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1. Introduction

For many fluid dynamic applications, a correct description of the real phe-
nomena occurring in fluid flows in the vicinity of obstacles (e.g. supersonic,
hypersonic airplanes, space shuttles, reentry problems) in rarefied flows is es-
sential to calculate proper values of the temperature and pressure fields on the
surface of the body.

In particular, numerical calculations based on the compressible Navier–Stokes
equations with the non-slip boundary conditions do not provide the proper de-
scription of the shocks for such flows. It amounts to the fact that fluid dynamic
equations are not valid in the thin region in vicinity of the obstacles, usually of
the order of the mean free path. In this boundary layer region the Boltzmann
equation describes properly the flow and provides correct boundary conditions
for the flow outside the boundary layer, cf. [1].

Let M be a macroscopic physical quantity (mass, bulk velocity, energy), with
known macroscopic gradients at infinity (outside the boundary layer). These
gradients are known, for example, from numerical calculations based on fluid
dynamic equations. Thus (with the x-axis being the direction perpendicular to
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the wall), the relevant quantity can be written as:

M = xr + ∆(x),

where ∆(x) has vanishing gradients for x → ∞. For a correct fluid dynamic
description it is important to know the limit values of M at x = 0, which means
the value ∆(0). As an illustration, let M = T be a fluid temperature. For fluid
dynamic calculations we need T (x = 0) as a boundary condition. It would be
reasonable to use the wall temperature as T (0). However, it turns out that it
has to be corrected due to kinetic effects in the boundary layer. In fluid dynamic
calculations we do not want to use the detailed description of the kinetic model.
The influence of the kinetic layer enters into the fluid dynamic correction as a
jump coefficient, defined as a difference between the wall temperature and the
effective fluid temperature at x = 0.

The Boltzmann equation [2] is a complicated integro-differential equation,
and its solution is a formidable numerical task. Deterministic numerical schemes
of solving the Boltzmann equation require discretization of the velocity space.
The reader is referred to e.g. [3–10] and the references therein for various compu-
tational and theoretical aspects of the discretization of the original Boltzmann
equation.

In computations, the discretized velocity space has to be finite. The relevant
Discrete Velocity Models should possess specific properties, necessary for the
consistence of the models and the correct description of physics, cf. [11]. In gen-
eral, for arbitrary discretization of the velocity space, velocities of the particles
after the collision do not need to belong to the velocity lattice, from which the
velocities of the pre-colliding particles have been chosen. Thus, the first essential
property of the admissible collisions (binary as well as higher-order collisions)
is that the underlying discrete lattice is invariant under all such collisions. The
second essential requirement for the discrete lattice is that mass, momentum and
energy are conserved in the admissible collisions. In addition, one requires that
there are no other conserved quantities, i.e. there are no spurious conservation
laws in the considered model., cf. [12]. In other words, the number of collision
invariants is the same as for the original Boltzmann equation with continuum
velocity space.

Additional requirements for a model construction follow from the physics of
the considered problem. In particular, in order to obtain the proper numerical
scheme for the boundary layer, first the problem of well-posedness of the kinetic
boundary layer problem should be solved, cf. [13, 14].

In the case of a linearized Boltzmann equation with continuum velocity space,
this problem has been solved in [18]. The authors proved existence and unique-
ness (in a weighted L2 space) of the boundary value problem for the linearized
Boltzmann equation in one spatial dimension, with given mass flux through an
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arbitrary wall x = const., integrable inflow distribution at x = 0, and prescribed
gradients of velocity and temperature at x → ∞. The solution can be decom-
posed into three parts: the hydrodynamic part (linear in x, i.e. with constant
gradients), the constant part which is orthogonal to the null space of the lin-
earized Boltzmann operator and does not contribute to macroscopic quantities
(the so-called fluctuation part), and the exponentially decaying boundary layer
part, which is a solution of an adequate Milne problem. Any discrete veloc-
ity counterpart of the considered boundary value problem should conserve this
structure of the solution, cf. [14]. It is precisely this structure which is analyzed
in the present paper and which can be applied, e.g. for the derivation of diffusion
limits within thin gaps [15]. The assumptions introduced are physically reason-
able and turn out to be valid for discrete velocity models used for the numerical
simulation of rarefied gas flows, like that described in [16, 17].

In this paper we discuss general algebraic criteria for the discretized Boltz-
mann collision operator, and several families of general discrete velocity lattices,
which satisfy the above requirements and provide sufficient conditions for the
well-posedness of the linearized kinetic boundary layer problem. We study suf-
ficient conditions for discretization schemes, which provide the same qualitative
behavior of the distribution function as that found in the original linearized
Boltzmann equation. We consider various hierarchies of discrete models and
calculate the relevant slip coefficients of adequate macroscopic quantities for
representatives of two such hierarchies: 12-velocity model and 13-velocity model.
The latter hierarchy admits, beyond usual binary collisions, also the collisions of
higher order, in particular the so-called ternary (triple) collisions, in which three
particles take part in the collision. This means that both the pre-collisional and
post-collisional velocities of the three particles belong to the lattice. We assume
that the usual conservation laws are satisfied for such collisions.

