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In the present study, the revised Goodman–Cowin theory with an independent
kinematic internal length proposed by Fang et al. for rapid dry granular flows is ex-
tended to account for the effects of internal friction. A thermodynamic analysis, based
on the Müller–Liu entropy principle, is performed to deduce the ultimate equilibrium
expressions of the constitutive equations. Results show that while internal friction
contributes significantly to the equilibrium expressions of the constitutive variables,
the dependence on internal friction of the Helmholtz free energy becomes a critical
point for the present formulation in practical applications. In comparison with other
constitutive formulations based on the revised Goodman–Cowin theory, the present
formulation is the most general one and shows an ability to take into account the
microstructural effects of volume fraction variation, internal friction and evolution of
internal length of dry granular flows simultaneously.
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1. Introduction

Rapid dry granular flows are large amounts of solid particles with in-
terstices filled with a fluid or a gas in rapid motions, in which the interstitial
fluids/gases play an insignificant role in the transportation processes. Such flows
can thus be regarded as single-phase rather than multi-phase flows. They are
encountered e.g. in such technical fields as ultrastructural processing of ceram-
ics or new methods of Xerography and powder metal forming. Related to these
industrial applications are problems arising in the geophysical or environmental
contexts such as avalanches or the formation of dunes. Distinctive features of dry
granular mass flows and the arising challenges in understanding their behaviour
are summarized in e.g. [1–4].

Although dry granular masses are discrete in nature, they are considered
in the context of continuum mechanics continuous media exhibiting elastic, vis-
cous and plastic features, simultaneously associated with microstructural effects.
Typical significant microstructural effects include variation of the configura-
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tions of the grains, evolution of the internal friction and other non-conservative
forces among the grains, the turbulent (fluctuating) motions and the surface
roughness of the grains, etc. In 1972, Goodman and Cowin proposed a conti-
nuum-based theory for dry granular mass flows, known as the Goodman–Cowin
theory, in which the microstructural effect of variation of the configurations of
the grains was modeled by use of an internal variable ν, called the volume frac-
tion defined as the ratio of the solid volume divided by the total volume of
a representative volume element [5–7]. Since then this theory has been widely
applied in various fields of science and technologies, and extended to the in-
vestigations of granular mixtures with/without interstitial fluids, polar fluids,
multi-phase mixtures with chemical reactions and diffusions, porous materials
and liquid crystals [8–13].

Recently, the Goodman–Cowin theory has been demonstrated to bear some
dimensional inconsistencies. These inconsistencies can be removed by introduc-
ing an internal length ` [14]. A class of constitutive models regarding different
considerations of ` was proposed, in which it is considered as a material con-
stant (Model I), a constitutive variable (Model II), an independent dynamic
field quantity (Model III) and an independent kinematic field quantity (Model
IV). The thermodynamic and variational analyses were performed to deduce
the equilibrium expressions of the constitutive equations [14, 15], and the im-
plemented models were applied to study the Benchmark problems [16]. Despite
that the revised Goodman–Cowin theory is more well-motivated physically than
the original one, it yet regards dry granular masses as viscoelastic media, and
is not capable of dealing with the phenomena closely related to the plastic de-
formations and internal friction of the material such as rate-independent be-
haviour, memory effects of loading history and hysteretic behaviour under cyclic
shearing (see e.g. [17–19]). To remove this disadvantage, Fang et al. further ex-
tended the Models I and III of the revised Goodman–Cowin theory to account
for the microstructural effects of the internal friction, and applied the imple-
mented models to study simple shear problems [20–22]. These two models are
more able to describe the combined elasto-visco-plastic effects of dry granular
mass flows; however, their predictions are not satisfied when the material is
subjected to small cyclic loading. Extensions and modifications of the theory
become necessary. Since the Model IV provides more general formulations than
the other three models, its extension may represent a possible solution to this
difficulty1).

1)Generality means more freedom to identify the equilibrium and non-equilibrium parts of
the constitutive equations under the constraints deduced from the thermodynamic analysis.
In addition, Model IV is essentially a gradient-flow theory. Although such a gradient-flow
consideration is not always physically justified, it might be appropriate for granular matter in
view of some recent results (see e.g. [23]).
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Thus, we extend in the present study the revised Goodman–Cowin theory,
in particular Model IV, to incorporate the effects of internal friction among
the grains, to construct a continuum-based elasto-visco-plastic model with mi-
crostructural effects for dry granular mass flows. The focus is on the effects of
the internal friction of the revised Goodman–Cowin theory, in which the internal
length is considered as an independent kinematic field quantity. To this end, the
balance equations and the constitutive class assumptions are outlined in Sec. 2,
followed by the thermodynamic analysis based on the Müller–Liu entropy prin-
ciple in Sec. 3. The thermodynamic analysis is completed by identifying the
Liu-identities and the restrictions derived from the thermodynamic equilibrium.
This paper is summarized in Sec. 4. In this paper, only the theoretical deriva-
tions are presented, the implementations and applications of the derived model
are deferred to other papers.

