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We consider the system of micro-beam resonators in the thermoelastic theory of
Lord and Shulmann. First, we prove the uniqueness and instability of solutions when
the sign of a parameter is not prescribed. Existence of solutions and uniform bounds
for the real part of the spectrum have been found. We finish the paper by proving
the impossibility of the time localization of solutions.

Key words: hyperbolic model in thermoelasticity, well-posedness, exponential sta-
bility.
AMS subject classification: 35 L 35, 74 F 05, 74 G 50.

1. Introduction

It is well known that the usual theory of heat conduction based on Fourier’s
law predicts infinite speed of heat propagation. Heat transmission at low tem-
perature has been observed to propagate by means of waves. These aspects have
caused intense activity in the field of heat propagation. Extensive reviews on
the so-called second-sound theories (hyperbolic heat conduction) are given in
Chandrasekharaiah [1] and in the books of Müller and Ruggeri [10] and
Jou et al. [5].

Instead of Fourier’s law and leading to the classical hyperbolic-parabolic
system of thermoelasticity together with the physical paradox of infinite prop-
agation speed through the heat conduction part, we consider the model pro-
posed by Lord and Shulmann [9]. Hetnarski and Ignaczak consider it using
the nonclassical approach of thermoelasticity in their review [4]. Some mathe-
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matical results concerning alternative thermoelastic theories can be found in
[14, 15, 16, 17, 18, 19, 20]. In [23] the thermoelastic damping in micro-beam
resonators is considered in the case when the Lord and Shulmann thermoelastic
theory is applied. The model that we consider here involves a system of two
coupled partial differential equations. It is a coupling of the plate equation with
heat conduction, the latter appearing in a hyperbolic model.

The system of Lord and Shulman has been studied before and, for example,
the exponential stability has been obtained for bounded reference configurations
as well as the nonlinear stability near the equilibrium, see [21, 22], for a coupling
of classical elasticity with the hyperbolic heat conduction model (Cattaneo’s
law).

For the coupling of the plate equation with the classical heat-flow equation,
i.e. heat conduction, is modeled by Fourier’s law, see e.g. [11, 6, 12, 7, 8, 2].

Here we think of an isotropic and homogeneous thermoelastic material in
R

3 ∋ (x, y, z), which occupies a plate of thickness ”h”; that is, −h/2 ≤ z ≤ h/2.
If we consider the through-thickness displacement

(1.1) u(x, y, t) := h−1

h/2
∫

−h/2

u3(x, y, z, t)dz,

we know that it satisfies the equation

(1.2) D△2u+ dα(1 + ν)△θ + ρhu,tt = 0,

where D = (1 − ν2)−1EI is the bending stiffness, E is Young’s modulus, ν is
the Poisson ratio, I = h3/12, α is the coefficient of thermal expansion and θ is
the first moment of temperature which is defined as

(1.3) θ(x, y, t) = I−1

h/2
∫

−h/2

zη(x, y, z, t)dz,

and which satisfies the equation

(1.4) c(θ,t + τθ,tt)−K△θ +
h

I
Kθ − αTE

1− 2ν
△(u,t + τu,tt) = 0,

where η(x, y, z, t) is the temperature, τ is the relaxation parameter for the Catta-
neo constitutive equation for the heat flux vector, K is the thermal conductivity
and c is the heat capacity.

It seems that this system of equations has not been derived before, cf. [23], for
the one-dimensional case. However, in view of the references [13, 23], this system
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corresponds to the field equations which govern the thermoelastic coupling for
a plate in the context of the Lord-Shulman theory. We here will deal with the
thermoelastic damping which is considered to be the significant loss mechanism
in micro-scale resonators. In this sense we point out that a good review of the
relevance of the thermomechanical damping in resonators can be found in [3].

