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The paper discusses finite volume WENO reconstruction applied to simulation of
compressible 3D Euler flows. The main objective of this work is presentation of the
new reconstruction procedure (third-order of accuracy in space), together with the
procedure for integration of numerical fluxes applied to simulations of compressible
3D Euler flows, using unstructured meshes.

1. Introduction

Simulation of compressible flows with shockwaves is still an important area
of research with significant impact on industrial applications. In 3D cases and
on unstructured meshes numerical viscosity has a significant adverse effect on
accuracy, especially when prediction of the drag coefficient is considered.

Traditionally, in CFD second-order accurate numerical methods are preferred
in practical calculations. Those methods are characterised by simplicity and
robustness, but large amount of spurious entropy production leads to problems
with drag coefficient calculations. High-order methods are often perceived as less
robust as well as very difficult to implement on unstructured meshes.

The aim of this paper is a detailed investigation of the new (third-order)
finite volume discretisation used for simulation of 3D compressible flows on un-
structured meshes.

2. Finite Volume Method

2.1. Euler model

In present work the Euler model of the fluid is used. The equations of state
in conservative form can be expressed as:

*)The paper was presented at XVIII Polish Conference of Fluid Mechanics (KKMP),
Jastrz ↪ebia Góra, 21–25 September, 2008.

†)Robert Wieteska died on 30 October, during the publication process of this paper.
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∂U

∂t
+ ∇ · F (U) = 0,(2.1)

U =

⎡
⎣ ρ

m

ε

⎤
⎦ , F (U) =

⎡
⎣ mT

1
ρ m ⊗m + p I

HmT

⎤
⎦ .(2.2)

where in Eq. (2.2) ρ denotes density, m = ρv momentum vector, p pressure,
ε total energy per unit volume, γ ratio of the specific heat capacities and H is
the total enthalpy equal to:

H =
γε

ρ
− (γ − 1)

mTm

2ρ2
.

This system of equations has to be completed with the equation of state for
perfect gas

(2.3) p = (γ − 1)

(
ε −

mTm

2ρ

)
.

2.2. Finite Volume Method discretization

Finite Volume Method consists in integration of the Euler equations over the
control volume Ωj . After integration one obtains:

(2.4)

∫
Ωj

∂U

∂t
dΩ = −

∫
∂Ωj

F (U)n ∂Ωj.

Taking further Uj as the cell average value of U in the volume Ωj :

(2.5) Uj =
1

|Ωj |

∫
Ωj

U dΩ, |Ωj | = Vol (Ωj) ,

the above relation can be rewritten as:

(2.6)
d

dt
Uj = −

1

|Ωj |

∫
∂Ωj

F (U) · n ds.

Because the typical grids used in the calculations consist of simple shapes (tri-
angles, quadrilaterals, tetrahedrals), we can rewrite the right-hand side of the
Eq. (2.6) in the much more simple form as:∫

∂Ωj

F (U) · n ds =
∑

i

∫
Γi

F (U) · ni ds =
∑

i

F�
i (U) ,(2.7)

F�
i (U)

def
=

∫
Γi

F (U) · ni ds,(2.8)
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where F�
i (U) is a numerical flux which must be calculated using U at each

cell face rather than taking the average value from the cell center. This numer-
ical flux is calculated by the usual procedure of solving the simplified Riemann
problem. Finally the Finite Volume discretisation of the Euler equation can be
expressed as

(2.9)
d

dt
Uj = −

1

|Ωj |

∑
i

F�
i (U) .

Collection of Eqs. (2.9) written for all control volumes forms a system of
nonlinear differential equations. In the present paper only a stationary case is
considered. In the present version, the control volumes coincide with mesh cells
while unknowns are assigned to cell’s centre (cell-centered approach).