We investigate the influence of higher order collisions on the properties of the
considered boundary layers, in particular on their thickness and the numerical
values of slip coefficients. In addition, we also present exact analytical and nu-
merical results for the simplest, nontrivial in the context of the kinetic boundary
layer model – a plane 8 – velocity model, in which triple collisions are necessary
to preserve proper structure of the kinetic boundary layer.

The paper is organized as follows. In the first section we consider various
algebraic aspects of the linearized problem and prove the relevant mathematical
results. In the second section we introduce two general hierarchies of the dis-
crete velocity lattices, which have the required theoretical properties. The next
sections deal with analytical and numerical calculations for the representative
examples of the hierarchies considered. We also shortly discuss some other, well-
known discrete models, such as 8-velocity or 6-velocity planar models. In the
last section we discuss the results and their possible generalizations.
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2. Linearized kinetic boundary layers

2.1. Discrete Velocity Models

We consider Discrete Velocity Models consisting of 2N+K discrete velocities
v1, . . . ,v2N+K in R

d (d = 2, 3). We denote by vi the x-component of vi, with
the x-axis being the direction normal to the wall.

Introducing a binary collision model, we arrive at a set of (nonlinear) ki-
netic equations. Here, we are interested only in the stationary, spatially one-
dimensional version given by

vi∂xfi =
2N+K∑

jkl=1

Akl
ij (fkfl − fifj).(2.1)

Linearization around a constant equilibrium state m = (mi)
2N+K
i=1 readily yields

the following system (we denote the linearized part of fi also by fi):

vi∂xfi =

2N+K∑

jkl=1

Akl
ij (mkfl +mlfk −mifj −mjfi).(2.2)

Physically relevant collision models follow certain (symmetry) principles (like
rotational invariance of the collision rates, invariance with respect to reflection
at a plane etc.), and the principle of micro-reversibility (stating that the rate
for a collision (v, w) → (v′, w′) is the same as that for the reverse collision
(v′, w′) → (v, w)). Properties like these are reflected in the Assumptions 1 and
2 to follow.
Assumption 1. (a) Symmetries of collision coefficients:

Akl
ij = Akl

ji = Aij
kl;(2.3)

if i ∈ {j, k, l}, then Akl
ij = 0.

(b) Symmetries of velocities: The velocities are arranged in such a way that for
i = 1, . . . , N , vi+N = −vi; (other components of vi and of vi+N are assumed
to be equal, i.e. vi+N is obtained from vi by reflection at the plane x = 0);
furthermore, vi > 0. For i = 2N + 1, . . . , 2N +K, vi = 0.

We write the linearized equations in the form

V · ∂f = Mf(2.4)

with V = diag(vi, i = 1, ...2N +K) and decompose M in the form

M =



A1 B1 C1

B2 A2 C2

D1 D2 E


(2.5)

with the N ×N -matrices A1, B1, B2, A2.
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Assumption 2. (“left-right-symmetry”) (a) The collision coefficients satisfy for
1 ≤ i, j, k, l ≤ N the conditions

Akl
ij = Ak+N,l+N

i+N,j+N , Akl
i,j+N = Ak+N,l+N

i+N,j , Akl
i+N,j+N = Ak+N,l+N

i,j .(2.6)

(b) For i > 2N and 1 ≤ j, k, l ≤ N ,

Akl
ij = Ak+N,l+N

i,j+N , Akl
i,j+N = Ak+N,l+N

i,j , Ak,l+N
i,j = Ak+N,l

i,j+N .(2.7)

(c) The linearized system is obtained by linearization around an equilibrium
solution satisfying the condition

mi = mi+N , i = 1, . . . , N.(2.8)

A simple consequence of these assumptions is the following:

Lemma 1. (a) M takes the form

M =




Ā B̄ C
B̄ Ā C
CT CT E




with A1 = A2 =: Ā, B1 = B2 =: B̄, and C1 = C2 = DT
1 = DT

2 =: C. The
coefficients of Ā, B̄, C and E are given by

āii = −
2N+K∑

j,k,l)=1

Akl
ijmj ,(2.9)

