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SIXTY YEARS OF THE ARCHIVES OF MECHANICS

Flow of Herschel–Bulkley fluid through an inclined tube
of non-uniform cross-section with multiple stenoses
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The steady flow of Herschel–Bulkley fluid through an inclined tube of non-uniform
cross-section with multiple stenoses has been investigated. Assuming the stenoses to
be mild, the flow equations have been linearised and the expressions for resistance to
the flow and wall shear stress have been derived. The effects of various parameters on
these flow variables have been studied. It is found that the flow resistance increases
with the heights of the stenoses, yield stress, power law index, but decreases with
inclination. Further, the shear stress increases with plug core region radius.

1. Introduction

In the present situation, one of the major health hazards is atherosclerosis,
which refers to the narrowing of the arterial lumen i.e. the inner open space
or cavity of an artery, due to deposition of fatty substances. This may lead to
hypertension, myocardial infarction etc. Hence the formation of stenosis, i.e.,
the abnormal and unnatural growth disturbs the normal blood flow and there is
a considerable evidence that hydrodynamical factors such as wall shear stress,
resistance to the flow etc. can play a significant role in the development and
progression of this pathological condition. Hence, the detailed knowledge of the
flow field in a stenosed tube may help in proper understanding and prevention
of arterial diseases.

In view of this, several authors have considered various mathematical models
for flows through stenosed/constricted ducts (Young [1], Lee and Fung [2],
Shukla et al. [3], Chaturani and Samy [4], Radhakrishnamacharya and
Srinivasa Rao [5]).

In all these mathematical studies, blood has been characterized as a Newto-
nian fluid. But Majhi and Nair [6] suggested that blood behaves like a non-
Newtonian fluid under certain conditions. It is also realised that the Herschel–
Bulkley model is a better model than Casson’s model (Blair and Spanner [7]).
Further, in small diameter tubes, blood behaves like a Herschel–Bulkley fluid
rather than power law and Bingham fluids (Chaturani and Samy [8]). How-
ever, all these investigations considered the effect of single stenosis and the tube
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was taken to be of uniform cross-section. But it is known that many of the blood
vessels change their cross-section slowly along their length and may have multiple
stenoses at junctions and bends (Schneck et al. [9]). Hence, Maruthi Prasad
and Radhakrishnamacharya [10] discussed blood flow through an artery hav-
ing multiple stenoses with non-uniform cross-section, considering blood as a
Herschel-Bulkley fluid. It is known that many ducts in physiological systems are
not horizontal but have some inclination to the axis. Recently Vajravelu et
al. [11] studied the peristaltic transport of Herschel–Bulkley fluid through an
inclined tube. Hence the study of the effect of inclination of the tube on the flow
of non-Newtonian fluid (Herschel–Bulkley model) in the presence of multiple
stenoses, may help in better understanding of the role of fluid dynamical factors
in the development and progression of arterial diseases.

With this motivation and purpose, a mathematical model for Herschel–Bul-
kley fluid through an inclined tube with non-uniform cross-section and with
two stenoses is considered. Assuming that the stenoses are mild, closed-form
solutions have been obtained. Expressions for the resistance to the flow and
shear stress at the wall have been derived and the effects of various parameters
on these flow variables have been studied.

2. Mathematical formulation

We consider the steady flow of Herschel–Bulkley fluid through a tube of non-
uniform cross-section and with two stenoses. Cylindrical polar coordinate system
(z, r) is chosen so that the z-axis coincides with the centre line of the channel.
It is assumed that the tube is inclined at an angle ‘α’ to the horizontal direction
(see Fig. 1). The stenoses are supposed to be mild and develop in an axially-
symmetric manner. The radius of the tube is taken as (Maruthi Prasad and
Radhakrishnamachrya [10])
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Fig. 1. Geometry of an inclined tube with multiple stenoses.

The following restrictions for mild stenoses [10] are supposed to be satisfied:

δi ¿ min (R0, Rout) ,

δi ¿ Li, where Rout = R(z) at z = B.

Here Li and δi (i = 1, 2) are the lengths and maximum heights of two stenoses
(the suffixes 1 and 2 refer to the first and second stenosis respectively).

The basic momentum equation governing the flow (Vajravelu et al. [11]) is

(2.2)
1
r

∂

∂r
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∂z
+

Sinα

F
,

where τrz is the shear stress for the Herschel–Bulkley fluid, which is given by
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Here w is the axial velocity, p is the pressure, τ0 is the yield stress, n is the
power law index, µ is the fluid viscosity, U is some characteristic velocity, ρ is
the density, g is acceleration due to gravity and R0 is the radius of the tube.

When τrz < τ0 i.e the shear stress is less than the yield stress, there is a core
region which flows as a plug (Fig. 1), and Eq. (2.4) corresponds to vanishing ve-
locity gradient in that region. However, the fluid behavior is indicated whenever
τrz > τ0.

