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To represent the mechanical behaviour of polyethylmethacrylate-based bone
cement, a constitutive approach of finite linear viscoelasticity is formulated and iden-
tified. Motivated by the experimental data of storage and loss modulus, the model is
based on a three-dimensional functional in integral representation. In the investigated
frequency range, the master curve of the loss modulus is constant and that of the stor-
age modulus increases linearly with the logarithm of the frequency. This behaviour
corresponds to a viscoelastic fluid, and can be described by a continuous relaxation
spectrum. For numerical simulations which are planned in future, the constitutive
functional is approximated by a discrete spectrum. To this end, an earlier-developed
method to approximate continuous relaxation spectra in limited time or frequency
ranges by discrete ones is applied.

Notations

ε, ε0, ∆ε, λ, λ0 strain, static strain, strain amplitude, stretch, static stretch,

σ, σ0 stress, mean stress,

ak, bk Fourier coefficients,

f, ω, T frequency, angular frequency, duration of a loading cycle,

θ, θ0, a(θ) temperature, reference temperature, shift function,

F,L,D deformation gradient, velocity gradient, strain rate tensor,

C,B, e left and right Cauchy Green tensor, Piola strain tensor,
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F0, f(t) static and time-dependent parts of the deformation gradient,

h(t) incremental displacement gradient,

EL infinitesimal strain tensor,

C0, e0 static left Cauchy Green and Piola strain tensor,

1, p unit tensor of the second order, hydrostatic pressure,

T,S Cauchy stress tensor, deviatoric stress tensor,
eT, eS stress tensors of the 2nd Piola Kirchhoff type,

µ, z, η material parameters of a Maxwell element,

µ0, zmin, zmax material parameters of the hyperbola-type relaxation spectrum,

I, II , III invariants of a second order tensor,

tr(•), det(•) trace and determinant operators,

G′, G′′, G∗ storage modulus, loss modulus, complex modulus,

G(t), h(z), Γ (ν) relaxation function, relaxation spectrum, cumulative spectrum,

G0, Gk, νk, N material parameters of the Prony series,

νmin, νmax smallest and largest relaxation frequencies in the Prony series,

τmin, τmax limits of the time range of interest.

1. Introduction

In the present paper, a constitutive approach is developed in order to model
the viscoelastic behaviour of polymerized PMMA-based bone cement. The model
can be used to represent the long- and short-term behaviour of the polymerized
cement under mechanical loads, but the polymerization process is not taken into
account. Readers who are interested in this topic are referred to the comprehen-
sive article of Stanczyk [21]. The investigated PMMA specimens were cured
at room temperature under ambient atmosphere conditions and the mechanical
experiments were carried out in an air-conditioned laboratory; its relative air
moisture was about 50%. Thus, the influence of the humid and saline environ-
ment of the human body is not taken into account. For stiffness and strength
investigations of bone cement stored in a salty Ringer solution the reader is
referred, for example, to Harper et al. [8].

The paper starts with an introduction, where some background information
about bone cement and its medical application is provided. In the experimental
section, our tests to determine the inelastic material properties are described,
evaluated and interpreted. In the modelling section, the general constitutive
approach of finite linear viscoelasticity is formulated, specialized and identified.
It is based on a continuous relaxation time distribution and contains only three
material parameters. Since viscoelasticity models of this type can not easily be
implemented into commercial finite element codes, an approximation technique
in terms of discrete spectra is applied. The paper concludes with a discussion.