In this paper we study four kinds of problem. One is to prove the uniqueness
and the instability of solutions when we assume very relaxed conditions on
the coefficients that determine the problem. Second problem is to determine
a suitable frame where the thermoealstic problem in micro-beam resonators is
well-posed. Third is to investigate the exponential stability of the solutions and
the fourth one is to prove the impossibility of localization of solutions.

This paper is organized as follows: in Section 2 we set down the field equations
and the boundary and initial conditions of the problem we consider in this
paper. The uniqueness and instability result is proved in Section 3. In Section
4 we prove the existence result. In Section 5 we prove for the case of bounded
reference configurations that the spectrum of the governing differential operator
lies strictly in the left complex half-plane. The last Section 6 is devoted to the
proof of impossibility of the localization of solutions.

2. Preliminaries

We consider the system which governs the micro-beam resonators in dimen-
sionless form for the Lord-Shulman theory of thermoelasticity. The system of
equations is (see [23] for the one-dimensional case)

a∆2u+ ∆θ + ü = F,(2.1)

∆θ −mθ + d∆ ˙̂u = c
˙̂
θ +G,(2.2)

where

(2.3) f̂ = f + τ ḟ .

In this system we assume that m, τ, c and d are positive. In the next section
we do not require the positivity of the parameter a, but it will be imposed in
later sections. F and G are external supply terms like the external force or heat
supply.

From now on, we consider a bounded reference configuration B ⊂ R
n, the

boundary of which fits the requirements of the divergence theorem. The space
dimension n ≥ 2 may be arbitrary but n = 2 corresponds to the model outlined
in the Introduction.
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In this paper we study solutions (u, θ) = (u(x, t), θ(x, t)), x ∈ B, t ≥ 0.
We study the qualitative behavior of classical solutions subject to the initial
conditions

(2.4) u(x, 0) = u0(x), u̇(x, 0) = v0(x), θ(x, 0) = θ0(x), θ̇(x, 0) = ϑ0(x),

and the boundary conditions

(2.5) u(x, t) = ∆u(x, t) = θ(x, t) = 0, x ∈ ∂B × [0,∞),

or

(2.6) u(x, t) = ∇u(x, t).n(x) = θ(x, t) = 0, x ∈ ∂B × [0,∞).

Standard notation is used, e.g. for the Laplace operator ∆, the gradient ∇,
or the Sobolev spaces Hm and Hm

0 .

3. Uniqueness and instability

In this section we present the problem of uniqueness and growth of the
solutions of the system (2.1), (2.2) subject to the initial conditions (2.4) and the
boundary conditions (2.5) or (2.6). It is worth noting that in this section, we
assume that d and c are positive, but we do not impose any condition on a.

To obtain the uniqueness result, it is sufficient to prove that the only solution
of the problem determined by the homogeneous version of the system (2.1), (2.2)

a∆2u+ ∆θ + ü = 0,(3.1)

∆θ −mθ + d∆ ˙̂u = c
˙̂
θ,(3.2)

with homogeneous boundary conditions (2.5) or (2.6) and initial homogeneous
conditions, is the null solution. The key is to define a suitable functional to which
the logarithmic convexity is applicable. In this situation the energy equation
gives

E(t) ≡
∫

B

(

d| ˙̂u|2+da|∆û|2+cθ̂2+τ(|∇θ|2+mθ2)+2

t
∫

0

(|∇θ|2+mθ2)ds
)

dV(3.3)

≡ E(0) (= 0).

We now define the new functional

(3.4) G(t) =

∫

B

(

d|û|2 + τ(|∇η|2 +mη2) +

t
∫

0

(|∇η|2 +mη2)ds
)

dV,
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where

(3.5) η(t,x) :=

t
∫

0

θ(s,x)ds.

Differentiating Eq. (3.4) we see that

G′(t) = 2

∫

B

(

dû ˙̂u+ τ(∇η∇θ +mηθ) +
1

2
(|∇η|2 +mη2)

)

dV,(3.6)

G′′(t) = 2

∫

B

(

|d ˙̂u|2 + τ(|∇θ|2 +mθ2)
)

dV(3.7)

+ 2

∫

B

(

d¨̂uû+ τ(∇η.∇θ̇ +mηθ̇) + (∇η.∇θ +mηθ)
)

dV.