2. Balance equations and constitutive assumptions

Following the previous work [14], the balance equations of the revised Good-
man–Cowin theory with an independent kinematic internal length are given by

(2.1)

0 = γ̇ν + γν̇ + γνdiv v, (mass),

0 = γνv̇ − div t− γνb, (linear momentum),

0 = t− tT, (angular momentum),

0 = γν(`ν̇)· − div h− γνf, (equilibrated force),

0 = γν ˙̀− div Γ−Π, (internal length),

0 = γνė− t ·D + div q
− γνr − h · grad (`ν̇) + γνf`ν̇, (internal energy),

0 = γνη̇ + div φ− ρs− π, (entropy),

where γ is the true mass density of the grains, ν is again the volume fraction,
v the velocity, t the Cauchy stress tensor, b the specific body force, ` an in-
dependent internal length, h the equilibrated stress vector, f the equilibrated
intrinsic body force, Γ and Π the flux and production associated with `, re-
spectively, e the specific internal energy, D the symmetric part of the velocity
gradient, known as the stretching tensor, q the heat flux, r the specific energy
supply, η the specific entropy, φ the entropy flux, s the specific entropy supply
and π the entropy production. The superscript T denotes the transposition; the
symbol ℘̇ denotes the material time derivative of ℘, i.e., ℘̇ = ∂℘/∂t+(grad℘) ·v,
while A ·B = tr(ABT) = tr(ATB) for two arbitrary second-rank tensors, and
a · b = tr(a ⊗ b), where ⊗ denotes a dyadic product. Equations (2.1)1,2,7 are
the traditional balances of mass, linear momentum and entropy, respectively,
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except that the bulk density ρ is decomposed into ρ = γν. Since the material is
not considered as micropolar or Cosserat-type and the effects of particle rota-
tion are excluded, the balance of angular momentum reduces to (2.1)3, i.e., the
symmetry of the Cauchy stress tensor. Furthermore, the internal variable ν is
employed to capture the effects of variations of the configurations of the grains
and its evolution is described by the balance equation of equilibrated force (2.1)4,
in which the product `ν̇ is the “pseudo-velocity” of the grains [14]. Since this
equation is dynamic in nature, the variation of ν contributes extra energies to
the granular system, which are relevant in the last two terms of the balance of
internal energy (2.1)6. The internal length `, an internal variable, is introduced
as an independent field quantity whose evolution is described by the Eq. (2.1)5,
which is kinematic in nature and provides no extra energies to the system. It
can be regarded as a higher-order closure condition for the formulation. While
the Eq. (2.1)4 has been demonstrated to be able to describe the force balances
along the lines connecting the centers of the grains, Eq. (2.1)5 is related to the
detailed information on the configurations of the grains and can, to some extent
take the influences of the characteristic length of the granular flows into account
[14–16].

In order to take the effects of internal friction into account, an Euclidean
frame-indifferent, stress-like, symmetric tensor-valued spatial internal variable
Z is introduced, which is a phenomenological generalization of the Mohr–
Coulomb model for internal friction and other non-conservative forces inside a
material point in a granular mass at low energy and high grain volume fraction
[24, 25]. Z is assumed to be an independent internal variable and its evolution
is assigned by

(2.2) Z̊ ≡ Ż− [Ω,Z] = Φ,

where Ω is any orthogonal rotation of the material point and Φ is a tensor-
valued constitutive relation for the production of Z, respectively, and the nota-
tion [A, B] = AB −BA is employed for two arbitrary second-rank tensors2).
The LHS of (2.2) is the “corotational” objective time derivative of Z. It reduces
to the Jaumann derivative of Z when Ω is chosen to be W , the skew-symmetric

2)Similar approaches can also be found in e.g. [20, 25, 26]. In this approach, the granular
continuum is investigated by modeling each element of the material body as a deformable
“microcontinuum”, an idea proposed by Mindlin [27] and Eringen and Kadafar via their
concept of “micromorphic continuum” [28]. From this perspective, t is a constitutive quantity
of the microcontinuum, whilst Z describes the internal friction and other non-conservative
forces inside the microcontinuum which cannot be seen outside the microcontinuum. Never-
theless, there should exist a relation between t and Z. Such a relation is partly an objective of
the paper and can be deduced by use of the second law of thermodynamics, as will be shown
later on.
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part of velocity gradient3). It is noted that the evolution of Z is described by a
kinematic equation (2.2), which per se yields no dissipation, a “true” variational
principle for its energy contributions does not exist, and the internal energy
balance (2.1)6 remains thus unchanged. From this perspective, Z is rather an
abstract ideal which does not represent any physical frictional forces on the
surface of the grains.

In the present study, the dry granular mass is considered a temperature-
dependent elasto-visco-plastic continuum whose constitutive class is postulated
in the form

(2.3) Q = {`0, ν0, ν, ν̇,g1, `,g2, γ,g3, θ,g4, L,Z},
for the constitutive variables

(2.4) S ∈ {t,h, f,Γ,Π, e,q, η, φ,Φ}, S = Ŝ(Q),

where the hat in S = Ŝ(Q) indicates that S is a function of Q, g1 = grad ν,
g2 = grad `, g3 = grad γ, g4 = grad θ and L = gradv, the velocity gradient.
In (2.3) ν0 and `0 are respectively the values of ν and ` in the reference con-
figuration; they are included in the constitutive class due to their influences on
the granular masses in rapid motions [30, 31]. The omission of v in (2.3) is due
to the requirement of material frame indifference. Strictly, γ̇ and θ̇ should be
included in (2.3) for consistency of Truesdell’s equi-presence principle. Since it
is assumed that the variation of γ is small, it is possible to neglect γ̇ as an in-
dependent argument in (2.3). In addition, although the exclusion of θ̇ will cause
the indifference between the empirical and absolute temperatures, and leads to
an infinite propagation speed of a small thermal pulse in the material (see e.g.
[32, 33]), these situations are rather rare and unimportant for most dry granular
flows such like soil. Thus, from the viewpoint of practical application, θ̇ is omit-
ted in (2.3) for simplicity. While the dependences on {`0, ν0, ν, ν̇,g1, `,g2, γ,g3}
in (2.3) are used to capture the elastic effects, Z and L are assigned to the plas-
tic and viscous effects, respectively. With the principle of material objectivity,
(2.3) can alternatively be represented in the form