To fix metallic endoprotheses, polymethylmethacrylate- or PMMA-based
bone cement is successfully applied for many years. A recent application in the
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context of minimal invasive surgery is the reinforcement of osteoporotic verte-
brae with PMMA cement or, alternatively, with biocement (cf. Dorozhkin [7]).
The infiltration of osteoporotic vertebrae with cement leads to a stabilization of
the bone and prevents osteoporotic vertebral fractures (see Baroud et al. [1]).
As it is well known, there are two different medical techniques which are known
as kyphoplasty and vertebroplasty. In vertebroplasty, the fluid cement is directly
injected into the osteoporotic bone. But in kyphoplasty, it is injected into a hole
in the bone which has been formed with an inflated rubber balloon. For more
details concerning these methods, we refer the reader to the essays of Baroud
et al. [1, 2, 4], Heini et al. [12] and Rohlmann et al. [19, 20]. The polymerization
of PMMA-based bone cement is exothermal (see Stanczyk [21] and citations
therein or Mazzullo et al. [18]) and is accompanied by a shrinkage in volume of
about 5%. As a consequence of the exothermal heating in combination with the
shrinkage as well as due to the difference in the thermal expansion behaviour of
human bone and bone cement, residual stresses evolve with time. Since both
the curing and the cured cement are viscoelastic materials, time-dependent
changes in the local stress distribution due to creep and relaxation also occur
(cf. Baroud and Vant [3] or Verdonshot and Huiskes [23]). The important
question whether the residual stresses decay completely or not after the poly-
merization, can only be answered if both the thermomechanical and the chemical
material properties of both the curing and the cured cement are known. A ther-
momechanical chemical constitutive model to describe such effects has been pro-
posed by Lion and Höfer [17]. The experimental parameter identification is
currently in progress. Damage effects in PMMA due to long-term creep loadings
have also been observed (cf. Kim et al. [12] or Lennon and Prendergast [14]).

Since the Young modulus of PMMA under short time loads is about 10–12
times larger than that of a typical bone, local load shifts on the intervertebral
discs can occur (see Baroud et al. [1] and Heini et al. [12]). In order to study all
these phenomena, numerical simulations with appropriate constitutive models
are extremely helpful. In this context, Baroud et al. [1] have estimated the
stress distribution in the intervertebral disc with finite element simulations of
non-reinforced and reinforced vertebra systems. These simulations were carried
out on the basis of the assumption that the cement is an isotropic linear-elastic
material. This hypothesis does not take the viscoelastic material behaviour into
account but forms a good foundation for estimations and short-term simulations.

In order to estimate the time-dependent degree of cure and temperature dis-
tributions during the polymerization in PMMA-reinforced bones, Stanczyk [21]
developed a physically-based model (see also Li et al. [15]). To the knowledge
of the authors, there are at present no holistic constitutive models and numer-
ical simulations which take all important effects into account: polymerization,
exothermal heat generation, chemical shrinking, thermal expansion, phase tran-
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sition of PMMA from a viscous fluid to a thermoviscoelastic solid, evolution of
residual stresses.

As the very first step, it is the aim of this work to develop and identify a
constitutive model of viscoelasticity that is able to represent the isothermal me-
chanical behaviour of PMMA-based bone cement. With such a model in combi-
nation with the finite element method, it is possible to simulate time-dependent
stresses and deformations in PMMA-reinforced bones. In the experimental part
of this essay, the material behaviour of the PMMA cement is investigated using
the technique of dynamical mechanical analysis (DMA). Based on the data of
storage and loss modulus, a constitutive model of viscoelasticity in functional
formulation is applied and a continuous relaxation spectrum of truncated hy-
perbola type, as proposed by Tobolsky [22], is identified. Models of this type
are investigated in a more general thermodynamic framework by Haupt and
Lion [11]. In order to obtain a formulation of the proposed stress functional in
terms of ordinary differential equations which can easily be implemented into
finite element codes, the approximation technique developed by Haupt et al.
[10] is applied. The implementation as well as the extension of this approach to
cover the exothermal curing behaviour is the aim of a current research project.

2. Experiments

To study the material properties of the bone cement, the dynamic mechani-
cal analysis (DMA) testing machine GABO Eplexor 500 as shown in Fig. 1 was
used. Sinusoidal displacement- or force-controlled excitations can be prescribed
and the corresponding response of the material is recorded. The frequency range
is between 0.01 Hz and 100 Hz, the temperature range is between −150◦ C and
500◦ C, the maximum force amplitude is 500 N and the maximum total force is
1500 N.

The PMMA specimens were cured at room temperature under ambient at-
mosphere conditions and the dynamic mechanical analyses were carried out in
an air-conditioned laboratory with a relative air moisture of 50%. For the sam-
ple preparation, the PMMA cement DP-pour without any X-ray contrast agent
and medical additive was used. It was produced by the DenPlus Inc. in Canada.
After mixing the polymer powder and the fluid monomer, the homogeneous mix-
ture was filled into a casting mould having the shape of a dog-bone. Then, the
specimens were cured at room temperature under laboratory conditions and re-
moved from the mould. Four weeks after this process, the DMA specimens were
cut out from this raw material. They were 40 mm in length, 5 mm in width and
2.5 mm in thickness.