We also see that

(3.8)

∫

B

(d¨̂uû+ ad|∆û|2)dV = −
∫

B

d∆θ̂ûdV,

and
∫

B

(

c(θ̂)2 + τ(∇η∇θ̇ +mηθ̇) + (∇η∇θ +mηθ)
)

dV =

∫

B

d∆θ̂ûdV.(3.9)

Now using (3.8) and (3.9) in (3.7), we derive

(3.10) G′′(t) = 2

∫

B

(

d(| ˙̂u|2 + τ(|∇θ|2 +mθ2)
)

dV − 2

∫

B

(

a|∆û|2 + c(θ̂)2
)

dV.

In view of the energy equation (3.3) we have

(3.11) G′′(t) = 4

∫

B

(

d| ˙̂u|2 + τ(|∇θ|2 +mθ2)
)

dV + 4

∫

B

t
∫

0

(|∇θ|2 +mθ2)dsdV.

Hence

(3.12) G′′G− (G′)2 ≥ 0,

where we have used the Cauchy–Schwarz inequality.
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Inequality (3.12) implies that t 7→ lnG(t) is a convex function of t and then

(3.13) G(t) ≤
[

G(0)
]1−t/T [

G(T )
]t/T

.

It then follows that G(t) ≡ 0 on the interval [0, T ] and from (3.4) û ≡ 0
in B × [0, T ]. In view of the initial conditions, we also obtain that u ≡ 0. So θ
satisfies Equation (3.2) without the d ˙̂u-term. It implies that θ ≡ 0 in B × [0, T ]
and the uniqueness is shown.

Now, we give growth estimates for some solutions of the problem determined
by the system (3.1), (3.2), boundary conditions (2.5) or (2.6) and initial condi-
tions (2.4). The key is again to find a suitable functional to which logarithmic
convexity is applicable. To this end, a modification of (3.4) is necessary. We take
again η as in (3.5). However, due to non-zero initial conditions we have:

(3.14) c ˙̂η − d∆û− [cθ0 + cτϑ0 − d∆u0 − dτ∆v0] = ∆η −mη.

The data terms are incorporated into the equation by defining Q(x) to be a
solution to the equation:

(3.15) ∆Q−mQ =[cθ0 + cbϑ0 − d∆u0 − db∆v0],

subject to the homogeneous boundary conditions

(3.16) Q(x) = 0,x ∈ ∂B.

The existence of Q is guaranteed by the existing results for elliptic equations.
Now, we define

(3.17) β := η +Q,

and (3.14) becomes

(3.18) c
˙̂
β − d∆û = ∆β −mβ.

Basing on (3.4) we now define the functional

(3.19) Gω,t0(t) =G0,0(t) + ω(t+ t0)
2,

where ω and t0 are positive constants to be selected, and

(3.20) G0,0(t) =

∫

B

(

d|û|2 + τ(|∇β|2 +mβ2) +

t
∫

0

(|∇β|2 +mβ2)ds
)

dV.



Qualitative aspects of solutions in resonators 351

In this situation, we also obtain (3.8), but (3.9) becomes

(3.21)

∫

B

(

c(θ̂)2 + τ(∇β∇θ̇ +mβθ̇) + (∇β∇θ +mβθ)
)

dV =

∫

B

d∆θ̂ûdV.

One also derives the formula for the energy:

E(t) ≡
∫

B

(

d| ˙̂u|2+ad|∆û|2+cθ̂2+τ(|∇θ|2+mθ2)+2

t
∫

0

(|∇θ|2+mθ2)dτ
)

dV(3.22)

≡ E(0).