3. Third-order reconstruction

In order to calculate fluxes at the cell walls, the solution is reconstructed
within each cell using the information from the neighbourning cells. The order
of spatial discretisation depends on two factors:

• the order of reconstruction within the cell,
• the order of integration formula used at the cell walls to calculate the

fluxes.
The next subsections are devoted to the new third-order reconstruction proce-
dure and the integration method. This approach is subsequently coupled with
the WENO (Weighted Essentially Non-Oscillatory) method to eliminate non-
physical oscillations in the numerical process.

3.1. Gradient calculation – indirect method

In the first approach which generalises the ideas of Shu [1], the higher-order
gradient is calculated using linear combination of 1-st order accurate gradients
calculated on different local stencils. We shall assume now that ϕp denotes func-
tion value at the p-th cell (p = 0 corresponds to the cell in which gradient is
reconstructed).

3.1.1. First step. The Taylor expansion formula can be written as:

(3.1) ϕp − ϕ0 = rT
p0 · ∇ϕ

∣∣∣
0
+

1

2
rT
p0 · ∇

2ϕ
∣∣∣
0
rp0 + O

(
h3

)
,

where rp0 = rp − r0 denotes distance between the respective cell centres (see
Fig. 1), while ∇2ϕ =

[
∂2ϕ/∂xi∂xj

]
is the Hessian matrix (h denotes the char-

acteristic size of the cell).
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Fig. 1. Typical stencil used for indirect method (r0, rp denote the positions of the
corresponding cell centers, ϕ is the function value).

The gradient can be approximated as a linear combination of function incre-
ments:

(3.2) Gϕ =
m∑

p=1

Gp · wp · (ϕp − ϕ0) ,

where wp are the known linear weights. Usually wp is taken proportional to

wp =
1

‖rp0‖
.

The problem consists in finding such coefficients Gp, which depend only on the
local geometry of the mesh. For tetrahedral cells m = 4, for triangles m = 3
(Fig. 1). After substituting (3.2) into (3.1) one obtains:

Gϕ =

m∑
p=1

Gpwp

[
rT
p0∇ϕ

∣∣∣
0
+

1

2
rT
p0∇

2ϕ
∣∣∣
0
rp0 + O

(
h3

)]
,

Gϕ =

m∑
p=1

Gpwpr
T
p0∇ϕ

∣∣∣
0
+

1

2

m∑
p=1

Gpwpr
T
p0∇

2ϕ
∣∣∣
0
rp0 + O

(
h2

)
.(3.3)

In order to obtain the first-order formula:

(3.4) Gϕ = ∇ϕ
∣∣∣
0
+ O (h)

one should compare Eqs. (3.4) and (3.3):

(3.5) ∇ϕ
∣∣∣
0
+ O (h) =

m∑
p=1

Gpwpr
T
p0∇ϕ

∣∣∣
0
+

1

2

m∑
p=1

Gpwpr
T
p0∇

2ϕ
∣∣∣
0
rp0 + O

(
h2

)
,

which produces the system of linear equations with the unknown coefficients Gp:
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(3.6)
m∑

p=1

Gpwpr
T
p0 = I.

This system is under/over–determined and is solved in the least-square sense
by applying a sequence of Householder transformations. In different form this
system can be expressed as:

(3.7) ∀e ∈ R
n,

m∑
p=1

Gpwpr
T
p0e = e.

3.1.2. Second step. To increase the order of the method a collection of sten-
cils around the cell is used. The known coefficients Gpα (α = 1, . . . ,m′) for
each stencil are used for calculation of a gradient with second-order accuracy.
A collection of stencils used in calculations (for 2D case) is presented in Fig. 2.

Fig. 2. Collection of stencils used in the indirect method (α – denotes stencil number,
p – denotes local cell number).

On each stencil α the first-order gradient can be expressed now as:

(3.8)
G

α
ϕ = ∇ϕ

∣∣∣
0
+

1

2

m∑
p=1

GpαwpαrT
p0α · ∇2ϕ

∣∣∣
0
rp0α + O

(
h2

)
,

rp0α = rpα − r0α,

On the other hand on each stencil α

(3.9) G
α
ϕ =

m∑
p=1

Gpα · wpα · (ϕpα − ϕ0α) .