In each experiment, a constant specimen temperature θ ∈ [−40◦ C, 80◦ C] was
prescribed and sampled in 15◦ C increments. After the thermal equilibrium of the
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Fig. 1. Dynamic mechanical analysis system, Eplexor 500, GABO.

specimen was reached, harmonic strains with different frequencies f = ω/(2π),
a constant amplitude of ∆ε = 0.002 and a constant prestrain of ε0 = 0.003 in
the form of

(2.1) ε(t) = ε0 + ∆ε sin(2πft)

were prescribed. The stationary periodic stress responses were measured and
represented as

(2.2) σ(t) = σ0 + ∆ε
∞∑

k=1

(ak cos(2πkft) + bk sin(2πkft)).

The mean stress σ0 and the coefficients ak and bk can depend, in principle,
on all parameters characterizing the input process, i.e. on ε0,∆ε, f, θ.

The coefficients of the Fourier series (2.2) are determined by the formulae

ak =
2

T

T∫

0

σ(t) − σ0

∆ε
cos(2πkft)dt

and

bk =
2

T

T∫

0

σ(t) − σ0

∆ε
sin(2πkft)dt.
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T = 1/f is the duration of a loading cycle. The first coefficients can easily be
interpreted as

G′ = b1 and G′′ = a1,

where G′(ω, θ, . . .) is the storage modulus and G′′(ω, θ, . . .) the loss modulus.
Since PMMA is reported to behave as a linear viscoelastic material in the

investigated stress and temperature range (see Bertilsson and Jansson [5]),
we applied the known frequency-temperature equivalence principle in order to
obtain the master curves for both the storage and the loss modulus (e.g. Tobol-
sky [22]). In this case, the temperature dependence of storage and loss modulus
has the form

G′(ω, θ) = G′(ωa(θ), θ0) = G′(10(log(ω)+log(a(θ))), θ0),

G′′(ω, θ) = G′′(ωa(θ), θ0) = G′′(10(log(ω)+log(a(θ))), θ0),

where θ0 is an arbitrary reference temperature. The material function a(θ) > 0
is normalized in the sense of a(θ0) = 1 and has the property da(θ)/dθ ≤ 0 (see,
e.g., Lion [16]).

Plotting the experimental curves of storage and loss modulus for the different
temperatures in a half-logarithmic diagram, taking the choice of a reference tem-
perature and shifting the other curves in horizontal direction just until a smooth
master curve is obtained, leads to Fig. 2. For the reference temperature we took

Fig. 2. Experimental data of storage and loss modulus corresponding to θ0 = 293 K.
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the choice of θ0 = 20◦C ≈ 293K. The figure shows, that the master curve of
the loss modulus is nearly constant in the investigated frequency range between
10−7 Hz and 107 Hz. The master curve of the storage modulus increases linearly
with the logarithm of the frequency.

3. Constitutive modelling

In order to represent the material behaviour of the PMMA-based bone ce-
ment, we apply the following theory of viscoelasticity. The time-dependent map-

ping between the position vector
⇀

X(P ) of a material point P of the reference
configuration to its position

⇀

x(P ) in the current configuration is described by

the vector function
⇀

x =
⇀

χ(
⇀

X, t). On the basis of the deformation gradient

F = Grad(
⇀

χ(
⇀

X, t)),

the Right and Left Cauchy Green tensors C and B and the Piola strain e are
defined as

(3.1) C = FTF, B = FFT

and

(3.2) e =
1

2
(C−1 − 1).

The velocity gradient L is written as

L = ḞF
−1

and its symmetric part is the strain rate tensor

(3.3) D =
1

2
(L + LT ).

Calculating the material time derivative of the Piola strain tensor, the relation

(3.4) ė = −F−1DFT−1

is obtained. To formulate the model as simple as possible at this early stage, we
assume the cement to be incompressible corresponding to det(F) = 1. Thus, the
Cauchy stress tensor T is the sum of the reaction stress −p1 due to the constraint
of incompressibility and the constitutively determined deviatoric stress S:

T = −p1 + S.

