Case II. If we neglect the thermodiffusion effect from the me-
dium considered, the corresponding expressions for displacement components
and stresses are given by:

σ̃zz = e′1B
′
3e
−q′1z + e′2B

′
4e
−q′2z,(4.23)

σ̃zx = k′1B
′
3e
−q′1z − k′2B

′
4e
−q′2z,(4.24)

ũx = −(ιξ)B′
3e
−q′1z + q′2B

′
4e
−q′2z,(4.25)

ũz = −q′1B
′
3e
−q′1z + ιξB′

4e
−q′2z,(4.26)

where

(4.27)

q′1 =
√

p2 + ξ2, q′2 =

√
p2

a2
+ ξ2,

B′
i+2 = 2 sin(ξl)∆′

i/ξ∆′; i = 1, 2, ∆′ = −(e′1k
′
2 + e′2k

′
1),

e′1 = q′21 − a∗, e′2 = ιξq′2

(
1− λ

ρc2
1

)
,

k′1 =
2µ

ρc2
1

(ιξq′1), k′2 =
µ

ρc2
1

(ξ2 + q′22 ).
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Case 1. In normal direction. The values of ∆′
i; i = 1, 2, when the load is

distributed in normal direction, are

(4.28) ∆′
1 = F0k

′
2, ∆′

2 = F0k
′
1.

Case 2. In tangential direction. The solution for this case are as in
Eqs. (4.23)–(4.26), only with the replacement of ∆′

i; i = 1, 2 as:

(4.29) ∆′
1 = F0e

′
2, ∆′

2 = −F0e
′
1.

5. Inversion of transforms

The transformed displacements, stresses, temperature field, concentration
and chemical potential (4.3)–(4.9), (4.13)–(4.17) and (4.23)–(4.26) are functions
of z, the parameters of Laplace and Fourier transforms p and ξ, respectively,
and hence are of the form f̃(ξ, z, p). To get the function f(x, z, t) in the physical
domain, first we invert the Fourier transform using

f̂(x, z, p) =
1
2π

∞∫

−∞
e−ιξxf̃(ξ, z, p)dξ,(5.1)

=
1
π

∞∫

0

{cos(ξx)f̃e − ι sin(ξx)f̃o}dξ,

where f̃e and f̃o are even and odd parts of the function f̃(ξ, z, p) respectively.
Thus, expressions (5.1) gives us the Laplace transform f̂(x, z, p) of function
f(x, z, t).

Now, for the fixed values of ξ, x and y, the f(x, y, p) in the expression (5.1)
can be considered as the Laplace transform g(p) of some function g(t). Following
Honig and Hirdes [11], the Laplace transformed function g(p) can be inverted
as given below.

The function g(t) can be obtained by using

(5.2) g(t) =
1

2πι

v+ι∞∫

v−ι∞
eptg(p)dp,

where v is an arbitrary real number greater than all the real parts of the singu-
larities of g(p). Taking p = v + ιy, we get

(5.3) g(t) =
evt

2π

∞∫

−∞
eιtyg(v + ιy)dy.
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Now, taking e−vtg(t) as h(t) and expanding it as Fourier series in [0, 2L], we
obtain approximately the formula

(5.4) g(t) = g∞(t) + ED,

where

g∞(t) =
vo

2
+

∞∑

k=1

vk, 0 ≤ t ≤ 2L,

(5.5)

vk =
evt

L
<

[
e

ιkπt
L g

(
v +

ιkπ

L

)]
,

ED is the discretization error and can be made arbitrarily small by choosing v
large enough. The value of v and L are chosen according to the criteria outlined
by Honig and Hirdes [11].

Since the infinite series in Eqs. (5.5) can be summed up only to a finite
number of N terms, so the approximate value of g(t) becomes

(5.6) gN (t) =
vo

2
+

N∑

k=1

vk, 0 ≤ t ≤ 2L.