Higher-order gradient can be obtained by linear combination of lower-order
gradients.

(3.10) Gϕ =
m′∑

α=0

Mα · Gα
ϕ + O

(
h2

)
.



496 R. Wieteska, J. Rokicki

Comparing Eqs. (3.10) and (3.8) where Mα are unknown matrix coefficients,
one obtains

(3.11) ∇ϕ
∣∣∣
0

=

( ∑
α

Mα

)
∇ϕ

∣∣∣
0
+

1

2

∑
α

Mα

m∑
p=1

GpαwpαrT
poα∇

2ϕ
∣∣∣
0
rp0α.

The second-order approximation requires one to solve (in a least square sense)
an under/over–determined linear systems for unknown matrices Mα:

(3.12)

m′∑
α

Mα = I
(
Mα = MT

α

)
,

∀ E ≡ ET ∈ R
3×3,

m′∑
α

Mα

m∑
p=1

GpαwpαrT
p0αErp0α = 0

(m′ denotes the number of stencils).

3.2. Gradient calculation – direct method

Analogous procedure as that presented in the previous subsection was
adopted for the direct method to calculate a gradient with the second-order
accuracy. The starting point is also a Taylor expansion formula

ϕp − ϕ0 = rT
p0 · ∇ϕ

∣∣∣
0
+

1

2
· rT

p0∇
2ϕ

∣∣∣
0
rp0 + O(h3)

but unlike in the previous subsection, we construct a larger stencil containing
more cells (for a 2D case see Fig. 3).

Fig. 3. Typical stencil used for the direct method.
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Again the gradient Gϕ is expressed as in Eq. (3.2), but in this variant the
gradient has to be calculated directly with the second-order accuracy:

(3.13) Gϕ = ∇ϕ|0 + O
(
h2

)
.

Substituting incremental form of the gradient (3.2) into the Taylor formula and
reordering terms, one obtains:

Gϕ =

m∑
p=1

Gpwpr
T
p0∇ϕ

∣∣∣
0
+

1

2

m∑
p=1

Gpwpr
T
p0∇

2ϕ
∣∣∣
0
rp0 + O

(
h2

)
and finally the expression that helps to find the unknown coefficients:

∇ϕ
∣∣∣
0
+ O

(
h2

)
=

m∑
p=1

Gpwpr
T
p0∇ϕ

∣∣∣
0
+

1

2

m∑
p=1

Gpwpr
T
p0∇

2ϕ
∣∣∣
0
rp0 + O

(
h2

)
.

In this case it is needed to solve the linear system in the form:

∀ e ∈ R
3,

m∑
p=1

Gpwpr
T
p0e = e,

∀ E ≡ ET ∈ R
3×3,

m∑
p=1

Gpwpr
T
p0Erp0 = 0.

(3.14)

Restriction for symmetry of E corresponds to the symmetry of the Hessian. In
this variant the number of equations is equal to n + n (n + 1) /2, the number
of unknowns is m · n (n is a space dimension, m is a number of cells in stencil
and may be different for different stencils in the grid). Minimal m = 9 in R

3

is needed, but for the typical grids this case hardly ever appears (is eliminated
during the triangulation process). For the typical grid in 3D the number of cells
that create such stencil is usually equal to 50÷60. It is important to note that the
cost of the indirect method is much higher than the present direct method [6].
Therefore the direct method will be used further in numerical experiments.

3.3. Hessian calculation

A similar approach can be applied again to evaluate the Hessian:

(3.15) Hϕ =

m∑
p=1

Hp · w̃p · (ϕp − ϕ0)

where the weights w̃p can be assumed as w̃p = (1/‖rp0‖)
2 and the Hp are

unknown matrix coefficients. These coefficients can be found by solving the
system:
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∀ e ∈ R
3,

m∑
p=1

Hpw̃pr
T
p0e = 0,

∀ E ≡ ET ∈ R
3×3,

m∑
p=1

Hpw̃pr
T
p0Erp0 = E.