The corresponding stresses of the Second Piola Kirchhoff-type read as

(3.5) S̃ = F−1SFT−1
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and
T̃ = F−1TFT−1

leading to the relation
T̃ = −pC−1 + S̃

To specify the model for the deviatoric stress S we formulate a model of fi-
nite viscoelasticity which operates without any splitting of the deformation. Its
fundament is a Maxwell element in the form of

(3.6)
∇

S +
1

z
S = 2µD,

where z is the relaxation time and µ is an elasticity constant1). The expression

∇

S = Ṡ− LS − SLT

is an Oldroyd derivative of the deviatoric stress (cf. Haupt [9] or Böhme [6]).
To solve the differential equation (3.6) for arbitrary deformation processes, we
multiply it with the inverse deformation gradient and its transpose

F−1
∇

SFT−1 +
1

z
F−1SFT−1 = 2µF−1DFT−1,

and take (3.4) and (3.5) in combination with F−1
∇

SFT−1 =
˙̃
S into account:

˙̃
S +

1

z
S̃ = −2µė.

Analytical integration of this differential equation leads to the solution

S̃(t) = −
t∫

−∞

2µe−(t−s)/z ė(s)ds,

for the stress tensor of the Second Piola Kirchhoff type, or to

(3.7) T(t) = −p1−
t∫

−∞

2µe−(t−s)/zF(t)ė(s)FT (t)ds

for the Cauchy stress. To interpret the constant µ we assume a deformation
process whose duration is essentially shorter than the relaxation time z. Then,
the approximation e−(t−s)/z ≈ 1 holds which yields

T(t) = −p1− 2µ

t∫

−∞

F(t)ė(s)FT (t)ds

1)As an alternative frequently used in fluid mechanics, some authors introduce the viscosity
η/z = µ on the right-hand side of (3.6).
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or after integration together with the assumption e(−∞) = 0

T(t) = −p1− 2µF(t)e(t)FT (t).

An elementary calculation together with the definitions (3.1) and (3.2) leads to

T(t) = −p1 + µ(B(t) − 1) = −p̄1 + µB(t),

which is the Neo–Hookean model of finite elasticity. If, on the other hand, the
relaxation time z is short in comparison with a typical time constant character-
izing the deformation process, we use a reformulation of (3.6):

∇

S +
1

z
S = 2

η

z
D.

If z is sufficiently small, the stress rate term can be neglected such that the
equation S = 2ηD or T = −p1 + 2ηD of an incompressible Navier–Stokes fluid
is obtained.

Since the time-dependent relaxation behaviour of PMMA cannot be de-
scribed quantitatively with one single exponential function, we introduce the
generalisation

(3.8) T(t) = −p1− 2

t∫

−∞

G(t− s)F(t)ė(s)FT (t)ds

of (3.7), where the relaxation function is a continuous distribution of exponen-
tials:

(3.9) G(t) =

∞∫

0

h(z)e−t/zdz, h ≥ 0.

Haupt and Lion [11] have shown that the model (3.8) is compatible with the
second law of thermodynamics when the relaxation function satisfies

G(t) ≥ 0, G′(t) ≤ 0, G′′(t) ≥ 0.

Since h ≥ 0 in (3.9), this requirement is satisfied.

3.1. Linearization of the constitutive model

In order to identify the material parameters of the model defined by (3.8)
and (3.9), uniaxial dynamic mechanical analyses under tension/compression
were performed; the strain is given by (2.1). To describe excitations of this type
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in three dimensions, the deformation gradient is multiplicatively decomposed
into a time-independent predeformation F0 and a time-dependent part f(t):

(3.10) F(t) = f(t)F0.

This time-dependent part is represented as the sum of a unit tensor and an
incremental displacement gradient

(3.11) f(t) = 1 + h(t),

whose magnitude

δ = max
⇀

X∈material body
−∞≤t<∞

(‖h(
⇀

X, t)‖) ≤ 1

is assumed to be sufficiently small. Under this assumption, the inverse Right
Cauchy–Green tensor C−1 = F−1FT−1 and, as a consequence, the Piola tensor
defined in (3.2) can be linearized:

C−1 = ((1 + h)F0)
−1((1 + h)F0)

T−1 = F−1
0 (1 + h)−1(1 + h)T−1FT−1

0 .