(2.5) Q = {`0, ν0, ν, ν̇,g1, `,g2, γ,g3, θ,g4,D,Z}.
Equations (2.4) and (2.5) define the constitutive class employed in this pa-

per, with which (2.1)3, namely the symmetry of the Cauchy stress tensor, is
automatically satisfied. In the formulations (2.1), the independent field quanti-
ties are γ, ν, `, v, θ (temperature) and Z, totally 13 scalar unknowns, whilst

3)Ω is defined as Ω = ṘRT with R being the rotation of the material. It is chosen to be W
here to reach the material frame indifference of the time-rate of change of Z, which can also
be achieved by other choices of Ω, see e.g. [29].
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S in (2.4) are treated as constitutive variables. Since the number of the un-
known field quantities corresponds to the number of the available equations
((2.1)1×1+(2.1)2×3+(2.1)4×1+(2.1)5×1 +(2.1)6×1+(2.2)×6=13)4), equations
(2.1)1,2,4,5,6, (2.2), (2.4) and (2.5) form a mathematically well-posed system, and
one has the chance to obtain the values of the independent field quantities by
integrating these equations simultaneously, provided that the constitutive equa-
tions are prescribed. To achieve this, it is assumed that the expression of any
constitutive variable ℘ can be decomposed into two parts, namely the equilib-
rium response and the dynamic (non-equilibrium) response, viz.,

(2.6) ℘ ≡ ℘|E + ℘D, ℘D|E = 0,

where the subscript E denotes that the indexed quantity is evaluated in ther-
modynamic equilibrium, while the superscript D denotes the non-equilibrium
contribution. We now turn to the possible restrictions of ℘|E in the context of
thermodynamic analysis.

3. Thermodynamic analysis

3.1. Entropy inequality and its exploitation

The second law of thermodynamics requires that the entropy production π
should always be non-negative during a physical process, what allows to write
(2.1)7 alternatively in the form

(3.1) π = γνη̇ + div φ− γνs ≥ 0.

A physically-realizable process should be one in which the entropy inequality
(3.1), the balance equations (2.1)1,2,4,5,6, the evolution of internal friction (2.2)
as well as the constitutive relations (2.4) and (2.5) must hold simultaneously.
This can be achieved by regarding these equations as the constraints of the
entropy inequality via the method of Lagrange multipliers in the form [34]

(3.2) π = γνη̇ + div φ− γνs− λγ
(
γ̇ν + γν̇ + γνdiv v

)

− λv · (γνv̇ − div t− γνb
)− λν

(
γν(`ν̇)· − div h− γνf

)

− λ`
(
γν ˙̀− div Γ−Π

)− λZ · (Ż− [Ω,Z]−Φ
)

− λe
(
γνė− t ·D + div q− γνr − h · grad (`ν̇) + γνf`ν̇) ≥ 0,

4)While (2.1)3 is fulfilled by prescribing the specific constitutive class (2.5), (2.1)7 can be
written as an inequality and will be exploited in the thermodynamic analysis, as will be shown
later on.



Effects of internal friction . . . 179

where λγ , λv, λν , λ`, λe and λZ are the Lagrange multipliers of the balances
of mass, linear momentum, equilibrated force, internal length, internal energy
and the evolution equation of Z, respectively. Since the material behaviour is
required to be independent of the external sources, it follows immediately that

(3.3) −γνs + γνλv · b + λeγνr = 0

must hold, which is an identity for the entropy supply and is more general
than the classical selection. Once λv or b vanishes, it reduces to the traditional
expression of the entropy supply (i.e., s = λer, see e.g. [35]). Since θ̇ is not
included in (2.5), it is plausible to introduce the Helmholtz free energy Ψ in the
form of Ψ ≡ e − θη, and to conjecture that λe = 1/θ5). Substituting these and
(3.3) into (3.2) yields

(3.4) π =
γν

θ
(ė− θ̇η − Ψ̇) + div φ− λγ(γν̇ + γ̇ν + γνdiv v)

− λv · (γνv̇ − div t)− λν
(
γν(`ν̇)· − div h− γνf

)

− λ`(γν ˙̀− div Γ−Π)− λZ · (Ż− [Ω,Z]−Φ
)

− 1
θ
(γνė− t ·D + div q− (h · grad `)ν̇ − (h · grad ν̇)` + γνf`ν̇) ≥ 0.

Incorporating the functional dependences of the constitutive variables (2.4)
and (2.5) into (3.4) by use of the chain rule of differentiation, gives rise to the
entropy inequality exploited in the form

(3.5) π = −
{

γν

θ

∂Ψ

∂ν
+ λγγ − h · g2

θ
+

γνf`

θ

}
ν̇ −

{
γν

θ

∂Ψ

∂ν̇
+ λνγν`

}
ν̈

− γν

θ

∂Ψ

∂D
· Ḋ−

{
γν

θ

∂Ψ

∂γ
+ λγν

}
γ̇ −

{
γν

θ

∂Ψ

∂`
+ λνγνν̇ + λ`γν

}
˙̀

−
{

γν

θ

∂Ψ

∂θ
+

γνη

θ

}
θ̇ −

{
γν

θ

∂Ψ

∂Z
+ λZ

}
· Ż− γν

θ

∂Ψ

∂g2

· ġ2 −
γν

θ

∂Ψ

∂g3

· ġ3

− γν

θ

∂Ψ

∂g4

· ġ4 − γνλv · v̇ +
{

γν

θ

∂Ψ

∂g1

⊗ g1

}
·L + [λZ ,Z] ·Ω + λZ ·Φ

− λγγνdiv v + λνγνf + λ`Π +
t ·D

θ

5)In fact, the exclusion of θ̇ in (2.5) leads only to the result that λe = λ̂e(θ). The specific
form that λe = 1/θ can only be derived for some simple substances (see e.g. [32, 33]). However,
following previous works this conjecture is justified and hence employed here (see e.g. [13, 14,
20, 25, 26]).
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(3.5)
[cont.]