By differentiating G(t) and using (3.8),(3.20) and the energy equation (3.21), it
is not difficult to see that

(3.23) G′′
ω,t0(t) = 4

∫

B

(

d| ˙̂u|2 + τ(|∇θ|2 +mθ2)
)

dV

+ 4

∫

B

t
∫

0

(|∇θ|2 +mθ2)dτdV − 2(2E(0) + ω).

Cauchy–Schwarz’s inequality implies that

(3.24) G′′
ω,t0Gω,t0 −

(

G′
ω,t0 −

ν

2

)2

≥ 0,

if

(3.25) ω = −2E(0),

and

(3.26) ν = 2

∫

B

(

|∇Q|2 +mQ2
)

dV.

If we take t0 such that G′
ω,t0(0) > ν, it may be proved that

Gω,t0(t) ≥
Gω,t0(0)G

′
ω,t0(0)

G′
ω,t0

(0)− ν exp

(

G′
ω,t0(0)− ν
G(0)

)

t− νGω,t0(0)

G′
ω,t0

(0)− ν .(3.27)

Thus, the function G0,0(t) satisfies the inequality

(3.28) G0,0(t) ≥
Gω,t0(0)G

′
ω,t0(0)

G′
ω,t0

(0)− ν exp

(

G′
ω,t0(0)− ν
G(0)

)

t

− νGω,t0(0)

G′
ω,t0

(0)− ν − ω(t+ t0)
2.
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Theorem 1. Let (u, θ) be a solution of the initial-boundary-value problem
determined by Eqs. (3.1), (3.2), (2.4) and (2.5) or (2.6), such that the initial
conditions satisfy the condition E(0) < 0. Then, as time increases, the function
G0,0 grows exponentially.

4. Well-posedness

In this section we prove existence of solutions of the problem determined by
the system (2.1), (2.2), the initial conditions (2.4) and the boundary conditions
(2.6)

The well-posedness result for the system can be achieved by an appropriate
choice of variables and spaces which reflect the spatial structure of the system.

For the transformation to a first-order system that finally will be character-
ized by a semigroup, we apply the differential operator “ ˆ ” from (2.3) to the
differential Equation (2.1) and obtain (now a > 0)

(4.1) a∆2û+ ∆θ̂ + ˆ̈u = F̂ .

We remark that finding of a solution (û, θ) allows to determine the desired
solutions (u, θ) of the original system.

Defining
V := (û, ût, θ, θt)

′

we obtain

(4.2) Vt = AV + F, V (0) = V 0,

with the (yet formal) differential operator A given by the symbol

Af :=











0 1 0 0
a∆2 0 −∆ −τ∆
0 0 0 1

0
d

cτ
∆

1

cτ
(∆−m) −1

τ











,

the right-hand side F given by

F := (0, F̂ , 0, G)′

and the initial value
V0(x) := (û, ût, θ, θt)

′(x, 0),

with its components being given in terms of the originally prescribed initial data
by using the differential equations.
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As the underlying Hilbert space we choose

H := (H2
0 (B))n × (L2(B))n ×H1

0 (B)× L2(B)

with inner product

〈V,W 〉H :=
(

d〈V 2,W 2〉+ ad〈∆V 1,∆W 1〉
)

+ τ(〈∇V 3,∇W 3〉+ τm〈V 3,W 3〉+ c〈V 3 + τV 4,W 3 + τW 4〉,

where 〈·, ·〉 denotes the usual L2(B)-inner product. The operator A is now given
as

A : D(A) ⊂ H 7→ H, AV := AfV,

with

D(A) := {V ∈ H | V 2 ∈ H2
0 (B)n, V 4 ∈ H1

0 (B), AfV ∈ H}.

The operator is obviously densely defined and dissipative, i.e.

∀V ∈ D(A) : Re 〈AV, V 〉H ≤ 0.

The latter follows since we have chosen the setting with the inner product just
in a way that we have

(4.3) 〈AV, V 〉H = −〈∇V 3,∇V 3〉 −m〈V 3, V 3〉.