āij = 2
2N+K∑

k,l=1

Ajl
ikml −

2N+K∑

k,l=1

Akl
ijmi,(2.10)

b̄ii = 0,(2.11)

b̄ij = 2
2N+K∑

k,l=1

Aj+N,l
ik ml −

2N+K∑

k,l=1

Akl
i,j+Nmi,(2.12)

cij = 2
2N+K∑

k,l=1

Aj+2N,l
ik ml −

2N+K∑

k,l=1

Akl
i,j+2Nmi ,(2.13)

eij = 2
2N+K∑

k,l=1

Aj+2N,l
i+2N,kml −

2N+K∑

k,l=1

Akl
i+2N,j+2Nmi+2N .(2.14)

(b) If mi = mj for all i, j = 1, . . . , 2N +K, then Ā, B̄ and E are symmetric.
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A special treatment is necessary for the algebraic equations

(
CT CT E

)
f = 0.(2.15)

If the K × K-matrix E is regular, then the components f (alg) := (f2N+1, . . . ,
f2N+K)T can be obtained from f (1) := (f1, . . . , fN )T and f (2) := (fN+1, . . . , f2N )T

by

f (alg) = −E−1(CT f (1) + CT f (2)).(2.16)

This means that the algebraic components can be removed in order to obtain
a regular differential system.

Corollary 1. If E is invertible, then the linearized equations for f (1) and f (2)

read

V1∂xf
(1) = (Ā− CE−1CT )f (1) + (B̄ − CE−1CT )f (2),(2.17)

−V1∂xf
(2) = (B̄ − CE−1CT )f (1) + (B̄ − CE−1CT )f (2),(2.18)

where V1 = diag (v1, . . . , vN ).
If mi = mj for 1 ≤ i, j ≤ 2N +K, then

A := Ā− CE−1CT and B := B̄ − CE−1CT(2.19)

are symmetric.

2.2. A system of ordinary differential equations

According to the results of previous section, we consider the system

V · ∂xf = Mf(2.20)

where now f is the distribution function related to 2N velocities,

(2.21) V =

(
diag(ν1, . . . , νN ) 0

0 diag(−ν1, . . . ,−νN )

)
=:

(
V1 0
0 −V1

)
,

νi > 0,

and

M =

(
A B
B A

)
.(2.22)
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Our main concern here is the eigenspace structure and with this, the Jordan
normal form of V −1M . Denote

|V | :=

(
V1

V1

)
, |V |∓ 1

2 :=

(
V

∓ 1
2

1

V
∓ 1

2
1

)
.(2.23)

Then V −1M is similar to the matrix

M̃ := |V |1/2(V −1M)|V |−1/2 =

(
Ã B̃

−B̃ −Ã

)
(2.24)

with

Ã = V
−1/2
1 AV

−1/2
1 , and B̃ = V

−1/2
1 BV

−1/2
1 .(2.25)

For us it is more convenient to work with M̃ rather than V −1M . We notice that

M̃2 =

(
Ã2 − B̃2 ÃB̃ − B̃Ã

ÃB̃ − B̃Ã Ã2 − B̃2

)
.(2.26)

Let us begin with some clarifying remarks. In the following, we will call a vector
z with block structure of the form z = (z1, z2) even, if z1 = z2, and odd, if
z1 = −z2, where z1, z2 are N -dimensional vectors.

Remarks (a) Suppose z = (z1, z2)T ∈ ker(M̃). Then z can be written uniquely
as the sum of an even vector z+ and an odd vector z−. These vectors are given as

z+ =
1

2

(
z1 + z2

z1 + z2

)
and z− =

1

2

(
z1 − z2

−(z1 − z2)

)
.

A simple calculation shows that z ∈ ker(M̃) if and only if (z1 +z2) ∈ ker(Ã+ B̃)
and (z1 − z2) ∈ ker(Ã− B̃).
(b) For realistic models linearized around a symmetric equilibrium state, the
even eigenvectors are the mass, y-impulse and energy vector; the only odd eigen-
vector is the x-impulse vector.

The eigenspaces of M̃ corresponding to nonzero real eigenvalues are related
to the eigenspaces of (Ã+ B̃)(Ã− B̃) and (Ã− B̃)(Ã+ B̃) as follows.

Lemma 2. For a given real number λ 6= 0, the following statements are
equivalent:

(i) λ2 is an eigenvalue of (Ã+ B̃)(Ã− B̃),
(ii) λ2 is an eigenvalue of (Ã− B̃)(Ã+ B̃),
(iii) λ is an eigenvalue of M̃ ,
(iv) −λ is an eigenvalue of M̃ .
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P r o o f. We note that necessary and sufficient condition for a vector
(y + z, y − z)T 6= 0 to be an eigenvector of M̃2 with eigenvalue λ2 is that y
and z should be eigenvectors of (Ã− B̃)(Ã+ B̃) resp. of (Ã+ B̃)(Ã− B̃) with
the same eigenvalue.