(3.16)

3.4. Numerical integration

All numerical schemes adopted for FVM require numerical integration of
fluxes on the cell walls [4]. In the present work, a Gauss–Legendre quadra-
ture method for numerical integration over the standard triangular surface was
adopted. F�

i (U) (see Eq. (2.9)) is obtained as a sum of partial fluxes calculated
in the specific point (see Fig. 4) defined as

(3.17) rj = rc +
1

2
rjc, j = 1, 2, 3,

where rc is a geometrical center of the wall while rjc connects the wall center
with the wall vertex.

r1

r3

r2rc

Fig. 4. Gaussian quadrature points used for integration over the triangle.

All quadrature weights are equal to 1/3. Finally, the numerical flux for a typ-
ical wall can be expressed as:

(3.18) F�
i (U) =

1

3

3∑
j=1

F j
i (U) .

4. Nonlinear weighting

The reconstruction proposed in Sec. 3 is linear in nature. Therefore it cannot
lead to monotonicity in the vicinity of discontinuities (Godunov theorem). Two
approaches can be used to suppress unphysical oscillations:
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• nonlinear weighting between different high-order reconstructions (WENO
– Weighted Essentially Non-Oscillatory type approach [1–3]);

• lowering the order of reconstruction near discontinuities (MUSCLE-type
approach [5]).

Both approaches were implemented and compared. In both cases several stencils
S1, S2, S3, . . . , SM were used for each control volume Ωh (see Fig. 5). In both
cases the central stencil S1 was built by collecting cells having at least one
vertex in common with the Ωh cell (see solid-line polygon in Fig. 5). This is in
contrast to the second-order procedure in which stencil consists of cells which
have exactly one wall in common with Ωh. For the WENO case additional biased
stencils were added, each biased stencil being in fact central stencil for the cell
which has a common wall with Ωh (cells with light dots in their centre in Fig. 5).
This algorithm to select stencils is completely general and fully applicable to 2D
and 3D general meshes.

The WENO- type approach consists of the following steps:
• Obtain a third-order reconstruction polynomial, denoted by pi, associated

with each stencil Si, which approximates the solution on Ωh.
• Calculate oscillation indicator oi for each function pi.
• Calculate weights for each pi using oscillation indicator oi.
• Find the global reconstruction function for a control volume Ωh as

a weighted average of all pi.
The MUSCLE-type approach consists of the following steps:
• Obtain a lower-order gradient GI and the second-order gradient G (using

direct procedure).

Fig. 5. A series of stencils used in the third-order WENO reconstruction procedure (solid
line triangle – the Ωh cell, solid line polygon – central stencil, broken line polygons – biased

stencils).
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• For the smooth fields, GI and G should differ by the first-order term:

(4.1) ‖GI − G‖2 ∼ C� · h,

where h is the local cell size, while the constant C� is related to the norm
of the Hessian. The ratio:

(4.2) C� =
‖GI − G‖2

h

is therefore used to design a continuous switching function allowing to
reduce the approximation order in the neighbourhood of discontinuity.
It is assumed that C� < Cmax corresponds to the smooth field where the
third-order reconstruction is possible. Therefore, modified gradient Ĝ and
Hessian Ĥ are calculated as:

(4.3) Ĝ = θ · G + (1 − θ) · GI , Ĥ = θ · H

where:

(4.4) θ = exp(−max (0, C� − Cmax)
4)

and the value of Cmax is taken equal to 10.
Numerical experiments show that the results obtained by WENO scheme

are significantly better, especially for fully transonic flows. In the MUSCLE-
type approach (as it is shown in Fig. 6) the residual error is stabilized prior to
achieving convergence (even if the value of Cmax is changed).

iteration

R
es

(ρ
)

100 200 300 400 500 600 700 800 900 100010-6

10-5

10-4

10-3

10-2

10-1

100

101

MUSCLE scheme
WENO scheme

Fig. 6. Comparison of convergence for WENO and MUSCLE-type schemes.
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4.1. The WENO reconstruction

In our case the reconstructed function for each control volume is given with
the third-order accuracy on each stencil S1, . . . , SM . The final WENO recon-
struction for each control volume is defined as a weighted average

(4.5) ph =

M∑
i=1

ωi · pi.

