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The aim of the paper is to determine, within the time domain, the waves produced
by an oblique incident wave at the interface between two homogeneous half-spaces.
By following the acoustic approximation, the wave solutions for the Fourier transform
of the displacement field in a viscous fluid are established in a form which generalizes
the concept of plane wave. Next the reflection-transmission problem, associated with
the interface between an inviscid fluid and a viscous one, is investigated. The incident
wave is supposed to propagate in the inviscid fluid. The reflected and transmitted
waves, in the time domain, are eventually determined in two particular cases, namely
that of normal incidence on a viscous half-space and that of oblique incidence, beyond
the critical angle, on an inviscid half-space. In the first case it follows that, provided
an approximation of band-limited data holds for the incident wave, the reflected and
the transmitted waves are given by linear combinations of the values of the incident
wave and of its time derivative. In the second case, the reflected (transmitted) wave
is shown to be the sum of a term proportional to the incident wave and another one,
proportional to the Hilbert transform of (a convolution of) the incident wave.

1. Introduction

The aim of this paper is to determine, within the time domain, the waves
produced at the interface between two homogeneous half-spaces, by an oblique
incident wave. The governing equations are those of the acoustic approximation,
a model widely applied, e.g., in seismology and in marine exploration (see [1]
and refs. therein). However, for the sake of generality, the underlying body is
allowed to be a viscous fluid.

The subject is of interest in many respects. First, there are relatively few re-
sults for reflection-transmission (RT) problems in the time domain. Quite often
the RT problems are investigated within the frequency domain or, rather, for
time-harmonic waves. This is motivated by the relatively simpler calculations
and by the observation that, for linear problems, the inverse Fourier transform



244 G. Caviglia, A. Morro

allows us to obtain the results in the time domain. While conceptually such is
the case, in practice the inverse Fourier transformation may be quite involved.
Of course, the inverse Fourier transform applies if the solution in the frequency
domain is known for every frequency. This requires a detailed analysis of the
frequency-dependence of time-harmonic wave solutions. Secondly, RT problems
associated with a viscous half-space cannot be solved directly within the time
domain. The analysis within the frequency domain shows that the reflection and
transmission coefficients are in fact functions of the frequency and this is the
main reason why the inverse Fourier transform does not provide a closed-form
solution in the time domain. It is then of interest to find closed-form solutions
in particular conditions or approximations. Thirdly, there is a renewed atten-
tion to direct and inverse problems for wave propagation in dissipative media
(see [2]). This gives a further motivation for the investigation of equations and
solutions associated with acoustic waves in viscous fluids, perhaps the paradigm
of dissipative continua.

By following the acoustic approximation, we first determine the wave solu-
tions, for the Fourier transform of the displacement field in a viscous fluid, in
a form which generalizes the concept of plane wave. Next we solve the RT prob-
lem associated with the interface between an inviscid fluid and a viscous one.
The incident wave is coming from the inviscid fluid. The reflected and transmit-
ted waves, in the time domain, are eventually evaluated in two particular cases,
namely that of normal incidence on a viscous half-space and that of oblique in-
cidence, beyond the critical angle, on an inviscid half-space. In the first case we
find that, provided the incident wave justifies an approximation of band-limited
data, the reflected and the transmitted waves are given by linear combinations
of the values of the incident wave and of its time derivative. In the second case,
the reflected wave is shown to be the sum of a term proportional to the inci-
dent wave and another one proportional to the Hilbert transform of the incident
wave. A similar result holds for the transmitted wave with the Hilbert transform
of a convolution of the incident wave.

2. Preliminaries and the acoustic approximation

Let Ω ⊆ R
3 be the region occupied by the fluid under consideration. The

symbol x ∈ Ω denotes the position vector relative to a chosen origin, v is the
velocity, ρ̂ the mass density, p̂ the pressure. Also, ∇ is the gradient operator,
∆ the Laplacian.