It follows that both (iii) and (iv) imply that at least one of the conditions
(i) or (ii) holds. On the other hand, suppose that (i) is satisfied with an eigen-
vector z. Then

y :=
1

λ
(Ã− B̃)z(2.27)

is an eigenvector of (Ã− B̃)(Ã+ B̃) with the same eigenvalue λ2, and

z =
1

λ
(Ã+ B̃)y.(2.28)

Similarly, if (ii) is satisfied with an eigenvector y, then

z :=
1

λ
(Ã+ B̃)y(2.29)

is an eigenvector of (Ã+ B̃)(Ã− B̃) satisfying

y =
1

λ
(Ã− B̃)z.(2.30)

If (y, z)T is a pair of eigenvectors satisfying (2.28) resp. (2.30), then (y+z, y−z)T

is an eigenvector of M̃ with eigenvalue λ, and (y − z, y + z)T is one with eigen-
value −λ.

These remarks should justify the following assumptions.

Assumption 3. (i) The zero-eigenspace of M is spanned by n0 odd eigenvectors
b−i = (e−i ,−e−i )T , i = 1, . . . , n0, and n0 + r0 even eigenvectors b+i = (e+i , e

+
i )T ,

i = 1, . . . , n0 + r0.
(ii) (Ã+B̃)(Ã−B̃) is diagonizable, and all eigenvalues are real and nonnegative.

It is not clear whether this is a consequence of some intrinsic properties of
all “reasonable” collision models. In all the particular regular models which we
have investigated, M̃2 turns out to be diagonizable.

Under this assumption, we are able to determine, as a first main result, the
Jordan normal form of M̃ . At first we have to analyze the zero eigenspace.

Lemma 3. Under the Assumptions 3, the following holds.
(a) Defect(Ã− B̃) = n0 and defect(Ã+ B̃) = n0 + r0.
(b) Define the integer q0 ≥ 0 by

dim[R(Ã− B̃) + ker(Ã+ B̃)] = N − q0.(2.31)
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Then

dim[R(Ã− B̃) ∩ ker(Ã+ B̃)] = r0 + q0(2.32)

and

defect[(Ã+ B̃)(Ã− B̃)] = n0 + r0 + q0.(2.33)

(c) If Ã and B̃ are symmetric, then also

defect[(Ã− B̃)(Ã+ B̃)] = n0 + r0 + q0,(2.34)

and

dim[R(Ã+ B̃) ∩ ker(Ã− B̃)] = q0.(2.35)

P r o o f. (a) An odd vector (v,−v)T is in the kernel of M iff v ∈ ker(A−B).
Thus a basis of ker(A−B) is given by e−i , i = 1, . . . , n0, and V 1/2e−i , i = 1, . . . , n0

is a basis of ker(Ã − B̃). Similarly, V 1/2e+i , i = 1, . . . , n0 + r0, is a basis of
ker(Ã+ B̃).
(b) Suppose v ∈ ker[(Ã+ B̃)(Ã− B̃]. Then either v ∈ ker(Ã− B̃) or (Ã− B̃)v ∈
ker(Ã+ B̃) \ {0}. Thus

(2.36) defect[(Ã+ B̃)(Ã− B̃)]

= defect(Ã− B̃) + dim[R(Ã− B̃) ∩ ker(Ã+ B̃)].

From the formula for general subspaces U , U ′,

dim(U) + dim(U ′) = dim(U + U ′) + dim(U ∩ U ′)

follows

(2.37) dim[R(Ã− B̃) ∩ ker(Ã+ B̃)]

= dim[R(Ã− B̃)] + defect(Ã+ B̃) − dim[R(Ã− B̃) + ker(Ã+ B̃)]

= (N − n0) + (n0 + r0) − (N − q0) = r0 + q0.

With (2.36) follows (2.33).
(c) If Ã and B̃ are symmetric, then

[(Ã+ B̃)(Ã− B̃)]T = [(Ã− B̃)(Ã+ B̃)],(2.38)

and (2.34) follows from (2.33). (2.35) is an immediate consequence of (2.34) and
defect(Ã+ B̃) = n0 + r0.

The general normal form is now given as follows.
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Theorem 1. If q0 = 0 or if Ã and B̃ are symmetric, then M̃ has a Jordan
normal form M̃ = TJT−1, where T is a nonsingular transformation matrix,
and

J =




Λ
−Λ

J1

. . .

Jr0+q0

0
. . .