Now, we introduce a truncation error ET that must be added to the dis-
cretization error to produce the total approximation error in evaluating g(t)
using the above formula. Two methods are used to reduce the total error. The
discretization error is reduced by using the ‘Korrektur’-method, Honig and
Hirdes [11] and then ‘ε-algorithm’ is used to reduce the truncation error and
hence to accelerate the convergence.

The ‘Korrektur’-method formula, to evaluate the function g(t), is

(5.7) g(t) = g∞(t)− e−2vLg∞(2L + t) + ED′ ,

where

(5.8) |ED′ | ¿ |ED|.

Thus, the approximate value of g(t) becomes

(5.9) gNk
(t) = gN (t)− e−2vLgN ′(2L + t),

where N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm which is used to accelerate the conver-

gence of the series in Eq. (5.6). Let N be a natural number and Sm =
∑m

k=1 vk
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be the sequence of partial sums of Eq. (5.6). We define the ε-sequence by

ε0,m = 0, ε1,m = Sm,

εn+1,m = εn−1,m+1 +
1

εn,m+1 − εn,m
; n,m = 1, 2, 3, . . .

It can be shown, Honig and Hirdes [11], that the sequence ε1,1, ε3,1, . . . , εN,1

converges to g(t) + ED − vo/2 faster than the sequence of partial Sm, m =
1, 2, 3, . . . . The actual procedure to invert the Laplace transform reduces to the
study of Eq. (5.9) together with the ε-algorithm.

The last step is to evaluate the integral in Eq. (5.1). The method for evalu-
ating this integral by Press et al. [12] involves the use of Romberg’s integration
with adaptive step size. This also uses the results from successive refinement
of the extended trapezoidal rule, followed by extrapolation of the results to the
limit when the step size tends to zero.

6. Numerical results and discussion

With an aim to illustrate the problem, we will present some numerical results.
The material chosen for the purpose of numerical computation is copper, the
physical data for which are given by Thomas [9] in SI units:

T0 = 293 K, ρ = 8954 kg/m3, τ0 = 0.02 s, τ = 0.2 s,

CE = 383.1 J/(kg K), αt = 1.78× 10−5 K−1, K = 386 W/(m K),

λ = 7.76× 1010 kg/(m s2), µ = 3.86× 1010 kg/(m s2),

αc = 1.98× 10−4 m3/kg, D = 0.85× 10−8 kg s/m3,

a = 1.2× 104 m2/(s2 K), b = 0.9× 106 m5/(kg s2).

The computations are performed at z = 1.0 in the range 0 ≤ x ≤ 10 for the value
of non-dimensional length l(= l/h) = 1.0, where h is a parameter of dimension of
length and initial concentration C0 = 1. The numerical values of dimensionless
normal displacement uz(= uz/F0), normal stress σzz(= σzz/F0), temperature
Θ(= Θ/F0) and deviation of concentration c(= c/F0) for three different cases;
a solid with thermoelastic diffusion (THED), a thermoelastic solid (THE) and
an elastic solid due to normal and tangential distributed loads of width 2l, are
computed for the exact solutions obtained in physical domain. The variations of
field variables with respect to distance x, are presented graphically in Figs. 1–8.
The computations are carried out for two values of non-dimensional time, namely
t = 0.075, 0.100.
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Case I. Normal load applied. The comparison of dimensionless normal dis-
placement uz, normal stress σzz, temperature Θ and mass concentration c for
the three different theories, when normal load is applied, are shown in Figs. 1–4.
The variations of normal displacement uz with distance x are similar in na-
ture for THED and elastic theories for both the times, whereas for THE theory
the behaviour is different from them, as shown in Fig. 1. The original values
for THED theory have been divided by 10 to depict the comparison of all the
curves simultaneously in the same figure. Very near to the origin, the values of
normal displacement are smaller for THED and elastic theories as compared to
the values for THE theory. For THED and elastic theories the variations show
the sharp increase in initial range. For all the three theories, it is observed that
very near to the point of application of load, the values of displacement for time
0.075 are smaller than those for time 0.100.

