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e-mail: stankiewicz@stanton.ice.put.poznan.pl

morzynski@stanton.ice.put.poznan.pl
roszak@stanton.ice.put.poznan.pl

2)Technische Universität Berlin
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Model reduction based on Galerkin projection is a key technique used in feedback
flow control. It significantly accelerates the flow computations, and thus it can be
suitable for the aeroelastic simulations or, generally, in the flow analysis of changing
configurations and boundaries. The present paper concerns the reduced-order
Galerkin modelling of 2D flow around NACA-0012 airfoil, with angle of attack
changing from α = 30◦ to α = 45◦. It emphasizes the requirements of simplicity
and accuracy of reduced order models (ROMs) used in control applications and
discusses possible mode bases. Finally, it describes the constructed model, based on
the modes resulting from Proper Orthogonal Decomposition (POD) and the novel
technique of continuous mode interpolation. This method allows smooth transition
between different operating and boundary conditions and allows the design of
least-dimensional Galerkin model for control purposes.

1. Introduction

Fluid flow is the cause of a number of phenomena, that significantly influ-
ence the efficiency of designed products. The reduction of undesirable separation

*)The paper was presented at XVIII Polish Conference of Fluid Mechanics (KKMP),
Jastrz ↪ebia Góra, 21–25 September, 2008.
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or turbulence, leading to aerodynamic drag increase, flutter, reduction of lift
force, etc., is possible by means of flow control techniques. Such control may be
passive or active.

Passive control requires no external energy source and is usually based on the
modification of flow domain with splitter plates, control wires, wake disruptors
or riblets, what influences the vortex generation [1, 2].

Active control utilizes external energy sources – the actuators. If the actu-
ation is independent of the state of the flow, it is called open-loop control. In
feedback (closed-loop) flow control the actuation is based on the up-to-date state
of the flow, measured by a certain number of sensors placed in the flow domain.
The data from the sensors is processed by a controller, that requires some kind
of mathematical model of the flow.

While the accuracy and the dimension of the model determine the utility of
the control, neither black-box models nor Navier–Stokes equations (1.1) can be
used in real applications requiring accurate flow prediction,

(1.1) ∂tu + ∇ · (u ⊗ u) + ∇p −
1

Re
�u = 0.

The discretized Navier–Stokes equations can be considered as a high-dimen-
sional model, containing thousands or millions of degrees of freedom. Real-time
control requires very short time (the order of milliseconds) between sensing the
flow state and the actuation. It is impossible to solve the high-dimensional flow
model in such a short time.

To overcome this problem, low-dimensional models, containing only a few
degrees of freedom, are used.

The aim of present work is to construct a low-dimensional model of flow
around an airfoil with changing angle of attack.

One of the most commonly used techniques of model reduction is the Galer-
kin method [3, 4], described in Sec. 3. Possible mode bases for low-dimensional
Galerkin modelling are discussed in Sec. 4. Section 5 provides the description
of Proper Orthogonal Decomposition, used to compute empirical modes for the
chosen test-cases.

The desired model, useful in such time-consuming flow analyses as optimiza-
tion of passive control, aircraft maneuver analysis or fluid-structure interaction
computations, must be able to adapt to varying operating and boundary con-
ditions of the flow. The key technique for such an adaptation is continuous
mode interpolation [5, 6], presented in Sec. 6. Reduced Order Models (ROMs)
of flow around the airfoil with changing angle of attack α, using POD modes
and continuous mode interpolation, are presented in Sec. 7.



Reduced order modelling of a flow around an airfoil. . . 511

2. Test-case problem description

In this study, the flow around well-known NACA-0012 airfoil is considered.
Small value of Reynolds number and large angles of attack have been chosen to
make the vortex street apparent. Due to small Reynolds number (Re ≈ 45, re-
lated to the chord length), Direct Numerical Simulation (DNS) [7] and following
POD decompositions are performed on two-dimensional meshes. For each angle
of attack used, they have the same number of degrees of freedom (DOFs) and
topology. These finite element meshes are obtained by the spring-deformation
[8] of initial grid for α = 30◦ (Fig. 1).

Fig. 1. Top: computational domain for α = 30◦, discretized with Finite Element Method
(initial mesh). Bottom: deformed mesh used in design of model GM-2 (α = 45◦).