0




,(2.39)

where

Λ = diag(λ̃i, i = 1, . . . , N − (n0 + r0 + q0)), λ̃i > 0,(2.40)

and the Jordan blocks

J1 = · · · = Jr0+q0 =

(
0 1
0 0

)
.(2.41)

P r o o f. We have to construct a basis of R
2N , under which M̃ acts as given

by J .
(i) First, we construct the eigenvectors of M̃ with nonzero eigenvalues. For this,
denote by zi, i = 1, . . . , N − (n0 + r0 + q0), linearly independent eigenvectors of
(Ã + B̃)(Ã − B̃) with eigenvalues λ2

i > 0. (Compare Assumption 3 (ii) and
Eq. (2.33).) With λi · yi := (Ã − B̃)zi, the vectors (yi + zi, yi − zi)

T resp.
(yi − zi, yi + zi)

T are linearly independent eigenvectors of M̃ with eigenvalues
±λi.
(ii) We need a collection of pairs (vi, wi) of independent vectors, i = 1, . . . , r0 +
2q0, which correspond to the Jordan blocks Ji. From (2.32) it follows that there
are r0+q0 vectors xi such that yi := (Ã−B̃)xi are linearly independent elements
of ker(Ã+ B̃). Denote

vi :=

(
xi

−xi

)
and wi :=

(
yi

yi

)
.(2.42)

Then wi = M̃vi and M̃wi = 0. Similarly, the existence of q0 additional pairs
follows from formula (2.35).
(iii) In (ii), r0 + q0 resp. q0 elements of ker(Ã+ B̃) resp. of ker(Ã− B̃) have been
used to construct the basis elements related to J . We supplement these with
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n0 − q0 linearly independent vectors bi ∈ ker(Ã + B̃) and n0 − q0 indepen-
dent elements ci ∈ ker(Ã − B̃), and complete the basis in R2N by (bi, bi)

T and
(ci,−ci)T .

Remark. We consider a Discrete Velocity Model to reveal the correct physi-
cal behavior, if the Jordan normal form reflects the structure of the full
(i.e. continuous) system. Corresponding to [18], this means that there are two
(in 2D) resp. 3 (in 3D) 2 × 2-Jordan blocks, and two further zero-eigenvectors;
the latter ones are the mass vector (even) and normal momentum ρvx (odd).
The Jordan blocks are related to the tangential moment components and to the
energy vector.

2.3. Boundary layers and jump conditions

As worked out in the previous section, solutions of the system (2.4) on the
half-space [0,∞) can be presented in the form

Φ(x) = T · exp(xJ) · T−1Φ0,(2.43)

where exp(xJ) is a block diagonal matrix

exp(xJ) = diag(exp(xΛ), exp(−xΛ), exp(xJ1), . . . , exp(xJr0+q0), I)

consisting of an exponentially increasing part exp(xΛ), an exponentially decreas-
ing part exp(−xΛ), the blocks

exp(xJ1) = · · · = exp(xJr0+q0) =

(
1 x
0 1

)

and a lower-dimensional unit matrix I. Φ0 represents the solution at x = 0.
We call a solution of the form (2.43) a boundary layer, if Φ0 is such that the
exponentially increasing part is vanishing.

As a first simple illustration consider a four-velocity model with two velocities
pointing to the right (i.e. vx > 0) and two – to the left. In this case, N = 2,
K = 0. We assume the existence of one Jordan block, i.e. r0 = 1 and thus
n0 = q0 = 0. The Jordan normal form reads

J =




λ
−λ

0 1
0


 ,

and

Φ(x) = T ·




exp(λx)
exp(−λx) (

1 x
1

)


 · T−1Φ0.(2.44)
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Denoting by ti the i-th column of the transformation matrix T , and the
initial vector as

Φ0 =
4∑

i=1

riti,(2.45)

the Eq. (2.44) is given as

Φ(x) = r1 exp(λx)t1 + r2 exp(−λx)t2 + (r3 + r4x)t3 + r4t4.(2.46)

Notice that t3 is the component related to one of the (“even”) conservation laws
(e.g. energy, y-velocity). Using the terminology of [14, 18], the component t4 is
called a fluctuation part.

Usually, a kinetic boundary layer is prescribed by some boundary condition
at x = 0, concerning the inflow part Φ+

0 (i.e. the restriction of Φ0 to the velocities
with vx > 0). In our case, these are given by two conditions. The third condition
comes from the definition of a boundary layer and reads r1 = 0. The fourth
condition is left and is used to prescribe the gradient of t3 at infinity, which fixes
the component r4 of the fluctuation part. With these requirements, the solution
is in general uniquely described. In particular, r3 is fixed what determines the
value of the physically relevant component t3 at x = 0. This quantity is called
the jump condition for t3 and is usually not to be read off directly from the
boundary condition for Φ+

0 . (In particular, it can not be determined in the full
system from the wall temperature in the case of kinetic energy, or in the form
of a zero-velocity condition for a wall at rest.)