Fig. 1. Distribution of normal displacement uz (due to normal load) versus distance.

Figure 2 depicts the variations of normal stress σzz for all the three theories,
after dividing the values for THE and elastic theories by 10. The flow of variation
for THED theory is just opposite to that for THE and elastic theories in almost
the whole range. For THED theory as time increases, the value of normal stress
decreases in the range near to origin, whereas this type of behaviour is just re-
verse in THE and elastic theories. The difference between the three curves at any
fixed point as well as at fixed time for the three theories is clearly visible from
this figure. The distribution of temperature for both the theories i.e. THED and
THE, is observed from Fig. 3, for both the times. It should be observed that the
variations for THE theory have been depicted after dividing the original values
by 100. It is clear that diffusion in thermoelastic medium plays an important
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role in temperature distribution in the medium as Θ varies very smoothly in
thermoelastic medium without diffusion, whereas its variation is more oscilla-
tory in thermoelastic medium with diffusion. Variation of concentration about
initial concentration is represented by Fig. 4 for THED theory. The difference
in the values of c at a particular point for two different times can be easily ob-
served from the graphs. It is also clearly depicted in the figure that the values of
concentration c are maximum at the origin for both the times, and after a small
oscillatory behaviour, they seem to be vanishing in the range far from origin.

Fig. 2. Distribution of normal stress σzz (due to normal load) versus distance.

Fig. 3. Distribution of temperature θ (due to normal load) versus distance.
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Fig. 4. Distribution of concentration c (due to normal load) versus distance.

Case II. Tangential load applied. The comparison of dimensionless normal
displacement uz, normal stress σzz, temperature Θ and concentration deviation
c for the three different theories and at both the times, when tangential load is
applied, are presented in Figs. 5–8. The variations in normal displacement uz

are shown in Fig. 5, where the original values for THE and elastic theories have
been multiplied by 100. Initially, the trend of change in displacement for THED
and THE theories is opposite in nature to the elastic theory at both the times,

Fig. 5. Distribution of normal displacemnet uz (due to tangential load) versus distance.
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whereas the behaviour of variations in time for all the three theories is same.
The numerical values for all the theories lie in the range −0.4 to 0.6 and have
oscillating behaviour.

The variations of σzz have been depicted in Fig. 6 after multiplying the
original values by 100 for THE and elastic theories. The behaviour of variations
is oscillating in the whole range whereas the values are decreasing with the
increasing range of distance x. The variations of temperature for THED and
THE theories are shown in Fig. 7 at both the times. It is observed that initially,

Fig. 6. Distribution of normal stress σzz (due to tangential load) versus distance.

Fig. 7. Distribution of temperature θ (due to tangential load) versus distance.
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the trends of variations for both the theories are just opposite to each other
for both the times. Deviation of concentration from the mean value for THED
theory has been depicted in Fig. 8. The values of concentration for a particular
range show considerable difference for the two times.

Fig. 8. Distribution of concentration c (due to tangential load) versus distance.

7. Conclusion

Analysis of normal displacement, normal stress component, temperature and
mass concentration developed in a body due to a distributed source (normal and
tangential) is an interesting problem of mechanics, having its applications in de-
termining the stability of a medium. It can be observed that the varying load
time has a significant effect on the normal displacement, normal stress, tem-
perature and concentration. The results for all the functions for THED theory
are distinctly different from those obtained for THE and Elastic theory. This is
due to the presence of diffusion in thermoelastic solid. The eigenvalue approach
is used, which has the advantage of finding the solution of equations in the
coupled form directly in matrix notations, whereas the potential function ap-
proach requires decoupling of equations. The method used in the present article
is applicable to a wide range of problems in thermodynamics.
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