Initial conditions describe steady flow at α = 30◦. The uniform stream is hor-
izontal, defined on left, top and bottom boundaries of the domain. These condi-
tions are set to secure the repeatability of the results regardless the software used.
Small disturbance of velocity on the boundary of airfoil (set for t ≤ 1) enforces
the transition to periodic flow and limit-cycle oscillations (LCO) (Fig. 2, top).

Next, for 500 s ≤ t ≤ 510 s, the angle af attack increases to the value of
α = 45◦. This change affects the coherent structures appearing in the flow
(Fig. 2, bottom).
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 DNS (a=30)
 t = 102
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 t = 600
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Fig. 2. The streamlines of periodic flow at α = 30◦ (top) and α = 45◦ (bottom).

New limit-cycle oscillations are characterized by different values of period
size, kinetic energy of disturbance, shift-mode amplitude, etc. All these param-
eters are compared with previous state (α = 30◦) in Table 1.

Table 1. The comparison of flow properties for limit cycle oscillations and two
values of angle of attack.

Angle of attack α = 30◦ α = 45◦

Time the LCO is reached tLCO1 ≈ 65 s tLCO2 ≈ 550 s

Period size T = 6.85 s T = 8.22 s

Kinetic energy of the disturbance TKE = 2.66 TKE = 4.69

Central streamline amplitude AC = 62% AC = 107%
chord length chord length

Shift-mode amplitude ashift = 2.839 ashift = 5.377

Shift-mode, defined as a difference between steady solution and a mean flow,
is used to stabilise the reduced-order model [4].

3. Galerkin method

Model reduction of the flow shown in previous section is based on the as-
sumption that the state of flow u can be approximated by a base flow u0 (e.g.
steady or mean solution) and a sum of products of modes uj and Fourier coef-
ficients aj , describing the disturbance (3.1):

(3.1) u[N ] = u0 +

N∑
j=1

ajuj =

N∑
j=0

ajuj , a0 ≡ 1.
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Due to the use of finite number of modes N , the right-hand-side of approxi-
mated Navier–Stokes equation is equal to residual R[N ] (3.2):

(3.2) ∂tu
[N ] + ∇ · (u[N ] ⊗ u[N ]) + ∇p[N ] −

1

Re
�u[N ] = R[N ].

The Fourier coefficients in every time step can be computed after projection
of approximated Navier–Stokes equation onto the space spanned by selected
modes (so-called Galerkin projection). In Hilbert space, it is done by the compu-
tation of inner products of residual R[N ] and each of the modes ui, and equating
them to zero (3.3). The inner product is affected by the (varying) computational
domain:

(3.3) (ui, R
[N ])Ω =

∫

Ω

uiR
[N ] dΩ = 0.

This approach leads to the system of ordinary differential equations (Galerkin
System) (3.4), linking the Fourier coefficients a, their time derivatives ȧ and
constant parameters lij and qij (3.5):

(3.4) ȧi =
1

Re

N∑
j=0

lijaj +
N∑

j=0

N∑
k=0

qijkajak,

where:

(3.5) lij = (ui,�uj)Ω and qijk = −(ui,∇ · (uj ⊗ uk))Ω

are the results of Galerkin Projection of appropriate terms of approximated
Navier–Stokes equations.

Following B. R. Noack, P. Papas and P. A. Monkewitz [9], pressure term
−∇p is dependent on Fourier coefficient values, so p can be derived from Pois-
son’s equation (3.6):

(3.6) �p = −∇ · (u · ∇)u.

Galerkin projection of this term leads to surface integral (3.7):

(3.7) (ui,−∇p)Ω = −

∮

∂Ω

uip dA.

As was noticed by B. R. Noack, P. Papas and P.A. Monkewitz [10], in case
of absolutely unstable wake flows and arbitrarily large domains the pressure term
can be neglected. Such a situation occurs for the cases analysed in this paper.
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4. Possible mode bases

The set of modes used for low-dimensional modelling can be obtained math-
ematically, physically or empirically (Table 2) [9].