Using the Cayley–Hamilton equation (cf. Haupt [9])

(1 + h)−1 =
1

III1+h

((1 + h)2 − I1+h(1 + h) + II1+h1)

together with the definitions and linearized forms of the invariants of the ten-
sor 1 + h,

I1+h = tr(1 + h) = 3 + Ih,

II 1+h =
1

2
(I2

1+h
− tr((1 + h)2)) = 3 + 2Ih +O(δ2),

III 1+h = det(1 + h) = 1 + Ih +O(δ2),

the linearization
(1 + h)−1 = 1 − h +O(δ2)

is obtained2). Considering this result, we obtain

C−1 = (F−1
0 (1− h))((1− hT )FT−1

0 ) +O(δ2)

or, after rearranging terms,

(3.12) C−1 = F−1
0 FT−1

0 − 2F−1
0

(
1

2
(h + hT )

)
FT−1

0 +O(δ2).

2)The formulation f(x) = O(xn) means that |f(x)|/xn → C for x → 0 (Landau’s symbol).
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With the definition of the infinitesimal strain tensor as the symmetric part of
the incremental displacement gradient,

EL =
1

2
(h + hT ),

(3.12) leads to the linearization of the inverse Right Cauchy–Green tensor

C−1 = C−1
0 − 2F−1

0 ELFT−1
0 +O(δ2)

and to that of the Piola strain tensor

e = e0 − F−1
0 ELFT−1

0 +O(δ2)

Inserting this expression in combination with (3.10) and (3.11) into the stress
functional (3.8),

T(t) = −p1−2

t∫

−∞

G(t− s)(1 + h(t))F0(F
−1
0 ĖL(s)FT−1

0 )FT
0 (1 + hT (t))ds+O(δ2),

the linearized version of the constitutive model is obtained:

(3.13) T(t) = −p1 + 2

t∫

−∞

G(t− s)ĖL(s)ds+O(δ2).

As we see, the Cauchy stress tensor which acts on the current configuration is
independent of the static deformation F0.

3.2. Calculation of dynamic moduli

In order to calculate the dynamic moduli G′ and G′′ we assume λ = λ(t),
λ0 = const and prescribe the deformation gradient and its static part as

F = λ
⇀

e1 ⊗ ⇀

e1 + λ−1/2(
⇀

e2 ⊗ ⇀

e2 +
⇀

e3 ⊗ ⇀

e3),

F0 = λ0
⇀

e1 ⊗ ⇀

e1 + λ
−1/2
0 (

⇀

e2 ⊗ ⇀

e2 +
⇀

e3 ⊗ ⇀

e3)

leading to
h(t) = F(t)F−1

0 − 1

or

(3.14) h =

(
λ

λ0
− 1

)
⇀

e1 ⊗ ⇀

e1 +

((
λ0

λ

)1/2

− 1

)
(

⇀

e2 ⊗ ⇀

e2 +
⇀

e3 ⊗ ⇀

e3).

The initial length of the virgin specimen is LR, the length of the statically de-
formed specimen is L0 and the current length is L. Then, we obtain λ0 = L0/LR

and λ = L/LR which leads to λ/λ0 = L/L0 = (L0 + ∆L)/L0 = 1 + ε if the
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change in length ∆L(t) is related to the length of the predeformed specimen,
i.e. ε(t) = ∆L/L0. Linearization of (3.14) for |ε| ≪ 1 leads to

h = ε(t)
⇀

e1 ⊗ ⇀

e1 −
1

2
ε(t)(

⇀

e2 ⊗ ⇀

e2 +
⇀

e3 ⊗ ⇀

e3)

for the incremental displacement gradient and for the infinitesimal strain tensor
to

(3.15) EL = ε(t)
⇀

e1 ⊗ ⇀

e1 −
1

2
ε(t)(

⇀

e2 ⊗ ⇀

e2 +
⇀

e3 ⊗ ⇀

e3)

with

(3.16) ε(t) = ∆ε sin(2πft).

Taking (3.13), (3.15) and (3.16) and into account and assuming a uniaxial
state of stress

T = σ(t)
⇀

e1 ⊗ ⇀

e1,

leads to the scalar equations

σ(t) = −p+ 2

t∫

−∞

G(t− s)ε̇(s)ds and 0 = −p−
t∫

−∞

G(t− s)ε̇(s)ds

or to the uniaxial stress strain functional

σ(t) = 3

t∫

−∞

G(t− s)ε̇(s)ds

after eliminating the constitutively undetermined pressure. To derive the storage
and the loss modulus, we prescribe ε(t) = ε̂eiωt and σ(t) = σ̂eiωt for stress and
strain3) and obtain

σ̂eiωt = 3iωε̂

t∫

−∞

G(t− s)eiωsds =

(
3iωε̂

∞∫

0

G(s)e−iωsds

)
eiωt.