+
{

∂φ

∂ν̇
+ λv ∂t

∂ν̇
+ λν ∂h

∂ν̇
+ λ` ∂Γ

∂ν̇
− 1

θ

∂q
∂ν̇

+
`h
θ
− γν

θ

∂Ψ

∂g1

}
· grad ν̇

+
{

∂φ

∂ν0
+ λv ∂t

∂ν0
+ λν ∂h

∂ν0
+ λ` ∂Γ

∂ν0
− 1

θ

∂q
∂ν0

}
· grad ν0

+
{

∂φ

∂`0
+ λv ∂t

∂`0
+ λν ∂h

∂`0
+ λ` ∂Γ

∂`0
− 1

θ

∂q
∂`0

}
· grad `0

+
{

∂φ

∂ν
+ λv ∂t

∂ν
+ λν ∂h

∂ν
+ λ` ∂Γ

∂ν
− 1

θ

∂q
∂ν

}
· g1

+
{

∂φ

∂`
+ λv ∂t

∂`
+ λν ∂h

∂`
+ λ` ∂Γ

∂`
− 1

θ

∂q
∂`

}
· g2

+
{

∂φ

∂γ
+ λv ∂t

∂γ
+ λν ∂h

∂γ
+ λ` ∂Γ

∂γ
− 1

θ

∂q
∂γ

}
· g3

+
{

∂φ

∂θ
+ λv ∂t

∂θ
+ λν ∂h

∂θ
+ λ` ∂Γ

∂θ
− 1

θ

∂q
∂θ

}
· g4

+
{

∂φ

∂g1

+ λv ∂t
∂g1

+ λν ∂h
∂g1

+ λ` ∂Γ
∂g1

− 1
θ

∂q
∂g1

}
· gradg1

+
{

∂φ

∂g2

+ λv ∂t
∂g2

+ λν ∂h
∂g2

+ λ` ∂Γ
∂g2

− 1
θ

∂q
∂g2

}
· gradg2

+
{

∂φ

∂g3

+ λv ∂t
∂g3

+ λν ∂h
∂g3

+ λ` ∂Γ
∂g3

− 1
θ

∂q
∂g3

}
· gradg3

+
{

∂φ

∂g4

+ λv ∂t
∂g4

+ λν ∂h
∂g4

+ λ` ∂Γ
∂g4

− 1
θ

∂q
∂g4

}
· gradg4

+
{

∂φ

∂D
+ λv ∂t

∂D
+ λν ∂h

∂D
+ λ` ∂Γ

∂D
− 1

θ

∂q
∂D

}
· gradD

+
{

∂φ

∂Z
+ λv ∂t

∂Z
+ λν ∂h

∂Z
+ λ` ∂Γ

∂Z
− 1

θ

∂q
∂Z

}
· gradZ ≥ 0.

In deriving (3.5), the identities

(3.6) ġ1 = grad ν̇ − g1L, λZ · [Ω,Z] = [λZ ,Z] ·Ω,

have been used. Let X = {v̇, ν̈, ˙̀, γ̇, θ̇, Ḋ, Ż, grad ν̇, ġ2, ġ3, ġ4, grad ν0, grad `0,
gradg1, gradg2, gradg3, gradg4, gradD, gradZ}. It is straightforward to see
that the inequality (3.5) possesses the structure

(3.7) a ·X + b ≥ 0,
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where the vector a and the scalar b are functions of (2.5), but not of X , and
the vector X , as defined, depends on time and space derivatives of (2.5). Since
(3.5) is linear in X which can take any values, it would be possible to violate
(3.7) unless

(3.8) a = 0, and b ≥ 0,

where (3.8)1 leads to the so-called Liu identities and (3.8)2 gives rise to the
residual entropy inequality. In particular, the linearity in v̇, ν̈, γ̇, ˙̀ and Ż gives
rise to the Lagrangian multipliers in the forms

(3.9)
λv = 0, λν = − 1

`θ

∂Ψ

∂ν̇
λγ = −γ

θ

∂Ψ

∂γ
,

λ` = −λν ν̇ − 1
θ

∂Ψ

∂`
, λZ = −γν

θ

∂Ψ

∂Z
,

while the linearity in Ḋ, ġ2, ġ3 and ġ4 results in the constraints of the free
energy, viz.,

(3.10)
∂Ψ

∂D
= 0,

∂Ψ

∂g2

= 0,
∂Ψ

∂g3

= 0,
∂Ψ

∂g4

= 0.