The mass density ρ̂ and the velocity v, on Ω×R, are subject to the continuity
equation

(2.1) ∂tρ̂+ ∇ · (ρ̂v) = 0
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and the equation of motion

(2.2) ρ̂[∂t + (v · ∇)]v = ∇ · T,

where T is the stress tensor and the body force is disregarded. Since we have in
mind viscous fluids, we take T in the form

T = −p̂1 + µ[∇v + (∇v)†] + λ(∇ · v)1,

µ, λ being the viscosity coefficients and the superscript † denoting transpose.
Let

ρ̂ = ρ+ ̺, p̂ = p+ ℘

and regard ρ, p as the density and pressure at equilibrium. As it is often the
case, we let ρ and p be constants. The stress tensor T can then be written as

T = −p1 + T , T := −℘1 + µ[∇v + (∇v)†] + λ(∇ · v)1.

Henceforth we follow the acoustic approximation. Accordingly, quantities which
are nonlinear in ̺, ℘ and v are disregarded. By (2.1) and (2.2) we have

(2.3) ∂t̺+ ρ∇ · v = 0,

(2.4) ρ∂tv = −∇℘+ µ∇ · [∇v + (∇v)†] + λ∇(∇ · v).

Let u be the displacement so that v = ∂tu, in the linear approximation. We
may then replace (2.3) with

(2.5) ̺ = −ρ∇ · u.

Moreover, the pressure p̂ is regarded as a function of ρ̂ only and hence, by (2.5),

(2.6) ∇℘ = −ρc2∇(∇ · u)

where

c2 =
dp̂

dρ̂
(ρ).

Eq. (2.4) becomes

(2.7) ρ∂2
t u = ρc2∇(∇ · u) + ∂t[(µ+ λ)∇(∇ · u) + µ∆u].

By (2.6) we have

(2.8) ℘ = −ρc2∇ · u,

to within an inessential additive function, of time t, which is set to be zero.
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A function f , on the space-time Ω × R, is a scalar plane wave propagating
in the direction of q, with speed 1/|q|, if

f(x, t) = F (t− q · x)

for some function F on R. To look for solutions to (2.7) as plane waves is much
too restrictive. Hence we consider generalized plane waves in the form

g(x, t) = G(z, t−m · x),

where m is perpendicular to the z-axis, for any function G on R
2. By an appro-

priate choice of the axes we let m be directed along the x-axis and write

g(x, t) = G(z, t− ξx), ξ ∈ R.

The parameter ξ is the inverse of what is often called the trace velocity (see [3],
p. 124). The Fourier transform g̃, with respect to time t,

g̃(x, ω) =

∞∫

−∞

g(x, t) exp(−iωt)dt,

gives
g̃(x, ω) = exp(−iωξx)G̃(z, ω).

By applying the Fourier transform to (2.8) and (2.7) we find that

−ρω2ũ = [ρc2 + iω(µ+ λ)]∇(∇ · ũ) + iωµ∆ũ,(2.9)

℘̃ = −ρc2∇ · ũ.(2.10)

Equation (2.9) can be viewed as a homogeneous system of second-order linear
differential equations for (the components of) ũ. Once ũ is determined, Eq. (2.10)
provides ℘̃. In the following analysis, it is understood that ω 6= 0.

Motivated by the concept of generalized plane waves, we look for solutions
ũ, ℘̃ in the form

ũ(x, ω) = d(ω) exp(−iωξx)U(z, ω), ℘̃(x, ω) = exp(−iωξx)P (z, ω).

Hence, letting
β = 1 + iω(µ+ λ)/ρc2

we obtain the component form of (2.9) as

−ρω2dxU + iωξρc2β(−iωξdx + dz∂z)U − iωµdx(−ω2ξ2 + ∂2
z )U = 0,(2.11)

[ω2(ρ− iωµξ2)U + iωµ∂2
zU ]dy = 0,(2.12)

−ρω2dzU − ρc2β(−iωξdx + dz∂z)∂zU − iωµdz(−ω2ξ2 + ∂2
z )U = 0.(2.13)



Reflection and transmission of transient acoustic waves . . . 247

2.1. Transverse wave

Let dy 6= 0 and denote by τ the sought solution for the polarization d.
Equation (2.12) implies that

(2.14) U ′′ = ω2

(
ξ2 + i

ρ

ωµ

)
U.

Hence U takes the form

(2.15) U(z) = Uτ exp(−iωστz)

where Uτ is a constant, parameterized by ω, whereas

σ2
τ = −i ρ

ωµ
− ξ2.