Oscillation indicator can be defined as:

(4.6) oi =
∑

1≤|α|≤ζ

∫
h2|α|−1 ‖Dαpi (x)‖2 dΩ,

where ζ is an order of accuracy, h a typical linear size of the cell and M is a num-
ber of stencils used for the local reconstruction (α denoting a multiindex*)).

The weights are calculated using algebraic formula:

(4.7) ωi =
(ε + oi)

−r∑M
i=1(ε + oi)−r

.

In the above, parameter r determines the behaviour of the scheme (r = 4 [3]).
Increasing r results in increasing the influence of a single stencil. In the limit
r → ∞ formula (4.7) leads to ENO scheme where only one stencil out of many
is used for reconstruction. Following [3] the additional parameter ε is chosen to
be around 10−6. Its role is to eliminate problems in areas where oi approaches
zero (e.g., near stagnation points).

5. Numerical tests

5.1. Sinusoidal bump

The performance of the full method was investigated for the compressible
flow in the 3D channel with sinusoidal bump. The height, width and the length
of the channel were 0.5, 0.4 and 2.0 respectively. The shape of the lower wall
was described by the function

zL (x) =

{
0 x /∈ 〈0, 1〉,

1
2 sin2 (πx) x ∈ 〈0, 1〉.

*)Because the reconstruction is of third-order of accuracy, |α| = 1, 2 (j, k = 1, 2, 3)

D|α|=1 =
∂

∂xj

, D|α|=2 =
∂

∂xj

∂

∂xk

.
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Nine meshes were generated. Number of cells in each grid and the characteristic
cell size can be found in Table 1. Between consecutive meshes the cell size was
changed (on average) as:

(5.1) q =
hk+1

hk
= 2−2/9 ≈ 0.85.

Figure 7 shows the typical grid used for the grid convergence studies.

Table 1. Grid parameters for the sinusoidal channel test.

characteristic size number of cells
k

hk Nk

0 0.10000 2781

1 0.08524 4596

2 0.07349 7214

3 0.06300 11795

4 0.05400 18439

5 0.04629 28512

6 0.03968 47077

7 0.03403 73695

8 0.02916 116971

Fig. 7. Typical grid used for the sinusoidal channel test.

5.1.1. Subsonic test. The first comparison between the 2nd order WENO and
the present 3rd order method for complete Euler algorithm was performed for
the fully subsonic case (Ma = 0.5 at the inlet). Figure 8 shows the estimated
error as a function of the stepsize h (the methodology to estimate the error was
first introduced in [7] and subsequently generalised in [6]).

It is well visible that the new reconstruction procedure gives better (consid-
ering the slope of the line) results in comparison with the standard second-order
method where only the gradient is calculated. Both approaches (direct and in-
direct – see Sects. 3.2 and 3.1) to calculate gradient provide similar accuracy.
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h

||L
||

1

0.04 0.06 0.08 0.1

10-4

10-3

L1 - third order (indirect method)
n=2.46
L1 - second order
n=2.06
L1 - third order (direct method)
n=2.65

Fig. 8. Estimated ‖L‖1 error for subsonic flow in the channel.

Additionally it was shown in [6] that the method is not sensitive to significant
deformation of the mesh cells.