The examples of mathematical modes are solutions of the carrier-field an-
satz [11], generalised streamfunctions [11, 12], spectral methods based on Fourier
decomposition and Chebyshev polynomials [13], or wavelets [14].

Table 2. Galerkin models for Navier–Stokes equations. An ‘X’ denotes that
Galerkin approximation is affected by property [9].

Galerkin method computational traditional

modes local global

(e.g. FEM) math. physical empirical

boundary conditions X X X X

continuity equation X X X

Navier–Stokes eq. X X

flow data X

model dimension high med. med.- low low

grid dependence X independent

They do not depend on Navier–Stokes equation or flow data, and the only
required information is geometry of domain and boundary conditions. The utility
of these modes is reduced to the configurations with high symmetry, like the
Taylor–Couette equation or canal flow [15], due to high computational costs
and a large number of modes required to represent real flow.

Physical modes can be divided into eigenmodes of the Stokes problem
[16, 17], singular Stokes modes [18] and eigenmodes of linearised Navier–Stokes
equations (eigenmodes of global stability analysis) [19, 20]. All of these modes
incorporate the information from linearised Navier–Stokes equations, geometry
of domain and boundary conditions.

Physical modes resulting from global stability analysis usually are not suf-
ficient to construct accurate Galerkin models of wake flows [21], but they can
be used to improve the dynamical properties of more advanced models: extra-
polated and with continuous mode interpolation [4, 6, 21].

Empirical modes are based on the experimental data or unsteady solutions
of Navier–Stokes equations, and are obtained from Proper Orthogonal Decom-
position (also known as Karhunen–Loéve Decomposition) [22–24]. POD modes
are optimal in energy representation by construction, so they possibly better
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describe the Navier–Stokes attractor (limit-cycle oscillations of periodic flow)
than the same number of modes obtained in any different manner [15]. Better
description means similar shapes of coherent structures and levels of disturbance
kinetic energy.

The description of the POD decomposition and modes computed for flow
around NACA-0012 airfoil at different angles of attack are presented in Sec. 5.

5. Proper Orthogonal Decompositions for various angles of attack

Empirical modes resulting from Proper Orthogonal Decomposition [25] are
the most widely used ones in the area of reduced-order modelling. The method is
based on the assumption, that there is a correlation between successive snapshots
vi of the flow.

The first step in POD is the computation of time-averaged solution ū

(5.1) ū =
1

M

M∑
m=1

vm.

Resulting vectors v́i describe the fluctuations in the flow. This data is re-
quired to compute the autocorrelation matrix C of size N × N :

(5.2) C =
1

M
SST , where S = [v́1, v́2, . . . , v́M ].

a)
 POD mode 1
 a=30.00 b)

 POD mode 2
 a=30.00

c)
 POD mode 3
 a=30.00 d)

 POD mode 4
 a=30.00

e)
 POD mode 5
 a=30.00 f)

 POD mode 6
 a=30.00

g)
 mean flow
 a=30.00 h)

 shift-mode
 a=30.00

Fig. 3. The streamlines of six most energetic POD modes (a)–(f), mean flow (g) and
shift-mode (h) for α = 30◦.
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Next, the vectors describing flow fields are centered

(5.3) v́m = vm − ū, m = 1, . . . ,M.

Eigenvectors u of standard eigenproblem Cu = λIu, related to eigenvalues
λ of largest magnitude, are the POD modes used in model reduction.

In the present work, POD modes were computed using snapshot technique
of Sirovich [26], basing on two distinct sets of vectors (describing limit-cycle
oscillations of flow for α = 30◦ and α = 45◦). In both cases, snapshots describing
ten flow periods have been used.

In the case of flow at α = 30◦ (Fig. 3), first two POD modes represent 94.11%
of the disturbance kinetic energy (TKE), and 99.85% of TKE in the case of first
6 modes.

Similar results are obtained for the second value of angle of attack (Fig. 4).
In this case, first 2 POD modes represent 96.21% of TKE, and first 6 POD
modes – again 99.85% of TKE.

a)
 POD mode 1
 a=45.00 b)

 POD mode 2
 a=45.00

c)
 POD mode 3
 a=45.00 d)

 POD mode 4
 a=45.00

e)
 POD mode 5
 a=45.00 f)

 POD mode 6
 a=45.00

g)
 mean flow
 a=45.00 h)

 shift-mode
 a=45.00

Fig. 4. The streamlines of six most energetic POD modes (a)–(f), mean flow (g) and
shift-mode (h) for α = 45◦.