The boundary conditions are:

τ is finite at r = 0,(2.5)

w = 0 at r = h(z).(2.6)

3. Solution

Solving Eqs. (2.2) and (2.3) under the boundary conditions (2.5) and (2.6),
we obtain the velocity as

(3.1) w =
hk+1(P + f)k+1

2k+1(k + 1)
(

P + f

2

)
[(

1− 2τ0
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−
(

r

h
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)k+1
]

for r0 ≤ r ≤ h,

where P = −∂p/∂z, k = 1/n and f = Sinα/F .
Using the condition (2.4), we finally get the upper limit of the plug flow

region (i.e. the region between r = 0 and r = r0 for which |τrz| < τ0) as

(3.2) r0 =
2τ0

P + f

and using the condition τrz = τh at r = h, we obtain

(3.3)
r0

h
=
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Taking r = r0 in Eq. (3.1), we get the plug core velocity as
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The volume flow rate is defined by
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Substituting Eq. (3.1) and Eq. (3.4) in Eq. (3.5) and integrating, we finally get

(3.6) Q=A
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From Eq. (3.6) we obtain

(3.7)
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. When k = 1, α = 0 and τ0 → 0,

Eq. (3.7) reduces to the results of Young [1].
The pressure drop ∆p across the stenosis between the cross-sections z =

±L/2 can be obtained by integrating Eq. (3.7) as
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in Eq. (3.8), we finally get (after dropping the bars)
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The resistance to the flow, λ, is defined by

(3.10) λ =
∆p

Q
.

Using Eq. (3.9) in Eq. (3.10), we get
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The pressure drop in the absence of the stenosis (h = 1), denoted by ∆pN , can
be obtained from Eq. (3.9) as

(3.12) ∆pN =−
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.

The resistance to the flow in absence of the stenosis (h = 1) denoted by λN ,
is obtained from Eq. (3.12) as

(3.13) λN =
∆pN
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= − 1
Q
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The normalized resistance to the flow, denoted by λ̄, is given by

(3.14) λ̄ =
λ

λN
.
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Shear stress acting on the surface of the wall can be obtained (Vajravelu et
al. [11]) as

(3.15) τ̄ =
r0

h
.

4. Results

The effects of various parameters on the resistance to the flow (λ̄) and shear
stress (τ̄) acting on the wall, are computed numerically by taking

R∗(z)
R0

= exp
[
βB2(z −B1)2

]

and d1 = L1 = L2 = 0.2, B1 = 0.8, B = 1, β1 = 0.01.
It is observed that the resistance to the flow increases with the heights of both

the primary and secondary stenoses (δ1 and δ2). However, it may be noted that
this increase is significant only when the height of the secondary stenosis exceeds
the value 0.04. It is interesting to note that the resistance to the flow increases
with yield stress (τ0) and power law index (n), i.e. the resistance increases with
non-Newtonian character of the fluid (Figs. 2–7). But the resistance to the flow
decreases with inclination (α) (Figs. 8–10).

The effects of various parameters on shear stress are shown in Figs. 11 and 12.
It may be noted that shear stress increases with the heights of the stenoses and
the plug core region radius r0.

Fig. 2. Effect of δ2 and τ0 on λ̄ (δ1 = 0.0, β = 0.01, k = 8, F = 0.1, α = 30◦, B = 1).
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Fig. 3. Effect of δ2 and τ0 on λ̄ (δ1 = 0.1, β = 0.01, k = 8, F = 0.1, α = 30◦, B = 1).

Fig. 4. Effect of δ2 and τ0 on λ̄ (δ1 = 0.1, β = 0.01, k = 8, F = 0.5, α = 30◦, B = 1).

Fig. 5. Effect of δ2 and n on λ̄ (δ1 = 0.0, β = 0.01, τ0 = 0.8, F = 0.1, α = 30◦, B = 1).
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Fig. 6. Effect of δ2 and n on λ̄ (δ1 = 0.1, β = 0.01, τ0 = 0.8, F = 0.1, α = 30◦, B = 1).

Fig. 7. Effect of δ2 and n on λ̄ (δ1 = 0.1, β = 0.01, τ0 = 0.8, F = 0.5, α = 30◦, B = 1).

Fig. 8. Effect of δ2 and α on λ̄ (δ1 = 0.0, β = 0.01, τ0 = 0.1, F = 0.1, k = 10, B = 1).
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Fig. 9. Effect of δ2 and α on λ̄ (δ1 = 0.1, β = 0.01, τ0 = 0.1, F = 0.1, k = 10, B = 1).

Fig. 10. Effect of δ2 and α on λ̄ (δ1 = 0.1, β = 0.01, τ0 = 0.1, F = 0.5, k = 10, B = 1).

Fig. 11. Effect of δ1 and δ2 on τ̄ (r0 = 0.01, β = 0.01).
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Fig. 12. Effect of δ1 and r0 on τ̄ (δ2 = 0.1, β = 0.01).

5. Conclusion

A mathematical model for the steady flow of Herschel–Bulkley fluid through
an inclined tube of varying cross-section and having two stenoses has been pre-
sented. Solutions have been obtained for mild stenosis and it has been shown
that the resistance to the flow increases with the heights of the stenoses, yield
stress and power law index, but it decreases with inclination.

It is also observed that the shear stress increases with the heights of the
stenoses and the plug core-region radius.
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