5.1.2. Transonic test. The second comparison was performed for a transonic case
(Ma = 0.55 at the inlet). Figure 9 shows an estimated error as a function of the
stepsize h.

h

||L
||

1

0.02 0.04 0.06 0.08 0.1 0.12

0.002

0.004

0.006

0.008

0.010

L1 - second order (direct method)
n=1.17
L1 - third order (direct method)
n=1.63

Fig. 9. Estimated ‖L‖1 error for transonic flow in the channel.

For transonic flow, the 3rd order method still gives better results than its 2nd
order counterpart. However, this improvement of accuracy is largely obtained
by reducing spurious entropy production on the wall. In the transonic case the
third-order method provides thinner shock-waves (as judged by the entropy
distribution – Fig. 10).
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X

∆S

-0.5 0 0.5 1 1.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

second order
third order (direct method)

Fig. 10. Entropy distribution at the lower wall of the channel for the transonic case with
Ma=0.55 at the inlet.

The entropy is calculated here by the following equation:

(5.2) ∆S ∼ ln
p

p∞
− ln

(
ρ

ρ∞

)γ

.

To suppress oscillation, the full WENO method was used while the gradient
was evaluated using the direct method.

5.2. Onera M6 Wing

The next testcase used for verification of the third-order method is the flow
past M6 ONERA wing with Mach number at infinity equal 0.84. For such a flow,
two oblique shock waves merge near the tip of the wing on the upper surface
(see Fig. 11).

1.07

1.12

1.20

1.18
1.40

0.85
0.88

0.88

0.82

0.82

Fig. 11. Pressure coefficient distribution on the ONERA M6 wing obtained by the
third-order WENO method (Ma = 0.84, α = 3.04).
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Fig. 12. Total pressure loss for different sections of M6 ONERA wing (η denotes the relative
position of the cross-section), Ma = 0.84, α=3.04.
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Additional results obtained by the second-order FV scheme, were used as the
reference for quantitative comparison. All calculations were performed on the
same grid which consisted of 316275 nodes, 1940182 cells, 2289199 edges and
3913107 faces. The pressure distribution obtained by both methods was very
similar, the difference becomes visible for the total pressure loss.

Figure 12 presents total pressure loss at different sections of the wing. Total
pressure loss coefficient was defined as

(5.3) q = 1 −
pt

pt∞
,

where pt and pt∞ denote total pressure at a given point and at infinity, respec-
tively. This coefficient is related to generation of spurious (numerical) entropy.
Therefore lower value of this coefficient corresponds to overall higher quality
simulation results.

As can be seen in Fig. 12, the third-order method generates significantly
smaller amount of spurious entropy in all sections. This should improve the
accuracy with which the drag coefficient is calculated (the error of the drag
coefficient is directly related to the amount of spurious entropy production).

6. Computational cost

Only limited number of comparisons were made with respect to relative
increase of cost between the second and third-order methods. It was estimated
however that the cost of single iteration is doubled in the third-order method.
Surprisingly, however, the number of nonlinear iterations was roughly equal in
both approaches. This might be due to the fact that in both cases, a very simple
linear preconditioner was used (in the Newton procedure) [6].

7. Conclusions

The paper deals with the cell-centred Finite-Volume WENO method, which
was extended to third-order accuracy for unstructured tetrahedral (triangu-
lar) meshes. The algorithm to obtain the third-order reconstruction (includ-
ing second-order gradient vector and first-order Hessian matrix) was presented,
based on the general least-squares approach.

In order to deal with discontinuous solutions, the nonlinear weighting (WENO
type) algorithm was adapted to the present reconstruction method. The full al-
gorithm was tested for both the subsonic and transonic flows in the 3D channel
with sinusoidal bump on the lower wall and for the Onera M6 Wing.

The subsonic results (for the sinusoidal bump) prove that the presented third-
order method significantly improves the accuracy of the solution in comparison
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with the standard second-order WENO method. This improvement of accuracy
for transonic cases is largely obtained by reducing spurious entropy production
on the wall.
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