Characteristic wave number of the first pair of POD modes is 1.2 times
smaller when compared with the decomposition of flow for α = 30◦, and the
wave number of the second pair of modes is 1.34 times smaller. It means that
for smaller angle of attack there are more vortices apparent per unit length.
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6. Continuous mode interpolation

DNS and Proper Orthogonal Decomposition of flows for α = 30◦ and α = 45◦

shows the differences in arising vortex streets. For both operating conditions,
coherent structures represented by POD modes slightly differ in wave numbers
and fluctuation envelopes. Different values of TKE and period sizes (Table 1)
result in the change of amplitudes and frequencies of Fourier coefficients (Fig. 5).

Fig. 5. Principal sketch of the wake dynamics of transition between two operating conditions:
α = 30◦ and α = 45◦. Right-hand side illustrates vortex streets for limit cycles on the mean-

field paraboloid (left).

The use of POD modes computed for inappropriate flow state results in
inaccurate prediction of the phase of the flow, what significantly decreases the
usefulness of the model.

It is especially important in feedback control design. While small differences
between phases of real flow and reduced-order model in certain instant of time
can be corrected by the dynamic estimation [27], larger errors in phase prediction
result in deterioration of the control effect [4].

Due to the requirement of small dimension of the model, it is not possible
to overcome this problem by the computation of one POD mode basis using
snapshots from all the considered flow states.

This leads to the conclusion that smooth and continuous interpolation be-
tween coherent structures, representing different flow states, is a crucial enabler
of accurate reduced-order models of transient flows (like the one described in
Sec. 2). Such transition can be achieved by continuous mode interpolation, de-
scribed by the authors in [5, 6].

In this technique, POD modes ui are interpolated by referring to the Fred-
holm eigenproblem in space domain (6.1)
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(6.1)

∫

Ω

A(x, y)ui(y)dy = λiui(x)

with autocorrelation function (kernel) A

(6.2) Aκ(x, y) = uκ
1(x) ⊗ uκ

1(y) + uκ
2(x) ⊗ uκ

2(y) + . . .

The Fredholm kernel is linearly interpolated in κ ∈ [0, 1]:

(6.3) Aκ = A0 + κ(A1 − A0).

 k=0.00
 a=30.00

(a) POD mode 1 for α = 30◦ (κ = 0.00)

 k=0.00
 a=30.00

(b) POD mode 2 for α = 30◦ (κ = 0.00)

 k=0.25
 a=33.75

(c) κ = 0.25

 k=0.25
 a=33.75

(d) κ = 0.25

 k=0.50
 a=37.50

(e) κ = 0.50

 k=0.50
 a=37.50

(f) κ = 0.50

 k=0.75
 a=41.25

(g) κ = 0.75

 k=0.75
 a=41.25

(h) κ = 0.75

 k=1.00
 a=45

(i) POD mode 1 for α = 45◦ (κ = 1.00)

 k=1.00
 a=45.00

(j) POD mode 2 for α = 45◦ (κ = 1.00)

Fig. 6. Interpolated modes based on rotated domain. Top: Two most energetic POD modes for
α = 30◦ (universal stream horizontal). Bottom: Two most energetic POD modes for α = 45◦

(universal stream directed 15◦ upwards). Middle: Interpolated modes for κ = 0.25, κ = 0.50
and κ = 0.75. In the figure, the streamlines of the modes are depicted. The comparison of POD

basis for α = 37.5◦ and interpolated modes for κ = 0.50 is given in [6].
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Eigenvectors of interpolated Fredholm eigenproblem (interpolated modes)
uκ can be used to model all the intermediate states between κ = 0 and
κ = 1.

In the present study, κ = 0 describes the mode basis for α = 30◦, while κ = 1
is used to model the flow at α = 45◦. To model that state, two POD mode sets
are used. In the first case (Fig. 6), whole domain is rotated to get the desired
angle of attack. In the second case (Fig. 7), the rotation is achieved by mesh
deformation mentioned in Sec. 2.