Corresponding to the relation σ̂ = G∗(ω)ε̂, the complex modulus reads as

(3.17) G∗(ω) = 3iω

∞∫

0

G(s)e−iωsds.

3)i =
√
−1 is the imaginary unit.
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Inserting the spectral representation (3.9) of the relaxation function G(t) into
(3.17) and interchanging the sequence of integration, leads to the intermediate
result

G∗(ω) = 3iω

∞∫

0




∞∫

0

h(z)e−
s

z dz


 e−iωsds = 3iω

∞∫

0

h(z)




∞∫

0

e−(iω+1/z)sds


 dz.

Carrying out the integration with respect to the variable s, the relation

(3.18) G∗(ω) = 3

∞∫

0

h(z)
iωz

1 + iωz
dz = 3

∞∫

0

h(z)
(ωz)2 + iωz

1 + (ωz)2
dz

is obtained. Splitting (3.18) into real and imaginary parts leads finally to

(3.19) G′(ω) = Re(G∗) = 3

∞∫

0

h(z)
(ωz)2

1 + (ωz)2
dz

for the storage modulus and to

(3.20) G′′(ω) = Im(G∗) = 3

∞∫

0

h(z)
ωz

1 + (ωz)2
dz

for the loss modulus. To represent the experimental data of the storage and loss
modulus, we consider the relaxation spectrum of hyperbola type4)

(3.21) h(z) =





µ0

z
if zmin ≤ z ≤ zmax,

0 else,

proposed by Tobolsky [22], insert it into (3.19) and (3.20),

G′(ω) = 3µ0

zmax∫

zmin

(ωz)2

1 + (ωz)2
dz, G′′(ω) = 3µ0

zmax∫

zmin

ωz

1 + (ωz)2
dz

and obtain the final relation

(3.22) G′(ω) =
3µ0

2
ln

(
1 + (ωzmax)

2

1 + (ωzmin)2

)

for the storage modulus and

(3.23) G′′(ω) = 3µ0(arctg(ωzmax) − arctg(ωzmin))

4)The material parameters zmin and zmax are the smallest and largest relaxation times of
the material and the constant µ0 has the meaning of an elastic modulus (but is not the Young
modulus).
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for the loss modulus. The constants zmin and zmax are the smallest and largest
relaxation times of the material and µ0 is a modulus.

In the case of ωzmin ≪ 1 and ωzmax ≫ 1, (3.22) and (3.23) lead to a stor-
age modulus which is proportional to the logarithm of the frequency G′(ω) ≈
3µ0 ln(ωzmax) and to a loss modulus G′′(ω) ≈ 3µ0 which is independent of the
frequency. This behaviour has been observed in the experiments.

3.3. Estimation of the material parameters

The plateau, where the loss modulus is nearly constant, can be used to
identify the constant µ0 and the linear behaviour of the storage modulus can be
used to determine zmax. Thus, from the available experimental data the smallest
relaxation time zmin cannot be estimated with high accuracy.

Table 1. Material parameters of PMMA-based bone cement.

zmax zmin µ0

1012 sec 10−7 sec 32.3 MPa

The identification of the material parameters leads to the values listed in
Table 1. The quality of the fit is shown in Fig. 3 and the continuous relaxation

Fig. 3. Comparison between experimental data and constitutive model.
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spectrum corresponding to that fit is plotted in Fig. 4. We see that the material
behaviour is well-represented by the theory.

In the investigated frequency range between about 10−7 Hz and 108 Hz, the
material behaviour can be adequately represented by the constitutive equations
of a viscoelastic fluid. It is not necessary to take an equilibrium stress into
account.

The frequency range is fairly large, but in order to investigate and to simulate
the long-term creep and relaxation behaviour of PMMA-based bone cement in
medical applications, it should be considered that a year has a duration of about
3 × 107 sec and the typical life-time of endoprotheses is about 10–20 years. On
the other hand, typical durations of load peaks during sporting activities are
about some milliseconds.

Fig. 4. Continuous relaxation spectrum of PMMA-cement.