As a consequence we also see that the operator A is invertible.

Lemma 2. 0 belongs to the resolvent set ̺(A), and A−1 is compact.

P r o o f. The solvability of AV = F is equivalent to solving

V 2 = F 1,(4.4)

−a∆2V 1 −∆V 3 − τ∇V 4 = F 2,(4.5)

V 4 = F 3,(4.6)

d

τc
∆V 2 +

1

τc
(∆−m)V 3 − 1

τ
V 4 = F 4.(4.7)

Eliminating V 2 and V 4, we have to solve

−a∆2V 1 −∆V 3 = F 2 + τ∆F 3,(4.8)

1

cτ
(∆−m)V 3 = − d

τc
∆F 1 +

1

τ
F 3 + F 4.(4.9)
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(i) First assume that F 3 ∈ H2(B) ∩ H1
0 (B). Then (4.9) determines V 3 ∈

H2(B)∩H1
0 (B), and then (4.8) determines V 1 ∈ H4(B)∩H2

0(B). Together
with (4.4) and (4.6) we have found V ∈ D(A) solving AV = F . Moreover,
the elliptic estimates for (4.8) and (4.9) allow us to conclude

(4.10) |V |H ≤ C|F |H,

with a positive constant C which does not depend on V (resp. F ).
(ii) Now let F ∈ H be arbitrary. We take a sequence (F 3

n)n ⊂ H2(B) ∩
H1

0 (B) with F 3
n → F 3 in H1

0 (B). Then we can apply part (i) to Fn :=
(F 1, F 2, F 3

n , F
4)′ and conclude, using (4.10), that Vn with AVn = Fn con-

verges to V ∈ H with V 2 ∈ H2
0 (B) and V 4 ∈ H1

0 (B). Moreover, for any
Φ ∈ (C∞

0 (B))4 we get, denoting by A∗
f the formal adjoint of Af in H,

〈V,A∗
fΦ〉H ← 〈Vn, A

∗
fΦ〉H = 〈AVn,Φ〉H → 〈F,Φ〉H.

Hence we have proved V ∈ D(A) and AV = F . Moreover, we get the
estimate (4.10) for any F ∈ H.

This proves 0 ∈ ̺(A), and the proof shows that (4.10) can be extended to

(4.11) |V |H + ‖V 1‖H4 + ‖V 2‖H2 + ‖V 3‖H2 + ‖V 4‖H1 ≤ C|F |H.

Using Rellich’s selection theorem we get the compactness of A−1.

As a standard conclusion now, from the dissipativity and Lemma 2, we obtain
thatA generates a C0-semigroup, and hence the initial (boundary) value problem
(4.2) is uniquely solvable:

Theorem 3. For any F ∈ C0([0,∞),D(A)) or F ∈ C1([0,∞),H) and any
V 0 ∈ D(A) there is a unique solution V to (4.2) with V ∈ C1([0,∞),H) ∩
C0([0,∞),D(A)).

We remark that the boundary condition (2.5) can be treated similarly. Also
we note that the well-posedness consideration in this section naturally extended
to unbounded domains.

5. Spectral bounds

We look at the homogeneous differential equation

Vt = AV,

arising for the boundary conditions (2.5), with A being defined in analogy to
the operator A in the previous section (cf. the remark following Theorem 3).
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Due to the boundary conditions, we can make the following expansion for V =
(V 1, V 2, V 3, V 4)′:

V (t, x) =

∞
∑

j=1

(αj(t), γj(t), δj(t), εj(t))
twj(x),

where (wj)j denote the eigenfunctions of the Laplace operator, under the Dirich-
let boundary conditions corresponding to the eigenvalue λj ,

−∆vj = λjwj , w = 0 on ∂B,

with
0 < λ1 ≤ · · · ≤ λj →∞ (as j →∞).

Then the coefficients satisfy the condition

α′
j = γj , γ′j = −aλ2

jαj + λjδj + τλjεj ,

δ′j = εj , ε′j = − d

cτ
λjγj −

1

cτ
(λj +m)δj −

1

τ
εj .