3. Hierarchies of discrete lattices

3.1. Hierarchy 1

Hierarchy 1 is defined as a geometrical superposition of two sub-lattices E
(with even coordinates of the velocities), and O (with odd velocity coordinates)
in Rd, with d = 2 or 3. For d = 2, the sub-lattices are defined as follows:

E = {(v1, v2) ∈ R2 : v1 = ∓2k, v2 = ∓2l, k, l ∈ {0, 1...L}},(3.1)

(3.2) O =
{

(v1, v2) ∈ R2 : v1 = ∓(2k + 1),

v2 = ∓(2l + 1), k, l ∈ {0, 1...L− 1}
}
,

with obvious generalization to three dimensions, and for the lattices with unequal
number of nodes along different coordinate axes. The integer L ∈ {1, 2, ...}
determines the size of the lattice.
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For given L and d, the number of nodes is (2L + 1)d + (2L)d. Thus, with
L = 1 the simplest two-dimensional model is the (9 + 4) velocity model. In
the notation of Subsection 2.1, the model is the (2*5+3)-velocity model, with
three algebraic equations (K = 3). The subsequent two-dimensional model is the
(2*18+5)-velocity model with K = 5 algebraic equations. In three dimensions
(d = 3), the simplest model is the (2*13+9)-velocity model with 9 algebraic
equations.

For future discussion we define “strong mixing” collisions as such, for which
the pre-collisional and post-collisional velocity vectors of the collision partners
are different. One can verify by inspection the existence of the binary strong mix-
ing collisions in the models of Hierarchy 1, as well as the existence of higher-order
(triple, quadruple) strong-mixing collisions. Explicit examples will be considered
in Sec. 4.

3.2. Hierarchy 2

Hierarchy 2 is defined as a superposition of“strips”, parallel to the coordinate
axes. For d = 2, Hierarchy 2 consists of two strips:

The “horizontal” strip, the set of velocity vectors:

H = {[∓(2k + 1),−1], [∓(2k + 1),+1], k = 0, ...L}(3.3)

and the “vertical” strip, the set of velocity vectors:

V = {[−1,∓(2k + 1), ], [1,∓(2k + 1)], k = 0, ...L}, L = 0, 1, ....(3.4)

Note that all the velocity vectors of Hierarchy 2 have all the components
different from zero. For a given N , the number of different velocity vectors
(lattice nodes) is 8(L+ 1) + 4. The simplest model corresponds to L = 0, which
gives a symmetric 12-velocity model.

Analogous formulas can be derived in 3 dimensions. In that case the gen-
eral model for Hierarchy 2 has 8 + 24L velocities. The simplest example is the
32-velocity model. Generalization for lattices with different number of velocity
nodes along the coordinate axes is straightforward.

We define a “weak mixing collision” as the one, when pre-collisional and
post-collisional velocities are from different strips. Weak mixing exists in both
hierarchies, whereas strong mixing only in Hierarchy 1. Moreover, one can prove
that increase of the number of nodes in Hierarchy 2 is always accompanied by
the appearance of a new type of weak mixing collisions.

Lemma 4. Let us consider the general 8L + 4 model of Hierarchy 2. Then,
for any L ∈ {2, 3, ...} there exists a weak mixing collision, not present in the
relevant lattice with smaller L.
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P r o o f. For a given L value, which determines the size of the lattice, the
velocities forming the horizontal (i.e. parallel to the x-axis) strip, belong to the
set:

(3.5)
{

[−(2k + 1),−1], [(2k + 1),−1], [−(2k + 1), 1], [(2k + 1), 1],

k = 0, ...L
}
.

The velocities forming the vertical strip, belong to the set:

(3.6)
{

[−1,−(2k + 1), ], [−1, (2k + 1)], [1,−(2k + 1)], [1, (2k + 1)],

k = 0, ...L
}
.

Let us choose [−(2(L−1)+1), 1] and [(2L+1), 1] as the pre-collisional pair, and
[−1,−(2(L−1) + 1)] and [1, (2L+ 1)] as the post-collisional one. One verifies by
inspection that the conservation laws are satisfied, therefore this choice gives a
weak mixing collision in which two particles from the “L” lattice, and two from
the “L− 1” lattice participate.

4. Examples

In this section we report the results of analytical and numerical calculations
of the kinetic boundary layers, obtained on the basis of theoretical considera-
tions of the first section. We discuss three examples: one for each of the intro-
duced hierarchies, and the kinetic boundary layer from an 8-velocity model on
a plane. We calculate the relevant algebraic properties of the matrices defin-
ing the corresponding linearized operators, obtain expressions for the boundary
layer thickness, and calculate the slip coefficients for the considered models.