In addition, (3.5) is also linear in grad ν0, grad `0, gradD, gradZ, grad ν̇, gradg1,
gradg2, gradg3 and gradg4. These conditions result in certain relations among
φ, h, q and Γ given by

(3.11)

∂φ

∂Ξ
+ λν ∂h

∂Ξ
+ λ` ∂Γ

∂Ξ
− 1

θ

∂q
∂Ξ

= 0, Ξ ∈ {ν0, `0,D,Z},
∂φ

∂ν̇
+ λν ∂h

∂ν̇
+ λ` ∂Γ

∂ν̇
− 1

θ

∂q
∂ν̇

+
`h
θ

=
γν

θ

∂Ψ

∂g1

,

sym
{

∂φ

∂Θ
+ λν ∂h

∂Θ
+ λ` ∂Γ

∂Θ
− 1

θ

∂q
∂Θ

}
= 0, Θ ∈ {g1,g2,g3,g4},

which must hold simultaneously, where sym{A} denotes the symmetric part
of an arbitrary second-rank tensor A. In deriving (3.11), the condition (3.9)1
has been used. Lastly, since the linearity of (3.5) holds equally in θ̇ and Ω, we
conclude that

(3.12) η = −∂Ψ

∂θ
, [λZ,Z] = 0.

With these, the Liu identities have been identified.
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Substituting (3.9)1, (3.10)–(3.12) into (3.5) gives rise to the residual entropy
inequality in the form

(3.13) π = −
{

γν

θ

∂Ψ

∂ν
+ λγγ − h · g2

θ
+

γνf`

θ

}
ν̇

+
{

∂φ

∂ν
+ λν ∂h

∂ν
+ λ` ∂Γ

∂ν
− 1

θ

∂q
∂ν

}
· g1 +

{
∂φ

∂`
+ λν ∂h

∂`
+ λ` ∂Γ

∂`
− 1

θ

∂q
∂`

}
· g2

+
{

∂φ

∂γ
+ λν ∂h

∂γ
+ λ` ∂Γ

∂γ
− 1

θ

∂q
∂γ

}
· g3 +

{
∂φ

∂θ
+ λν ∂h

∂θ
+ λ` ∂Γ

∂θ
− 1

θ

∂q
∂θ

}
· g4

+
{

γν

θ

∂Ψ

∂g1

⊗ g1

}
·D− λγγνdiv v + λνγνf + λ`Π +

t ·D
θ

+ λZ ·Φ ≥ 0.

3.2. Extra entropy flux vector

In some flow circumstances involving dry granular masses, the free energy
depends significantly on spatial variations of the volume fraction, but not on its
time-rate of change [4, 13, 14, 20], it is thus plausible to assume that Ψ is not a
function of ν̇. With this and the restrictions (3.10), the functional dependence
of Ψ reduces to

(3.14) Ψ = Ψ̂(`0, ν0, ν,g1, `, γ, θ,Z),

which can be decomposed into two parts, namely the non-frictional part, Ψ e,
and the frictional part, Ψf , viz.,

Ψ = Ψ̂ e(`0, ν0, ν,g1, `, γ, θ) + Ψ̂f (Z)(3.15)

= Ψ̂ e(`0, ν0, ν,g1 · g1, `, γ, θ) + Ψ̂f (IZ , IIZ , IIIZ),

where IZ , IIZ and IIIZ are the three invariants of Z. In deriving (3.15), Ψ is
assumed to be an isotropic scalar function. In addition, we assume that the
internal friction effects only will be confined to Ψf and the coupling effects
between g1 and Z are neglected [20, 21, 26, 37].

Define the extra entropy flux vector k, an auxiliary variable accounting for
the deviations of the entropy flux from the heat flux, in the form

(3.16) φ =
q
θ
− λvt− λνh + k =

q
θ

+ k, with λv = 0, λν = 0.
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Substituting (3.16) into (3.11) yields

(3.17)

∂k
∂Ξ

+ λ` ∂Γ
∂Ξ

= 0, Ξ ∈ {ν0, `0,D,Z},
∂k
∂ν̇

+ λ` ∂Γ
∂ν̇

+
`h
θ

=
γν

θ

∂Ψ

∂g1

,

sym
{

∂k
∂Θ

+ λ` ∂Γ
∂Θ

}
= 0, Θ ∈ {g1,g2,g3,g4}.

Since Ψ 6= Ψ̂(·, ν̇), inserting this into (3.9)4 yields an identity of λ` =−(∂Ψ/∂`)/θ.
With this and (3.15), the functional dependence of the Lagrangian multiplier λ`

becomes

(3.18) λ` = −1
θ

∂Ψ

∂`
= −1

θ

∂Ψ e

∂`
= λ̂`(`0, ν0, ν,g1 · g1, `, γ, θ),

since λ` is also assumed to be an isotropic scalar function. With (3.18), the last
two equations of (3.17)1 and the last three equations of (3.17)3 can be expressed
alternatively as

(3.19)

∂

∂Ξ
(k + λ`Γ) = 0, Ξ ∈ {D,Z},

sym
{

∂

∂Θ
(k + λ`Γ)

}
= 0, Θ ∈ {g2,g3,g4}.

Relation (3.19)1 implies that k + λ`Γ 6= funct.(·,D,Z), of which the possible
explicit expressions can be obtained by integrating (3.19)2 by pairs. viz.,

k + λ`Γ = A1g3 + B1g4 + C1(g3 ⊗ g4) + d1(`0, ν0, ν, ν̇, `, γ, θ,g1,g2),(3.20)

= A2g2 + B2g3 + C2(g2 ⊗ g3) + d2(`0, ν0, ν, ν̇, `, γ, θ,g1,g4),

= A3g2 + B3g4 + C3(g2 ⊗ g4) + d3(`0, ν0, ν, ν̇, `, γ, θ,g1,g3),

where A1−3, B1−3 and C1−3 are second-rank and third-rank skew-symmetric
tensors, respectively, and d1−3 are the undetermined vector functions of which
the functional dependences are indicated. In addition, while A1, B1, C1 and
A2, B2, C2 are not functions of g3,g4 and g2,g3, respectively, A3, B3, C3 are
not functions of g2,g4. Moreover, since q and Λ are assumed to be isotropic
vectors, the vector k + λ`Γ must also be isotropic. It follows immediately that
A1−3 = B1−3 = 0 and C1−3 = 0, because there are no isotropic second and
third-rank skew-symmetric tensors. With these and the possible functional de-
pendences of d1−3, (3.20) reduces to

(3.21) k + λ`Γ = d(`0, ν0, ν, ν̇,g1, `, γ, θ),
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where d is an undetermined vector function that should also be isotropic. In
view of this, k + λ`Γ can be expressed explicitly via the isotropic assumption,
viz.,

(3.22) k + λ`Γ = ξg1, ξ = ξ̂(`0, ν0, ν, ν̇,g1 · g1, `, γ, θ).