Eliminating γj and εj we obtain

α′′
j = −aλ2

jαj + λjδj + τλjδ
′
j ,

δ′′j = − d

cτ
λjα

′
j −

1

cτ
(λj +m)δj −

1

τ
δ′j .

Differentiating and eliminating αj , we obtain a fourth-order differential equation
for δj :

(5.1) cτδ′′′′j + cδ′′′j + (λj +m+ acτλ2
j + dτλ2

j )δ
′′
j

+ (acλ2
j + dλ2

j )δ
′
j + aλ2

j (λj +m)δj = 0.

We remark that αj , γj , and εj satisfy the same differential equation. The char-
acteristic polynomial Pj of this equation is given by

(5.2) Pj(β) = β4 +
1

τ
β3 +

1

cτ
(λj +m+ τ(ac+ d)λ2

j )β
2

+
1

cτ
(ac+ d)λ2

jβ +
a

cτ
(λ3

j +mλ2
j ).

The zeros of Pj are denoted by β1(j), . . . , β4(j) or, short, β1, . . . , β4. Let S denote
the spectral set of all zeros,

S := {βk(j) | j = 1, 2, 3 . . . ; k = 1, 2, 3, 4}.

We shall prove that it lies strictly in the left complex half-plane.
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Theorem 4.
∃ω > 0 : sup {Reβ | β ∈ S} ≤ −ω.

P r o o f. Let β ∈ S. Since A is dissipative we have

(5.3) Reβ ≤ 0.

Next let us show that there are no purely imaginary eigenvalues. For this purpose
let β = iµ with µ ∈ R \ {0}. Then µ satisfies the equation

(5.4) µ4 − i

τ
µ3 − 1

cτ
(λj +m+ τ(ac+ d)λ2

j )µ
2 +

i

cτ
(ac+ d)λ2

jµ

+
a

cτ
(λ3

j +mλ2
j ) = 0.

First we look at the imaginary part in Equation (5.4) and conclude that

(5.5) µ2 =
ac+ d

c
λ2

j .

Taking real parts in Equation (5.4) and using (5.5) we get

λj = −m ≤ 0,

which is a contradiction and hence proves that there are no purely imaginary
eigenvalues. It remains to show that

(5.6) ∃ω1 > 0 ∃ j0 ∀ j ≥ j0 ∀ k = 1, 2, 3, 4 : Reβk(j) ≤ −ω1.

In order to prove (5.6) we note that the characteristic equation Pj(β) = 0 can
be rewritten as

(5.7) β4−(β1+β2+β3+β4)β
3+(β1β2+β1β3+β1β4+β2β3+β2β4+β3β4)β

2

+ (β1β2β3 + β1β2β4 + β1β3β4 + β2β3β4)β + β1β2β3β4 = 0,

and we may assume, without any loss of generality, that

β2 = β1, β4 = β3.

Comparing (5.7) with (5.2) we obtain

Reβ1 + Reβ3 = − 1

2τ
,(5.8)

4Reβ1Reβ3 + |β1|2 + |β3|2 = − 1

cτ
(λj +m+ τ(ac+ d)λ2

j ),(5.9)

|β1|2Reβ3 + |β3|2Reβ1 = −ac+ d

2cτ
λ2

j ,(5.10)

|β1|2|β3|2 =
a

cτ
(λ3

j +mλ2
j ).(5.11)
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We conclude from (5.8), in view of (5.3), that

(5.12) Reβ1,2 = O(1), Reβ3,4 = O(1) (as j →∞).

This combined with (5.9) yields

(5.13) lim
j→∞

|β1|2 + |β3|2
λ2

j

=
ac+ d

c
.

Equation (5.11) implies

(5.14) lim
j→∞

|β1|2|β3|2
λ3

j

=
a

cτ
.