As the first example we discuss the algebraic differential model with 13 veloc-
ities, with three algebraic equations resulting from the zero velocity projections
of three velocity nodes of the lattice, which corresponds to K = 3 in notation of
Sec. 2. The second example provides the differential model with all the velocity
components different from zero, i.e. the model without the algebraic part, which
corresponds to K = 0. Finally we consider a 8-velocity planar model, which
does not belong to any of the considered hierarchies, however it gives the proper
structure of the kinetic boundary layer, and exact analytic expressions for the
slip coefficients.

4.1. Example of Hierarchy 1: (9 + 4)-velocity model with binary
and triple collisions

This 2-dimensional discrete velocity lattice is obtained from the general Hi-
erarchy 1 for L = 1, with 9 velocity vectors of the “even” sub-lattice E, and 4
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velocity vectors of the “odd” hierarchy O. The relevant one-dimensional steady
discrete velocity model equations read, after suitable rearrangement of the num-
bering of the velocity vectors:

vi
x∂xfi = Qi, i = 1, ...13(4.1)

with

vi
x = +2, i = 1, 2, 3, vi

x = +1, i = 4, 5, vi
x = −2, i = 6, 7, 8,(4.2)

vi
x = −1, i = 9, 10, vi

x = 0, i = 11, 12, 13,(4.3)

Note that the last three equations are algebraic, what corresponds to the alge-
braic part of Sec. 2 with K = 3.

The collision terms take into account all admissible binary and nontrivial
(cf. Appendix A) triple collisions which conserve mass, momentum and energy
for the considered lattice. For example,

(4.4) Q1 = c(f3f6 − f1f8) + e(f2f6 − f1f7) + e(f3f11 − f1f12)

+ g(f2f11 − f1f13) + t2(f2f8f11 − f1f7f12).

The collision rates c, e, g are assumed to be proportional to the moduli of
differences of the velocities of colliding particles in the case of binary collisions,
cf. [10]. The coefficient t2 describes the influence of triple collisions. Complete
definitions and explanation of all the collision terms are given in Appendix A.

We linearize the equations around the symmetric Maxwellian mi = 1,
i = 1, ...13 :

fi = mi + f̃i, i = 1, ...13.(4.5)

The last three algebraic equations i = 11, 12, 13 are used to reduce the system
to the one with ten linear differential equations:

V · ∂F = MF, F = (f1, ...f10)T ,(4.6)

with V = diag(vi, i = 1, ...10) and

M =

(
A B
B A

)
(4.7)

with the 5 × 5-matrices A,B, cf. Subs. 2.2.
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The coefficients of the matrices A and B are rather complicated algebraic
expressions, nonlinearly depending on the collision rates. Their explicit values
are given in Appendix B.

Using symbolic calculations we calculate:

Ker(A+B) = span

{
[−2, 0, 0, 0, 1],

[
0, 0, 1,

−1

2
, 0

]
,

[
3, 1, 0,

3

2
, 0

]}
,(4.8)

Ker(A−B) = span
{

[2, 2, 2, 1, 1]
}
,(4.9)

what confirms the correct structure of matrices obtained from the collision op-
erators for the considered model, as discussed in Sec. 2.

We note that the correct structure of the matrices does not depend in this
model on the existence of the triple collisions, cf. the 8-velocity planar model
discussed in the next section, where the correct structure of the relevant matrices
can be obtained only in the presence of triple collisions.

Eigenvalues of (A+B)(A−B):

λ2
1 : =

7

6
18 t+ 33,

λ2
2 : =

9

2

15 + 16 t+ 4 t2

13 + 6 t
,

where t = t1 + t2 determines the contribution of both types of triple collisions
to the boundary layer thickness, cf. discussion below and in Appendix A.

With explicit values of the collision rates: a = 1, b = 1, c = 2, d = 1,
e = 2, f = 1, g = 1, t1 = t2 = 1 we obtain, using symbolic calculus, the following
approximate values for the velocity and energy jumps across the boundary layer:

Vy (perpendicular) velocity jump = 0.14β,
energy jump = −0.14 δ − 2.02α,

where the constants α, β, δ are obtained from numerical calculations based on
fluid dynamical equations, as discussed in the Introduction.

Remark 1. Analysis of the eigenvalues shows that the thickness of the
boundary layer, being proportional to the smaller of both eigenvalues is, for any
positive t, greater than for t = 0; thus the triple collisions diminish the thickness
of the boundary layer. Therefore, with the triple collisions taken into account,
the region of validity of the description based on the fluid dynamical equations,
enlarges. We point out however that in the considered model, triple collisions
are not necessary to preserve the correct structure of the kinetic boundary layer.
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4.2. Example 2: Hierarchy 2: (4 + 8)-velocity model

This 2 – dimensional discrete velocity model is obtained from the general
Hierarchy 2 for L = 0. The velocity vectors are denoted vi = (vi

x, v
i
y), i = 1, ...6,

9, ...14, with

(4.10) vi
x = +3, i = 1, 3, vi

x = +1, i = 2, 4, 5, 6, vi
x = −3, i = 9, 11,

vi
x = −1, i = 10, 12, 13, 14,

(4.11) vi
y = +3, i = 5, 13, vi

y = +1, i = 1, 2, 9, 10, vi
y = −3, i = 6, 14,

vi
y = −1, i = 3, 4, 11, 12.