In the next step, from (3.18) and (3.22) it is plausible to assume that Γ is
collinear with g1 and hence can be expressed as [14]

(3.23) Γ = κg1, κ = κ̂(`0, ν0, ν, ν̇,g1 · g1, `, γ, θ).

Substituting (3.16), (3.22) and (3.23) into the first two equations of (3.11)1 gives
rise to

(3.24)
∂ξ

∂℘
g1 =

∂λ`

∂℘
Γ =

∂λ`

∂℘
κg1, =⇒ ∂ξ

∂℘
=

∂λ`

∂℘
κ, ℘ ∈ {ν0, `0},

which furnish with two restrictions the specific functional forms of the isotropic
scalar functions ξ, κ and λ`. Next, inserting (3.15), (3.16) and (3.22) into (3.17)2
yields an explicit expression for the equilibrated stress vector h, viz.,

(3.25)
h =

1
`

{
γν

∂Ψ e

∂g1

− θ
∂ξ

∂ν̇
g1

}
=

1
`

{
A− θ

∂ξ

∂ν̇

}
g1,

A = 2γν
∂Ψ e

∂(g1 · g1)
= Â(ν0, ν,g1 · g1, `, γ, θ).

The remaining condition, the first equation of (3.17)1, is now analyzed by sub-
stituting (3.18), (3.22) and (3.23) into itself, what results in

(3.26) sym
{

ξI +
(
2

∂ξ

∂(g1 · g1)
− 2

∂λ`

∂(g1 · g1)
κ
)
g1 ⊗ g1

}
= 0,

which, due to the fact that g1 varies independently, can only be fulfilled when
the conditions

(3.27) ξ = 0,
∂λ`

∂(g1 · g1)
= 0,

hold6). In view of (3.18), (3.24)2 and (3.27), the functional dependence of λ` is
further simplified to

(3.28) λ` = λ̂`(ν, `, γ, θ).
6)Equation (3.27)2 results from the equality of (∂λ`/∂(g1 · g1))κ = 0. The quantity κ is not

allowed to vanish, or it leads to a vanishing Γ, which is a too strong requirement for the present
constitutive formulation.
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Similarly, applying (3.27)1 to (3.22) and (3.25) yields ultimate expressions of k
and h in the forms

(3.29) k = −λ`Γ, h =
γν

`

∂Ψ e

∂g1

.

Condition (3.29)1 is significant, which indicates that the entropy flux is not
collinear with the heat flux if the flux Γ of ` and the Lagrange multiplier λ` do
not vanish. This formulation differs thermodynamically from other constitutive
formulations based on the revised Goodman–Cowin theory with internal friction,
in which the entropy flux was demonstrated to be identical to the classical
selection [20, 21]. Heretofore, the Liu identities have been fully exploited.

Substituting (3.9)3−5, (3.15), (3.16), (3.22), (3.27)1 and (3.29) into (3.13)
and noting that λν = 0 gives rise to an alternative form of the residual entropy
inequality, viz.,

(3.30) θπ =
{

p− β + h · g2 − γνf`
}

ν̇ + Γ ·
{

∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

}
− ζΠ

+
{(∂ζ

∂θ
− ζ

θ

)
Γ− q

θ

}
· g4 +

{
t + νpI + `h⊗ g1

}
·D− γν

∂Ψf

∂Z
·Φ ≥ 0,

with the abbreviations

(3.31) p ≡ γ2 ∂Ψ e

∂γ
, β ≡ γν

∂Ψ e

∂ν
, ζ ≡ ∂Ψ e

∂`
,

where p and β are respectively the thermodynamic and ν-induced configuration
pressures, and ζ is the emerging kinematic constraint induced by the variations
of ` [6, 10, 14, 20, 21]. Equation (3.30) will be further investigated in the context
of thermodynamic equilibrium.

3.3. Thermodynamic equilibrium

In the current formulation, thermodynamic equilibrium is defined to be a
time-independent process with homogeneous thermodynamic field quantities
and vanishing entropy production [36]

(3.32) π|E = 0.

In view of this, (2.4)-(2.6) and (3.30), we define the following states:

(3.33)

Y ≡ (`0, ν0, ν, ν̇,g1, `,g2, γ,g3, θ,g4,D,Z) ,

Y|E = (`0, ν0, ν, 0,g1, `,g2, γ,g3, θ,0,0,Z) ,

YD = (ν̇,g4,D), YD|E = 0,
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with which (3.30) can be recast as a “quasi-linear” form in YD, viz.

(3.34)

θπ = A ·YD + B ≥ 0, A,B = funct.(Y),

A =
{

p− β + h · g2 − γνf`,

(
∂ζ

∂θ
− ζ

θ

)
Γ− q

θ
, t + νpI + `h⊗ g1

}
,

B = Γ ·
{

∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

}
− ζΠ − γν

∂Ψf

∂Z
·Φ.