Figure 4 shows the continuous relaxation spectrum of PMMA corresponding
to the material constants in Tab. 1. Below the relaxation times of 10−7 sec and
above 1012 sec it is identically zero. The short-term tail on the left-hand side of
this spectrum is not so essential for applications in medicine: if the duration of a
typical shock load occurring during running or jumping is assumed to be about
some milliseconds, the shortest relaxation times to be taken into account in the
constitutive model should be a factor of ten smaller, i.e. about 10−4 sec.
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3.4. Approximation of the continuous spectrum

In order to carry out a finite element implementation of this model and/or
to make numerical simulations in the time domain, a formulation of the model
in terms of ordinary differential equations is very helpful. To this end, we derive
a discrete relaxation spectrum whose large number of parameters can be calcu-
lated on the basis of the three parameters of the continuous spectrum listed in
Tab. 1 and the time range of interest. The corresponding number of differential
equations which is necessary to represent the material behaviour depends on the
desired accuracy and the dimension of the time range of interest.

Inserting the continuous relaxation spectrum (3.21) into the relaxation func-
tion (3.9) we obtain

(3.24) G(t) = µ0

zmax∫

zmin

1

z
e−t/zdz.

It is clear that (3.24) cannot be expressed as the sum of a finite number of
decreasing exponentials with good accuracy in the time range 0 ≤ t < ∞. But
by Haupt et al. [10] it has been shown that a continuous relaxation spectrum
can be approximated within a limited time range

(3.25) τmin < t < τmax

by a discrete one. In order to sketch the idea, we substitute in (3.9) the relaxation
time by the relaxation frequency v = 1/z ⇔ dz = (−1/v2)dv and integrate the
result by parts:

G(t) =

∞∫

0

(
h(1/v)

v2

)
e−vtdv =

∞∫

0

g(v)e−vtdv =
[
Γ (v)e−vt

]∞
0︸ ︷︷ ︸

=0

+ t

∞∫

0

Γ (v)e−vtdv.

Based on the cumulative relaxation spectrum Γ (v) we obtain the alternative
representation

G(t) = t

∞∫

0

Γ (v)e−vtdv with Γ (v) =

v∫

0

g(x)dx

of the relaxation function. The cumulative spectrum belonging to (3.21) has the
form

(3.26) Γ (v) =





0 if v ≤ 1/zmax,

µ0 ln(zmaxv) if 1/zmax ≤ v ≤ 1/zmin,

µ0 ln(zmax/zmin) if 1/zmin ≤ v.
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To quantify the lower and upper limits of the time range in which the material
behaviour is to be described, the values of τmin and τmax in (3.25) have to be
specified. With the definitions vmin = 1/τmax and vmax = 1/τmin the discrete
relaxation frequency distribution

(3.27) vk = vmin(vmax/vmin)(k−1)/(N−1)

required to approximate (3.24) is prescribed. N is the number of exponentials
of the Prony series

(3.28) G(t) = G0 +

N∑

k=1

Gke
−vkt.

As an estimate, 2–3 exponentials per decade should be taken into account. The
moduli Gk in (3.28) are obtained by evaluating the cumulative spectrum (3.26):

(3.29) G0 =
1

2
(Γ (v1) + Γ (v2)), Gk =

1

2
(Γ (vk+1) − Γ (vk−1)), 1 ≤ k < N.

In order to represent the dynamic material behaviour in the whole frequency
range, which has been experimentally investigated, we take the choice of τmin =
zmin, τmax = zmax and N = 38 exponentials. These assumptions lead to the
distribution of the moduli Gk as shown in Fig. 5.

Fig. 5. Elastic moduli of the Prony series with 38 terms: τmin = zmin, τmax = zmax.
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As we see, the approximation of the continuous relaxation spectrum (3.21)
leads to a Prony series with identical values of the moduli Gk, exceptions are
only the first and the last ones. It is clear, that such a distribution leads to
a nearly frequency-independent loss modulus.

In order to validate this approach and to compare it with the experimental
data, we calculate the storage and loss moduli belonging to the Prony series

G′(ω) = 3G0 + 3

N∑

k=1

Gk
(ω/vk)

2

1 + (ω/vk)2
, G′′(ω) = 3

N∑

k=1

Gk
(ω/vk)

1 + (ω/vk)2

and insert the relaxation frequencies and constants determined by (3.26), (3.27)
and (3.29). The results plotted in Fig. 6 show that there is no difference between
the dynamic moduli calculated with the continuous spectrum and the discrete
one.