 INT: k=0.00 
 a=30.00

(a) POD mode 1 for α = 30◦ (κ = 0.00)

 INT: k=0.00 
 a=30.00

(b) POD mode 2 for α = 30◦ (κ = 0.00)

 INT: k=0.25 
 a=33.75

(c) κ = 0.25

 INT: k=0.25 
 a=33.75

(d) κ = 0.25

 INT: k=0.50 
 a=37.50

(e) κ = 0.50

 INT: k=0.50 
 a=37.50

(f) κ = 0.50

 INT: k=0.75 
 a=41.25

(g) κ = 0.75

 INT: k=0.75 
 a=41.25

(h) κ = 0.75

 INT: k=1.00 
 a=45.00

(i) POD mode 1 for α = 45◦ (κ = 1.00)

 INT: k=1.00 
 a=45.00

(j) POD mode 2 for α = 45◦ (κ = 1.00)

Fig. 7. Interpolated modes based on deformed mesh. Top: Two most energetic POD modes for
α = 30◦. Bottom: Two most energetic POD modes for α = 45◦. Middle: Interpolated modes
for κ = 0.25, κ = 0.50 and κ = 0.75. In the figure, the streamlines of the modes are depicted.

In all cases, uniform stream is horizontal.
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The purpose of checking these two possibilities is to compare them and select
one for further development. The rotation of whole domain is easier to achieve,
but can be applied in reduced-order modelling only for single-part, rigid bod-
ies. Additionally, the domain has to be large enough to ensure that after the
rotation, the wake will not be disrupted by the boundary conditions. When
the body consists of multiple moving parts (like high-lift configurations), mesh
deformation is required.

Using interpolated modes uκ, the construction of low-dimensional model for
time-varying operating conditions is possible (6.4):

ȧκ
i =

1

Re

N∑
j=0

lκija
κ
j +

N∑
j=0

N∑
k=0

qκ
ijka

κ
j aκ

k ,

(6.4)

κ̇ = F (κ,aκ, t).

During transitions from steady to time-averaged solutions, presented in [5,
6, 21], κ was related to shift-mode amplitude. In the present study, κ depends
on time only, changing from κ = 0 for t ≤ 500 s to κ = 1 for t ≥ 510 s.

Galerkin system coefficients lκij and qκ
ijk, depending on the parameter κ, are

linearly interpolated between two operating conditions identified by κ = 0 and
κ = 1:

(6.5) lκij = l0ij + κ(l1ij − l0ij), qκ
ijk = q0

ijk + κ(q1
ijk − q0

ijk).

7. Reduced-order model of the flow with changing boundary

conditions

In previous sections, construction of mode basis for time-varying operat-
ing conditions was presented. In this section, two 8-dimensional reduced-order
models of the flow, described in Sec. 2, are presented. They use 6 interpolated
POD modes and a shift mode. Eighth degree of freedom is the interpolation
parameter κ.

Both of the models utilize the same mode set for α = 30◦ (κ = 0). For
α = 45◦, the first one (“GM-1”) uses modes computed for a rotated domain
(Fig. 6). The second model (“GM-2”) is based on the interpolation between
modes computed for initial and deformed meshes (Fig. 7).

Figure 8 depicts the variation of total kinetic energy of the disturbance in
time for DNS model (bold line) and two Galerkin models. The transition from
steady solution to limit cycle for α = 30◦ shows fragility of POD models due to
the change of operating conditions. The method of quality improvement at this
stage, using continuous interpolation between stability eigenmodes and POD
modes, is described in [21].
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Fig. 8. Total kinetic energy of the disturbance for transition from stady state to limit cycle
oscillations at angle of attack α = 30◦ and next, for transition from α = 30◦ to α = 45◦

(t ≥ 500 s).

The change of α is done when limit-cycle oscillations are reached. It can be
noticed, that the disturbance kinetic energy of both Galerkin models at t =
500 s (equal to TKE = 2.73) and the period time of limit-cycle oscillations
(T = 6.90 s) for α = 30◦, are very close to the levels characterizing direct
numerical simulation.