In addition, the entropy production π assumes its global minimum located at
Y|E. It follows that under sufficient smoothness properties, π has to satisfy the
conditions

(3.35) π, ν̇ |E = 0, π,g4
|E = 0, π,D|E = 0,

and that the Hessian matrix of π with respect to these variables is positive
semi-definite at Y|E, viz.

(3.36) H|E =




π, ν̇ν̇ π, ν̇g4
π, ν̇D

π,g4ν̇ π,g4g4
π,g4D

π,Dν̇ π,Dg4
π,DD


∣∣∣

E

.

Whereas condition (3.36) constraints the sign of the material parameters in the
equilibrium expressions of the constitutive variables, conditions (3.32) and (3.35)
yield the restrictions and equilibrium expressions of the dependent constitutive
fields, which will be investigated separately.

First, applying (3.32) to (3.34) leads to

(3.37) Γ
∣∣
E
·
{

∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

}
− ζΠ

∣∣
E
− γν

∂Ψf

∂Z
·Φ∣∣

E
= 0,

which must be fulfilled by specific forms of Γ|E, Ψ e, Ψf , Π|E and Φ|E. In deriving
(3.37) it is noted that the functional dependences of the quantities Ψ e, Ψf , λ`, p,
β, ζ and h are the same in both the equilibrium and non-equilibrium situations.
(3.37) should serve as a restriction for the functional forms of Γ, Π and Φ7).

7)Equation (3.37) can nevertheless be fulfilled by assuming that

(3.38) Γ
˛̨
E

= 0, Π
˛̨
E

= 0, Φ|E = 0,

hold. While the last two conditions imply that Π and Φ are production-like quantities, indicat-
ing vanishing productions for both the evolutions of the internal length and internal friction,
the first one, in view of (3.23), results in a restriction for the quantity κ, viz.,

(3.39) κ
˛̨
E

= κ̂(`0, ν0, ν, ν̇ = 0,g1 · g1, `, γ, θ) = 0.

Although these simplifications seem to be rational, they should be justified by comparing with
experimental outcomes. For generality, we let (3.37) be expressed as a general restriction which
should be fulfilled by specific forms of Γ, Π and Φ.
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Applying (3.35) to (3.34) yields the equilibrium expressions of the constitu-
tive variables f , t and q in the forms

(3.40)

f
∣∣
E

=
p− β + h · g2

γν`
+

1
γν`

∂Γ
∂ν̇

∣∣∣∣
E

·
{

∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

}

− ζ

γν`

∂Π

∂ν̇

∣∣∣∣
E

− 1
`

∂Ψf

∂Z
· ∂Φ

∂ν̇

∣∣∣∣
E

,

t|E = −νpI− `h⊗ g1 + ζ
∂Π

∂D

∣∣∣∣
E

+ γν
∂Ψf

∂Z
∂Φ
∂D

∣∣∣∣
E

,

q|E = θ
(∂ζ

∂θ
− ζ

θ

)
Γ

∣∣∣
E
− θζ

∂Π

∂g4

∣∣∣∣
E

− γνθ
∂Ψf

∂Z
∂Φ
∂g4

∣∣∣∣
E

,

in which the conditions ζ 6= ζ̂(·, ν̇,D), and Γ 6= Γ̂(·,g4,D) have been used.
Equation (3.40)1 is significant, it indicates that both the internal friction and the
evolution of the internal length enter the balance equation of equilibrated force
(2.1)4. This is in particular important for the internal friction, since it shows that
(2.1)4, which was previously employed to describe the force balances along the
lines connecting the centers of the grains, is extended rationally to account for
the frictional effects of the grains. Equation (3.40)2 implies that the equilibrium
stress tensor is also influenced by the internal friction and the evolution of the
internal length. It leads to a corollary that a dry granular heap can yet exist un-
der homogeneous distributions of the grains, provided that the internal friction
or the production of the internal length exists. (3.40)3 shows a non-vanishing
“generalized” heat flux in thermodynamic equilibrium which does not need to
correspond to its physical counterpart. It leads to a possible restriction among
the functional forms of Γ, Π and Φ if q is required to vanish in equilibrium.

Table 1 summarizes certain derived results of the constitutive formulations
based on the revised Goodman–Cowin theory, associated with an independent
kinematic internal length with/without the effects of internal friction, in which
those results without the effects of internal friction are quoted from [14]. All
the symbols used in the table have been introduced previously, except that C
denotes the constitutive class. In addition, the restriction which must be fulfilled
by specific functional forms of Γ, Π and Φ, namely (3.37), is given together
with that without the effects of internal friction derived in [14] in (3.41), for
comparison:

(3.41)

0 = Γ
∣∣
E
·
{

∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

}
− ζΠ

∣∣
E
,

0 = Γ
∣∣
E
·
{

∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

}
− ζΠ

∣∣
E
− γν

∂Ψf

∂Z
·Φ∣∣

E
.
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Table 1. Effects of internal friction in the constitutive formulations.