Fig. 6. Moduli of the continuous spectrum and the discrete spectrum with 38 exponentials.

In the case of the discrete relaxation spectrum, the constitutive model can
be written as:

∇

Sk +
1

τk
Sk = 2GkD,(3.30)

T = −p1 +G0B +
N∑

k=1

Sk.(3.31)
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To represent the viscoelastic material behaviour of PMMA in a limited time
range specified by (3.25), the material parameters of (3.30) and (3.31) can be
simply calculated with formulae (3.26), (3.27) and (3.29).

Constitutive equations of this type can easily be implemented into in-house
finite element codes or are already available in commercial codes and can be
used to carry out structural simulations.

3.5. Example

In the case of this example, the time range of interest is assumed to be given
by τmin = 0.1 sec and τmax = 1000 sec We take the choice of N = 12 exponential
terms and calculate the new parameters with formulae (3.26), (3.27) and (3.29).
The discrete relaxation spectrum is plotted in Fig. 7 and the corresponding
curves of the storage and the loss modulus in Fig. 8. We see, that the discrete
model represents the real material behaviour only in a limited frequency range
fmin ≤ f ≤ fmax with fmin ≈ 1/τmax =10−3 Hz and fmax ≈ 1/τmin = 10Hz.
In order to extend or to reduce this range, a new discrete spectrum has to be
determined on the basis of new values for τmin and τmax and the formulae (3.26),
(3.27) and (3.29).

The method applied in this subsection has shown that the parameters Gk, τk
and N of the discrete spectrum have no direct physical meaning: they depend

Fig. 7. Elastic moduli of the Prony series with 12 terms: τmin = 0.1 sec, τmax = 1000 sec.
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Fig. 8. Moduli of the continuous spectrum and the discrete spectrum with 12 exponentials.

on the frequency or time range where the material behaviour is to be repre-
sented. The real parameters of the PMMA-based bone cement are those of the
continuous spectrum (3.21), i.e. zmin, zmax and µ0.

4. Conclusions

The mechanical behaviour of polymerized PMMA-based bone cement under
dynamic strains has been studied with the DMA technique. In the investigated
frequency range, the storage modulus is a linear function of the logarithm of the
frequency and the loss modulus is nearly constant. This behaviour corresponds
to that of a viscoelastic fluid and is manifested by the identified continuous
relaxation spectrum which contains no equilibrium modulus. The model has
only three material parameters and describes the observed material behaviour
with good approximation.

The frequency range considered in this paper is fairly large. But to investigate
the long-term behaviour of PMMA-reinforced osteoporotic bones one should
consider, that a year has about 3.15 × 107 sec corresponding to a frequency of
about 3.17 × 10−8 Hz. The highest frequencies which are caused by short-term
loads, for example during sporting activities, are about 103 Hz corresponding
to characteristic times of 10−3 sec. To simulate the material behaviour in such



Constitutive modelling of PMMA-based bone cement . . . 241

a known time or frequency range, the approximation method proposed and
illustrated in this essay can be successfully applied. In this context, the kernel
function of the viscoelastic stress functional, which is determined by a continuous
relaxation spectrum, is approximated by a discrete spectrum corresponding to
a Prony series with a finite number of terms. The accuracy of this method
can be arbitrarily chosen and the 2N + 1 constants of the Prony series can be
calculated using the three parameters of the original continuous spectrum and
the dimension of the time range of interest.

The constitutive model developed in this essay is currently implemented
into a finite element code. It will be used and further developed in a following
project to simulate the short- and long-term behaviour of PMMA-reinforced
vertebrae or bone structures. Looking at the theory developed by Lion and
Höfer [17], the approach identified in the current work is a fairly important part
to represent the thermomechanically-chemically-coupled material behaviour of
PMMA in a holistic manner. The most important phenomena to be covered by
such a model are the exothermal polymerization, thermal expansion, chemical
shrinking and the evolution of residual stresses in curing bone cement. Another
very important topic to be studied and constitutively modelled is the diffusion
and absorption of salty water in PMMA as well as the corresponding swelling
phenomena and changes in the mechanical material properties.
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