From (5.13) and (5.14) we obtain

(5.15) |β1|2 =
ac+ d

c
λ2

j + o(λ2
j ), |β3|2 =

a

τ(ac+ d)
λj + o(λj).

Combining Eqs. (5.15), (5.10) and (5.12) we get

|β1|2Reβ3

λ2
j

+
|β3|2Reβ1

λ2
j

= −ac+ d

2cτ
,

implying

(5.16) Reβ4 = Reβ3 −→ −
1

2τ
,

which, together with (5.8), yields

(5.17) Reβ2 = Reβ1 −→ −
1

2τ
.

If we choose (any, but fixed) ω1 satisfying the condition

0 < ω1 <
1

2τ
,

Eqs. (5.16) and (5.17) prove (5.6) (with j0 depending on ω1).
Now ω can be chosen as

ω := min {ω1,−ω2}
where

ω2 := max {Reβk(j) | j = 1, . . . , j0; k = 1, 2, 3, 4},
and ω2 < 0 because of (5.3) and the non-existence of purely imaginary eigenval-
ues.

As a corollary we get an estimate on the spectrum σ(A) of A, showing that
it lies strictly in the left complex half-plane.
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Corollary 5.

sup {Reβ | β ∈ σ(A)} ≤ −ω < 0.

P r o o f. Since A−1 is compact, by Lemma 2 we have

σ(A) = σp(A) (point spectrum).

For a possible eigenvalue β with eigenfunction V we can expand V into the series

V (x) =
∞
∑

j=1

(αj , γj , δj , εj)
′wj(x),

with complex numbers αj , γj , δj , εj . It follows

Pj(β)αj = Pj(β)γj = Pj(β)δj = Pj(β)εj = 0,

that is, if β is an eigenvalue then it necessarily belongs to the spectral set S.

This result confirmes the expectation that the semigroup is exponentially
stable, but the formal proof of this property is still missing. Standard approaches
(multiplier methods, uniform boundedness of resolvents) failed up to now, and
the problem remains as a challenge for future investigations.

6. Impossibility of localization

In the previous section we have proved that the decay of solutions is expected
to be controlled by a negative exponential. A natural question is to ask if the
decay is fast enough to guarantee that the solution vanishes in a finite time. In
this section, we prove the impossibility of localization of solutions with respect
to the time variable. This would give information concerning the lower bound
for the decay of the solutions. That is, the aim of this section is to establish the
following result:

Theorem 6. Let (u, θ) be a solution of the problem determined by Eqs. (3.1),
(3.2), (2.4), (2.5), which vanishes for all t ≥ t0 for some t0 > 0. Then (u, θ) is
the null solution.

P r o o f. The impossibility of localization of solutions is equivalent to the
uniqueness for the backward in time problem. Therefore we consider

a∆2u+ ∆θ + ü = 0,(6.1)

−∆θ +mθ + d∆ ˙̃u = c ˙̃θ,(6.2)
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where we have used the notation

(6.3) f̃ = f − τ ḟ .

It is sufficient to prove that the only solution for null initial data for the
system (6.1), (6.2) is the null solution.

We define the new energy term

E∗(t) :=
1

2

∫

B

(

d| ˙̃u|2 + ad|∆ũ|2 + c(θ̃)2 + τ(|∇θ|2 +mθ2)
)

dv.

We easily obtain, using the boundary conditions,

(6.4)
dE∗

dt
=

∫

B

(|∇θ|2 +mθ2)dv.

This implies the existence of a positive constant C such that for all t ≥ 0

(6.5)
dE∗

dt
≤ CE∗(t).

Thus, we obtain the estimate

(6.6) E∗(t) ≤ E∗(0) exp(Ct),

and for null initial data we deduce that E(t) = 0 for all t ≥ 0. It follows that
θ = 0 and ũ = 0. In view of the initial conditions, the solution of the ordinary
differential equation ũ = 0 is u = 0, and then the uniqueness of solutions is
proved.
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