Irrespective of the value of ξ, we have σ2
τ ∈ C and

sgnℑσ2
τ = − sgnω.

Since, as it will be the case, exp[iω(t−στz)] has to represent a forward-propagat-
ing wave, we have to require that ℜστ > 0 whence we have sgnℑστ = − sgnω.
Otherwise, we might say that the wave must decay from the source whence
sgnℑστ = − sgnω. The explicit form of στ is then given by

στ =
1√
2

[√√
ξ4 + ρ2/ω2µ2 − ξ2 − i

√√
ξ4 + ρ2/ω2µ2 + ξ2 sgnω

]
.

The two Eqs. (2.11) and (2.13) then simplify to

(2.16) τxξ + τzστ = 0.

We regard this solution as a transverse wave and say that it is represented
by

(2.17) ũ(x, ω) = τUτ exp(−iω(ξx+ στz)),

where the polarization τ is perpendicular to ∇[exp(−iωξx)U(z, ω)]. It is the
superposition of a wave polarized along y,

τ 1 = τyey,

and one in the (x, z)-plane,

τ 2 = τxex + τzez,

and subject to (2.16).
Formally, the transverse wave solution is characterized by the condition (2.14).

We now look for solutions when (2.14) does not hold.
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2.2. Longitudinal wave

Let

(2.18) ω2(ρ− iωµξ2)U + iωµU ′′ 6= 0.

Hence (2.12) implies that dy = 0. Denote by l the sought solution for the polar-
ization d. The system (2.11)–(2.13) then provides

{ω2[ρ(ξ2c2β − 1) + iωµξ2]U − iωµU ′′}lx + iωξρc2β U ′ lz = 0,

iωξρc2β U ′ lx + [ω2(−ρ+ iωµξ2)U − (ρc2 + iωµ)U ′′]lz = 0.

Both equations are linear in U and are parameterized by lx, lz. Hence we let

U = Ul exp(−iωσlz),

where Ul is a constant, and look for the value of σl. It follows at once from (2.18)
that

(2.19) γ := −ρ+ iωµ(ξ2 + σ2
l ) 6= 0.

Upon substitution we have

(2.20) (γ + ξ2ρc2β)lx + ξσlρc
2β lz = 0,

(2.21) ξσlρc
2β lx + (γ + σ2

l ρc
2β)lz = 0.

The algebraic system (2.20)-(2.21) has non-trivial solutions for lx, lz provided
that the determinant vanishes. Since γ 6= 0, this amounts to

(ξ2 + σ2
l )

(
1 + iω

2µ+ λ

ρc2

)
− 1

c2
= 0

whence

(2.22) σ2
l = −ξ2 +

1

c2
1

1 + iω(2µ+ λ)/ρc2
.

Irrespective of the value of ξ, we have

sgnℑσ2
l = − sgnω.

We require that exp(iω(t − σlz)) represents a forward-propagating wave and
hence we let ℜσl > 0. By (2.22) we can write

σ2
l = a+ ib
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where

a = −ξ2 +
1

c2
1

1 + ω2(2µ+ λ)2/ρ2c4
, b = − 1

c2
ω(2µ+ λ)/ρc2

1 + ω2(2µ+ λ)2/ρ2c4
.

The requirement ℜσl > 0 implies that

σl =
1√
2

(√√
a2 + b2 + a− i

√√
a2 + b2 − a sgnω

)
.

The components lx, lz of the polarization vector (ly = 0) are then given by any
of the Eqs. (2.20), (2.21).

The solution

(2.23) ũ(x, ω) = lUl exp(−iω(ξx+ σlz)),

is regarded as a longitudinal wave in which, by (2.20) or (2.21), l satisfies

(2.24) lxσl − lzξ = 0,

what amounts to

l××∇[exp(−iωξx)U(z, ω)] = 0.

This is so because, by (2.22),

σ2
l ρc

2β = ρ− iωµ(ξ2 + σ2
l ) − ξ2ρc2β

and hence (2.20) and (2.21) provide (2.24).

Remark. It is a common feature of the transverse and longitudinal waves
so determined that

ℜσ > 0, ℑσ = −|ℑσ| sgnω.

Hence the dependence on the coordinates is of the form

exp(−iω(ξx+ ℜσ z)) exp(−|ωℑσ|z).