without internal friction [14] with internal friction

C {`0, ν0, ν, ν̇,g1, `,g2, γ,g3, θ,g4,D} {`0, ν0, ν, ν̇,g1, `,g2, γ,g3, θ,g4,D,Z}

k −λ`Γ −λ`Γ

Ψ Ψ̂(`0, ν0, ν,g1 · g1, `, γ, θ) Ψ̂e(`0, ν0, ν,g1 · g1, `, γ, θ) + Ψ̂f (IZ , IIZ , IIIZ)

h
γν

`

∂Ψ

∂g1

γν

`

∂Ψe

∂g1

Γ restriction (3.41)1 restriction (3.41)2

t|E −νpI− `h⊗ g1 + ζ
∂Π

∂D

˛̨
˛̨
E

−νpI− `h⊗ g1 + ζ
∂Π

∂D

˛̨
˛̨
E

+ γν
∂Ψf

∂Z

∂Φ

∂D

˛̨
˛̨
E

f |E p− β

γν`
+

h · g2

γν`
− ζ

γν`

∂Π

∂ν̇

˛̨
˛̨
E

p− β

γν`
+

h · g2

γν`
− ζ

γν`

∂Π

∂ν̇

˛̨
˛̨
E

− 1

`

∂Ψf

∂Z
· ∂Φ

∂ν̇

˛̨
˛̨
E

+
1

γν`

∂Γ

∂ν̇

˛̨
˛̨
E

·


∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

ff
+

1

γν`

∂Γ

∂ν̇

˛̨
˛̨
E

·


∂ζ

∂ν
g1 +

∂ζ

∂`
g2 +

∂ζ

∂γ
g3

ff

q|E θ
“∂ζ

∂θ
− ζ

θ

”
Γ
˛̨
E
− θζ

∂Ψ

∂g4

˛̨
˛̨
E

θ
“∂ζ

∂θ
− ζ

θ

”
Γ
˛̨
E
− θζ

∂Ψ

∂g4

˛̨
˛̨
E

− γνθ
∂Ψf

∂Z

∂Φ

∂g4

˛̨
˛̨
E

Π|E restriction (3.41)1 restriction (3.41)2

It is seen that the internal friction enters the equilibrium expressions of t|E,
f |E and q|E obviously, however, not significantly in the free energy. This is due
to the decomposition of the free energy Ψ into Ψ = Ψ e + Ψf , in which all the
effects induced by the internal friction are assumed to be confined to Ψf . This
assumption is indeed not realistic, for it neglects the coupling effects between
the internal friction and other physical characteristics, such like elastic effects.
However, this decomposition has been demonstrated to be a useful concept in
the implementation of the model [20, 21, 26, 37], and is hence employed in the
present study. Due to this decomposition, the effects induced by the internal
friction are thus decoupled from other contributions and modeled separately in
the equilibrium expressions of t|E, f |E and q|E, and the restriction among Γ,
Π and Φ shown in (3.41)2. In comparison with other constitutive formulations
based on the revised Goodman–Cowin theory associated with an internal length,
the present model is the most general one in which the internal friction, the
evolutions of the configurations of the grains and the internal length are taken
simultaneously into account. This shows a better possibility to describe the
complex behaviour of dry granular mass flows.
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4. Concluding remarks

In the present study, the revised Goodman–Cowin theory with an indepen-
dent kinematic internal length proposed in [14, 15] for dry granular mass flows,
was rationally extended to take the effects of internal friction into account. To
this end, we have generalized the Mohr–Coulomb friction model by using an
Euclidean frame-indifferent, second-rank symmetric tensor Z (a spatial internal
variable) to account for the internal friction and other non-conservative forces
inside a material point of a granular continuum. A thermodynamic analysis,
based on the Müller–Liu entropy principle, was extensively performed to de-
duce the ultimate equilibrium expressions and restrictions of the constitutive
equations.

Results show that the Helmholtz free energy Ψ plays a central role in the
present constitutive formulation: almost all the equilibrium parts of the consti-
tutive variables are related to its derivatives; they are determined in principle
once Ψ is prescribed. However, a drawback is the decomposition of Ψ into a
non-frictional part, Ψ e, and a frictional part, Ψf , with which all the effects of
internal friction are confined within Ψf and the coupling effects between in-
ternal friction and other material characteristics are neglected. This was done
due to its simplicity in the implementation of the model when proposing the
dynamic contributions [20]. In the context of such a decomposition, the effects
of internal friction enter the equilibrium expressions of the constitutive vari-
ables obviously but separately: they are determined once Ψf and Φ, the pro-
duction of the evolution of internal friction, are prescribed. With these, (3.40)1
implies that the contact interactions, including those along and tangential to
the connecting lines of the centers of the grains, can be simulated appropri-
ately in the present constitutive formulation, while (3.40)2 leads to a corol-
lary that a dry granular heap can exist under homogeneous distributions of
the grains, provided that internal friction or the evolution of internal length
exists. This is more realistic in practical circumstances, in particular for the
situations immediately after triggering of the flow. The present model provides
the more general formulations than other formulations based on the revised
Goodman–Cowin theory associated with an internal length with/without in-
ternal friction. For implementation of the model, e.g. a Taylor series expan-
sion and a hypoplastic expression can be assigned to Ψ e and Φ, respectively
[20, 38].

In the present paper, only the theoretical derivations of the equilibrium ex-
pressions of the constitutive variables are presented, the postulates of their dy-
namic (non-equilibrium) responses, the implementation of the model and the
applications to Benchmark problems are deferred to other papers.
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III/3, S. Flügge [Ed.], Springer, Berlin Heidelberg New York 1965.



192 C. Fang

36. K. Hutter, Y. Wang, Phenomenological thermodynamics and entropy principle, [in:]
Entropy, A. Greven, G. Keller and G. Warnecke [Eds.], 1st ed., Princeton University
Press, 57–77, 2003.

37. K. Hutter, L. Laloui, L. Vulliet, Thermodynamically based mixture models of saturated
and unsaturated soils, Mech. Cohes.-Frict. Mater., 4, 295–338, 1999.

38. W. Wu, On high-order hypoplastic models for granular materials, J. Eng. Math., 56,
23–34, 2006.

Received August 8, 2007; revised version January 3, 2008.