The change of angle of attack results in temporary overestimation of TKE
in the case of both Galerkin models. For both the Galerkin models, the peak of
energy is larger and occurs later than in the case of Navier–Stokes model. Then,
the disturbance energy decreases and slowly reaches the level slightly lower than
the energy of DNS. That change has different course for each of the reduced-
order models: in the case of the one utilizing domain rotation, the function of
TKE in time has a more oscillatory nature, while the second model (“GM-2”)
is characterized by larger peak of energy. Final level of TKE (equal to 4.52) is
achieved by both Galerkin models at t ≈ 1000 s, much later than in the case of
a high-dimensional model. Compared to DNS, the TKE of Galerkin Models has
an average error of 3.6%.
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For second value of the angle of attack, oscillations of both Galerkin models
have slightly different frequencies: for the model with rotating domain (“GM-1”)
the period time is T = 8.26 s, and for the model based on deformed mesh –
T = 8.10 s. Both these values are comparable with the period times measured
from DNS.

The evaluation of Fourier coefficient values leads to the conclusion, that one
of the reasons for the peak and the oscillations of disturbance kinetic energy is
the behaviour of shift-mode coefficient (Fig. 9).

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  200  400  600  800  1000

t [s]

αshift GM

Fig. 9. Shift-mode coefficient ashift for model “GM-1”.

It should be noted that the rapid growth of TKE occurs for the peak of
shift-mode coefficient, and when ashift reaches local minimum – the energy falls
down.

While the mean flow and shift-mode are continuously interpolated just as
POD modes, the considered ashift coefficient is expected to be close to zero
when limit-cycle oscillations are reached. Since it behaves in a different way, it
might be modified externally.

Such calibration of ashift value is the way to suppress the oscillations of
Galerkin model’s TKE. The variation of total kinetic energy, for the test model
using this approach, is presented in Fig. 10.

When the flow angle is changed slower, the adaptation of the flow pattern
from ROM to new operating conditions improves – the peak of the TKE is
smaller and the oscillations are dumped (Fig. 10). Such a result indicates that
the oscillations of the TKE and the “inertia” of POD system are related to the
lack of smaller eddies in the POD basis. This behaviour might be improved by
addition of the dissipative term to the Galerkin model, whose role is to mimick
the energy sink caused by neglecting small-scale POD modes.
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Fig. 10. Total kinetic energy of the disturbance for calibrated Galerkin model “GM-1” and for
the case when the flow angle change rate is smaller.

8. Conclusions

In this paper, Reduced Order Galerkin Models of flow around NACA-0012
airfoil with changing angle of attack are presented. The chosen test-case repre-
sents a set of flows with varying operating and boundary conditions, that can
be modelled using the Galerkin Method.

Continuous mode interpolation allows low-dimensional modelling of flow and
structures that have not been computed before. In the present study, Proper
Orthogonal Decomposition of limit-cycle oscillations for two distinct angles of
attack α = 30◦ and α = 45◦ allows the modelling of flow for the whole range of
angles between α = 30◦ and α = 45◦.

For limit-cycle oscillations, all the models are in good agreement with Direct
Numerical Simulation – both the TKE and frequencies are similar.

The models utilizing interpolated POD modes (“GM-1” and “GM-2”) tend
to have oscillations of the energy after the angle has changed. This behaviour,
similar to the one that occurs during transition from steady solution to periodic
flow, results in deterioration of the accuracy.

The solution of this problem is the use of calibrated model, where the value of
shift-mode coefficient is better matched to the DNS values. Additional possibility
of such improvement is to exploit eigenmodes of global flow stability analysis
and to use inertial manifold approximations [28].

In the near future, these methods and the continuous mode interpolation will
be investigated on other examples of flows with varying operating and boundary
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conditions. Further development, like the incorporation of 3D modes or Euler
equations, will be useful in the construction of reduced-order models for aeroe-
lastic simulations.
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Zeszyty Naukowe Politechniki Poznańskiej, Maszyny Robocze i Transport, 59, 143–148,
2005.



Reduced order modelling of a flow around an airfoil. . . 525

9. B.R. Noack, P. Papas, P.A. Monkewitz, Low-dimensional Galerkin model of a laminar
shear-layer, Technical Report 2002-01, Laboratoire de Mécanique des Fluides, Départe-
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