Transverse and longitudinal waves are then inhomogeneous (see [4, 5] and [6]).
They propagate in the direction (ξ,ℜσ) of the (x, z) plane and decay with z at
the rate |ωℑσ|. This in turn shows that, in viscous fluids, plane waves are not
allowed. If, rather, ξ = 0 then both the phase and amplitude are constant at
the (same) planes of constant z. Though the ξ = 0 solution may be viewed as
a plane wave in the frequency domain, the corresponding function in the time
domain is not a plane wave.
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2.3. Waves in inviscid fluids

Also as a check of consistency, we derive the wave solutions in inviscid fluids
by letting µ, λ = 0 in (2.11)–(2.13). By (2.12) it follows that Udy = 0. Equations
(2.11) and (2.13) reduce to

(ξ2c2 − 1)dx + ξσc2dz = 0,

ξσc2dx + (σ2c2 − 1)dz = 0.

The vanishing of the determinant gives

σ2 =
1

c2
− ξ2 =: a0

whence

(2.25) σ = ± 1√
2
(
√
|a0| + a0 − i

√
|a0| − a0 sgnω),

+ and − being associated to forward- and backward-propagating waves. More-
over,

d××∇[exp(−iωξx)U(z, ω)] = 0.

In inviscid fluids only longitudinal waves occur with

(2.26) ũ = lU exp(−iω(ξx+ σz)),

where l is subject to

(2.27) σlx = ξlz.

If ξ2 < 1/c2, a0 > 0, then
σ =

√
|a0|;

the solution is an undamped wave which propagates with speed

1

σ
=

c√
1 − ξ2c2

in the z direction. Meanwhile exp(−iω(ξx+ σz)) shows that

1√
ξ2 + σ2

=
1√

ξ2 + (1 − ξ2c2)/c2
= c

is the wave speed.
If ξ2 > 1/c2, a0 < 0, then

σ = −i
√
|a0| sgnω;
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the solution is an evanescent wave with decay rate

ωσ =
|ω|
c

√
ξ2c2 − 1.

The transition between undamped and evanescent waves occurs when ξ2 = 1/c2,
namely at the critical angle.

Remark. In viscous fluids it is uncommon to deal with critical angles and
this is due to the fact that viscosity makes all wave solutions be damped prop-
agating waves for any value of the trace velocity 1/ξ.

3. Reflection-transmission problem

Denote by [[f ]] the jump of a field f across an interface. Let t be the traction.
For fixed interfaces, the balance of linear momentum and energy provides the
jump conditions

(3.1) [[t]] = 0, [[v]] · t = 0.

Examine the consequences of (3.1) at the interface z = 0 between an inviscid
fluid (z < 0) and a viscous fluid (z > 0). Denote by the subscripts ± the limit
values as z → 0±. The normal to the interface is ez, the unit vector of the z-axis.
Hence the jump conditions (3.1) provide

−p−ez = T+ez,(3.2)

vz|− = vz|+.(3.3)

At equilibrium, i.e. p̂ = p,v = 0, Eq. (3.2) implies that

p− = p+.

Hence (3.2) simplifies to

(3.4) −℘−ez = T +ez.

Application of the Fourier transform to (3.4) and (3.3) gives

−℘̃−ez = T̃ +ez,(3.5)

ũz|− = ũz|+.(3.6)

We now state the RT problem in the frequency domain. The incident wave
comes from z < 0. Since the half-space z < 0 is occupied by an inviscid fluid, the



252 G. Caviglia, A. Morro

incident and the reflected waves are longitudinal, see (2.26). The known incident
wave is taken to be homogeneous, with ξ2

I
< 1/c2

−
and σI =

√
1/c2

−
− ξ2

I
> 0. It is

a longitudinal wave, of the form (2.26), as well as the reflected wave, with σI > 0,
ξ2

I
< 1/c2

−
(homogeneous waves). In the half-space z > 0 two waves are transmit-

ted of the form (2.17) and (2.23). To simplify the notation we let lT , τ stand for
lUl, τUτ and let lT , τ depend on ω. The subscripts, or superscripts, I,R, T indi-
cate quantities pertaining to the incident, reflected, transmitted waves. Hence,
by (2.17), (2.23) and (2.26) we can write ũ as

ũ(x, ω) =

{ lI exp(−iω(ξIx+ σIz)) + lR exp(−iω(ξRx− σRz)), z < 0,

τ exp(−iω(ξτx+ στz)) + lT exp(−iω(ξlx+ σlz)), z > 0.

Correspondingly, the stress T̃ is given by

T̃ = −℘̃1 + iωµ[∇ũ + (∇ũ)†] + iωλ(∇ · ũ)1.

The RT problem consists in the determination of lR, τ , lT in terms of lI , subject
to the continuity conditions (3.5)–(3.6).

By (3.5) we have
T̃xz|+ = 0, T̃yz|+ = 0,

whence

(τxστ + τzξτ ) exp(−iωξτx) + (lxσl + lzξl) exp(−iωξlx) = 0,

τy exp(−iωξτx) = 0.

The arbitrariness of x implies that

τy = 0, ξτ = ξl,

(3.7) τxστ + τzξτ + lxσl + lzξl = 0.

Let ξT stand for the common value of ξτ , ξl and τ for τ 2, i.e. τ 1 = 0, so that

ũ(x, ω) =

{ lI exp(−iω(ξIx+ σIz)) + lR exp(−iω(ξRx− σRz)), z < 0,

τ exp(−iω(ξTx+ στz)) + lT exp(−iω(ξTx+ σlz)), z > 0.

The requirement (3.6) results in

(3.8) lIz exp(−iωξIx) + lRz exp(−iωξRx) = τz exp(−iωξTx) + lTz exp(−iωξTx).

The arbitrariness of x implies that

(3.9) ξI = ξR = ξT =: ξ
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and hence
σR = σI .

As a consequence, (3.8) provides

(3.10) lIz + lRz = τz + lTz ,

whereas (3.7) becomes

(3.11) τxστ + lTxσl + ξ(τz + lTz ) = 0, µ 6= 0.

The remaining condition of (3.5), namely −℘̃− = T̃zz|+, results in

(3.12) ρ−c
2
−
(lIxξ + lIzσI + lRx ξ − lRz σI)

= (ρ+c
2
+ + iλω)(lTxξ + lTz σl) + i2µω(σττz + σll

T

z ).

The condition (3.9) might have been assumed by invoking Snell’s law.
The incident wave is represented by

ũI(x, ω) = lI exp[−iω(ξx+ σIz]

where lI is parameterized by ω and is subject to

lIxσI − ξlIz = 0, σI =
√

(1/c2) − ξ2.

The ratio
lIx
lIz

=
ξ

σI

is independent of ω.
The RT problem amounts to the determination of the five unknowns τx,

τz, l
T

x , lTz , lRz by solving the system of five Eqs. (3.10)–(3.12) and (2.16), (2.24)
parameterized by lIz, ξ, ω. We find that

lTz =
2iρ−σlωµ(σ2

τ − ξ2)

ρ+ρ−σl − ω2µ2σI [(σ2
τ − ξ2)2 + 4σlστξ2]

lIz,(3.13)

lRz =
ρ+ρ−σl + ω2µ2σI [(σ

2
τ − ξ2)2 + 4σlστξ

2]

ρ+ρ−σl − ω2µ2σI [(σ2
τ − ξ2)2 + 4σlστξ2]

lIz,(3.14)

τz =
4iρ−σlωµξ

2

ρ+ρ−σl − ω2µ2σI [(σ2
τ − ξ2)2 + 4σlστξ2]

lIz,(3.15)

and by (2.16) and (2.24),

lTx =
ξ

σl
lTz , τx = −στ

ξ
τz.
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Once we know lR and lT , τ we determine the reflected and transmitted waves
uR,uT in the time domain. For definiteness we restrict attention to the z com-
ponents. By the inverse Fourier transform we have

uR

z (x, t) =
1

2π

∞∫

−∞

exp(iωt)ũR

z (x, ω)dω

and the like for uT

z . Because

ũR

z (x, ω) = lRz (ω) exp[−iω(ξx− σIz)],

we have

(3.16) uR

z (x, t) =
1

2π

∞∫

−∞

exp[iω(t− ξx+ σIz)]l
R

z (ω)dω.

For the transmitted waves, two modes occur, the longitudinal and the transverse
ones. We have

(3.17) uT

z (x, t) =
1

2π

∞∫

−∞

{exp[iω(t− ξx− στz)]τz(ω)

+ exp[iω(t− ξx− σlz)]l
T

z (ω)}dω.

The general relations so obtained are now applied in two simple cases which
allow us to obtain definite results in the time domain.

Remark. We have tacitly assumed that the propagation vectors of the waves
lie in the common plane (x, z). We might start without such an assumption and
show, by means of (3.1), that the propagation vectors are required to lie in a
common plane.

4. Normal incidence on a viscous half-space

The relations for normal incidence follow by letting ξ = 0. First we find that
τx, τz = 0 and hence only longitudinal waves occur. Moreover, lRx , l

T

x = 0. The
relations (3.13) and (3.14) for lTz and lRz reduce to

lTz =
2iρ−σlωµσ

2
τ

ρ+ρ−σl − ω2µ2σIσ4
τ

lIz,(4.1)

lRz =
ρ+ρ−σl + ω2µ2σIσ

4
τ

ρ+ρ−σl − ω2µ2σIσ4
τ

lIz.(4.2)



Reflection and transmission of transient acoustic waves . . . 255

We now investigate the form of the reflection and transmission coefficients

R(ω) =
lRz
lIz

(ω), T (ω) =
lTz
lIz

(ω).

By (4.2) we can write

R(ω) =
1 + ω2µ2σIσ

4
τ/ρ−ρ+σl

1 − ω2µ2σIσ4
τ/ρ−ρ+σl

.

Moreover,
σ4

τ

σl
= −ρ

2
+c+
ω2µ2

w, σI =
1

c−
,

where

w =
1

c+σl
, w2 = 1 + iω(2µ+ λ)/ρ+c

2
+.

Let wr, wi stand for ℜw,ℑw. Since ℜσl > 0 and sgnℑσl = − sgnω, we have

wr > 0, sgnwi = sgnω.

Indeed we obtain

w =
1√
2

(√√
1 + α2 + 1 + i

√√
1 + α2 − 1 sgnω

)
,

where

α = κω, κ =
2µ+ λ

ρ+c2+
.

Letting

ν :=
ρ+c+
ρ−c−

we can write

R(ω) =
1 − νw

1 + νw
,

whence

(4.3) R(ω) =
1 − ν2|w|2

1 + 2νwr + ν2|w|2 − 2iν
|wi| sgnω

1 + 2νwr + ν2|w|2 .

Likewise, by

T (ω) =
2ρ−c−

ρ−c− + ρ+c+w

we obtain

(4.4) T (ω) =
2(1 + νwr)

(1 + νwr)2 + ν2w2
i

+ 2iν
|wi| sgnω

(1 + νwr)2 + ν2w2
i

.
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The dependence of R and T on ω, as determined in (4.3) and (4.4), does not
allow a closed-form solution for the reflected and transmitted wave in the time
domain. Nevertheless, an interesting result follows if the incident wave allows us
to work with band-limited data. We assume that

κ|ω| ≪ 1

and hence we find that

wr ≃ 1 + α2/8 ≃ 1, wi ≃ κω/2,

and
σl ≃

1

c+

(
1 − i

1

2
κω

)
.

As a consequence we let

R(ω) =
1 − ν

1 + ν
+ i

νκ

(1 + ν)2
ω,

T (ω) =
2

1 + ν
+ i

2νκ

(1 + ν)2
ω.

We now determine the reflected and transmitted waves uR, uT in the time
domain. Look at (3.16) in the case of normal incidence (ξ = 0), at x = 0. Since

uR

z (0, ω) = lRz (ω), lRz (ω) = R(ω)lIz(ω), lIz(ω) = uI

z(0, ω),

we can write

uR

z (z, t) =
1

2π

∞∫

−∞

exp[iω(t+ σIz)]R(ω)ũI

z(0, ω)dω, z < 0.

Since iωũI

z(0, ω) is the Fourier transform of u̇I

z(0, t), we obtain

(4.5) uR

z (z, t) =
1 − ν

1 + ν
uI

z(0, t+ σIz) +
νκ

(1 + ν)2
u̇I

z(0, t+ σIz), z < 0.

Likewise, by (3.17) we can write

uT

z (z, t) =
1

2π

∞∫

−∞

exp[iω(t− z/c+)] exp(−κω2z/2c+)T (ω)ũI

z(0, ω)dω, z > 0.

By the convolution theorem we obtain

(4.6) uT

z (z, t) =

√
c+

2πκz

∞∫

−∞

exp[−c+(t− z/c+ − η)2/2κz]

×
[

2

1 + ν
uI

z(0, η) +
2νκ

(1 + ν)2
u̇I

z(0, η)

]
dη, z > 0.
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The reflected wave uR

z , at (z, t), is a linear combination of the incident wave
uI

z and of the time derivative u̇I

z, at z = 0 at time t + z/c−. The transmitted
wave uT

z is the convolution of a Gaussian kernel with a linear combination of
the incident wave uI

z and of the time derivative u̇I

z. The result (4.6) shows the
dependence of uT

z on the depth z.

5. Oblique incidence on an inviscid half-space

The limit case where the half-space z > 0 is occupied by an inviscid fluid
cannot be obtained directly from (3.13)–(3.15) by letting µ, λ = 0. This is so also
because στ , σl are unbounded as µ, λ → 0. In inviscid fluids only longitudinal
waves occur. Hence τ = 0 and (3.11) does not apply because now µ = 0. By
(2.24) and (2.27), the vectors lI , lR, lT are subject to

(5.1) lIxσI − ξlIz = 0, lRxσI + ξlRz = 0, lTxσl − ξlTz = 0.

Upon substitution for lIx, l
R

x , l
T

z and letting µ, λ = 0, τ = 0 we obtain from (3.10),
(3.12) that

lIz + lRz = lTz ,

lIz − lRz =
ρ+σI

ρ−σT

lTz .

Hence we find that the reflection and the transmission coefficients, R and T , are
given by

R =
ρ−σT − ρ+σI

ρ−σT + ρ+σI

, T =
2ρ−σT

ρ−σT + ρ+σI

.

If σT is real and positive, then R and T are constants, independent of ω. The
passage to the time domain through the inverse Fourier transform is obvious,

uR

z (0, t) = RuI

z(0, t), uT

z (0, t) = T uI

z(0, t).

5.1. Incidence beyond the critical angle

Letting c+ > c− we assume that ξ2c2+ > 1, which means that the incidence
angle is greater than the critical value. The transmitted wave is evanescent and

σl = σT = −i
√
ξ2 − 1/c2+ sgnω.

As a consequence, R and T depends on ω through the sign. Letting

ǫ =
ρ+σI

ρ−|σT |
=
ρ+c+
ρ−c−

√
1 − ξ2c2

−

ξ2c2+ − 1
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we find that

R(ω) =
1 − iǫ sgnω

1 + iǫ sgnω
, T (ω) =

2

1 + ǫ2
(1 − iǫ sgnω).

Both R and T are parameterized by ξ through ǫ. By applying the inverse Fourier
transform to ũR

z and ũT

z we obtain the reflected wave and the transmitted wave
in the time domain, namely

uR

z (x, t) =
1

2π

∞∫

−∞

exp[iω(t− ξx+ σIz)]R(ω)ũI

z(0, ω)dω,(5.2)

uT

z (x, t) =
1

2π

∞∫

−∞

exp[iω(t− ξx− σTz)]T (ω)ũI

z(0, ω)dω.(5.3)

5.2. The reflected wave

Since R can be written as

R(ω) =
1 − ǫ2

1 + ǫ2
− i

2ǫ

1 + ǫ2
sgnω,

substitution in (5.2) gives

uR

z (x, t) =
1 − ǫ2

1 + ǫ2
uI

z(0, t− ξx+ σIz)

− i
2ǫ

1 + ǫ2

∞∫

−∞

exp[iω(t− ξx+ σIz)]ũ
I

z(0, ω) sgnω dω.

Since

i
1

2π

∞∫

−∞

sgnω exp(iωt)dω = − 1

πt
,

by the convolution theorem and a change of variable we obtain

− i

∞∫

−∞

exp[iω(t− ξx+ σIz)]ũ
I

z(0, ω) sgnω dω

=
1

π

∞∫

−∞

1

t− ζ
uI

z(0, ζ − ξx+ σIz)dζ

=
1

π

∞∫

−∞

1

t− t′ − ξx+ σIz
uI

z(0, t
′)dt′.
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As a consequence, the reflected wave, at the place x and time t, is given by

(5.4) uR

z (x, t) =
1 − ǫ2

1 + ǫ2
uI

z(0, t− ξx+ σIz)

− 1

π

2ǫ

1 + ǫ2

∞∫

−∞

1

t′ − (t− ξx+ σIz)
uI

z(0, t
′)dt′.

The investigation of the reflected wave produced by a dependence on sgnω
traces back to Arons and Yennie [7] (see also [8]–[10]) who studied the effect
of pulse distortion, of

F (t) =

{
0, t < 0,

F0 exp(−λt), t > 0,

by a constant π/2 phase shift in each frequency component.
The result (5.4) shows that the reflected wave is plane and homogeneous in

that uR

z (x, t) is a function of t− ξx+ σIz. The first term is merely proportional
to uI

z, evaluated at the retarded time t− ξx+ σIz. Concerning the second term,
observe that for a function f on R,

(Hf)(x) =
1

π

∞∫

−∞

f(x′)

x′ − x
dx′

is the Hilbert transform of f at x. Accordingly we can write (5.4) as

uR

z (x, t) =
1 − ǫ2

1 + ǫ2
uI

z(0, t− ξx+ σIz) −
2ǫ

1 + ǫ2
(HuI

z)(0, t− ξx+ σIz).

By (5.1) we have

uR

xσI + ξuR

z = 0

and hence we find uR

x as

uR

x(x, t) = − ξ

σI

uR

z (x, t).

5.3. The transmitted wave

The transmitted wave is longitudinal (τ = 0). By (3.17) and the relation

uT

z (0, ω) = lTz (ω) = T (ω)lIz(ω) = T (ω)uI

z(0, ω)
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we have

uT

z (x, t) =
1

2π

∞∫

−∞

exp[iω(t− ξx− σTz)]T (ω)uI

z(0, ω)dω, z > 0.

Things are now more involved because σT is imaginary and

exp(−iωσTz) = exp(−
√
ξ2 − 1/c2+ |ω|z) = exp(−|σT ||ω|z).

Hence, because

T (ω) =
2

1 + ǫ2
− i

2ǫ

1 + ǫ2
sgnω,

we have

uT

z (x, t) = u1(x, t) + u2(x, t), z > 0,

where

u1(x, t) =
1

π(1 + ǫ2)

∞∫

−∞

exp[iω(t− ξx)] exp(−|σT ||ω|z)uI

z(0, ω)dω,

u2(x, t) = −i ǫ

π(1 + ǫ2)

∞∫

−∞

exp[iω(t− ξx)] exp(−|σT ||ω|z) sgnω uI

z(0, ω)dω.

The inverse Fourier transform of exp(−|σT ||ω|z) is given by

1

2π

∞∫

−∞

exp(−|σT ||ω|z)dω =
1

π

|σT |z
|σT |2z2 + t2

, z > 0.

Hence, by the convolution theorem we find that

u1(x, t) =
1

π(1 + ǫ2)

∞∫

−∞

G(z, t− ξx, ζ)uI

z(0, ζ)dζ,

where

G(z, η, ζ) =
|σT |z

|σT |2z2 + (η − ζ)2
.

To within a factor, u2 is the inverse Fourier transform, at t−ξx, of the product of
−i sgnω and exp(−|σT ||ω|z)uI

z(0, ω). The inverse Fourier transform of −i sgnω



Reflection and transmission of transient acoustic waves . . . 261

is 1/πt. The inverse Fourier transform of exp(−|σT ||ω|z)uI

z(0, ω), at time ζ, is
given by the convolution

∞∫

−∞

G(z, ζ, η)uI

z(0, η)dη.

Hence, using again the convolution theorem we find that

u2(x, t) =
2ǫ

π(1 + ǫ2)

∞∫

−∞

∞∫

−∞

1

t− ξx− ζ
G(z, ζ, η)uI

z(0, η)dη dζ.

The dependence of u1 and u2 on the depth z is provided by the kernel G which,
though in a different context, appears in [11].
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