The relevant one-dimensional steady discrete velocity model equations read:

vi
x∂xfi = Qi, i = 1, ...6, 9, ...14.(4.12)

Note that in this model the algebraic part vanishes.
The collision terms take into account all the admissible binary and nontrivial

quadruple collisions (contrary to the previously considered model, this one does
not admit nontrivial triple collisions), which conserve mass, momentum and
energy for the considered lattice. Thus, e.g.

Q1 = −A1 −B1 − C1 + F1 +G1 −G4,(4.13)

A1 = a(f1f4 − f2f3), B1 = b(f1f12 − f3f10),(4.14)

C1 = c(f1f13 − f3f9), F1 = f(f4f5 − f1f10),(4.15)

(4.16)
G1 = g(f2f4f6f9 − f1f10f12f14),

G4 = g(f1f2f10f14 − f3f4f12f13).

The collision frequencies a, b, c, f are assumed to be proportional to the mo-
duli of differences of the velocities of colliding particles in the case of binary
collisions, cf. [10]. The operators Gi describe the influence of the quadruple
collisions, cf. Appendix C for details.

We linearize the equations around the symmetric Maxwellian mi = 1,
i = 1, ...6, 9, ...14 :

fi = mi + f̃i,(4.17)
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and obtain the linear differential system of 12 equations

V · ∂F = MF,(4.18)

with V = diag(vi, i = 1, ...6, 9, ...14), F = (f1, ...f6, f9, ...f14)T , and

M =

(
A B
B A

)
.(4.19)

Using symbolic calculations we obtain:

A :=




−1

3
a− 1

3
b− c− 1

3
f,

1

3
a,

1

3
a+

1

3
b+

1

3
c , −1

3
a+

1

3
f,

1

3
c+

1

3
f,

1

3
c

a,−2a− 2b− d− 2f,−a+ f, a+ b+ d, a, b− f

1

3
a+

1

3
b+

1

3
c , −1

3
a+

1

3
f , −1

3
a− 1

3
b− c− 1

3
f ,

1

3
a ,

1

3
c ,

1

3
c+

1

3
f

−a+ f , a+ b+ d , a , −2 a− 2 b− d− 2 f , b− f , a

c+ f , a , c , b− f , −a− b− 3 c− f , c

c , b− f , c+ f , a , c , −a− b− 3 c− f




B :=




1

3
c

1

3
b− 1

3
f −c −1

3
b

1

3
c

1

3
c

b− f a+ b+ d −b −d+ 2 f −a+ f −b

−c −1

3
b

1

3
c

1

3
b− 1

3
f

1

3
c

1

3
c

−b −d+ 2 f b− f a+ b+ d −b −a+ f

c −a+ f c −b a+ b+ c −3 c
c −b c −a+ f −3 c a+ b+ c




Ker(A+B) = span{[−1,−1, 0, 0,−2, 1], [2, 1, 1, 0, 3, 0], [0, 1, 0, 1, 0, 0]},
Ker(A−B) = span{[3, 1, 3, 1, 1, 1]}.

For the choice of the collision rates: a = 3 : b = 4 : c = 2 : d = 3 : f = 4,
g = 0, corresponding to the closest integral number approximation of the values
of collision rates for hard spheres, we obtain the following approximate values
for perpendicular bulk velocity and energy:

Vy jump = 0.04β,
energy jump = −2.14α− .04 δ.

For a = b = c = d = f = 1 we obtain:
Vy jump = 0.10β,
energy jump = −2.16α− 0.13 δ.

Note the qualitative agreement of the results with those obtained from the pre-
viously considered model of Hierarchy 1.
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4.3. Example 3: Plane 8v-model

This model seems to be the simplest one which gives the proper structure
of the kinetic boundary layer. For this model, which does not belong to any of
the above-defined hierarchies of regular models, one can obtain exact analytical
expressions for the relevant jump coefficients. Six velocity vectors of the model
vi = (vi

x, v
i
y) are distributed regularly on a circle of radius 2, and have the

following coordinates:

v0 = (2, 0), v1 = (1,
√

3), v5 = (−1,
√

3),(4.20)

v4 = (−2, 0), v7 = (−1,−
√

3), v3 = (1,−
√

3),(4.21)

and the remaining two velocity vectors are

v2 = (1.0), v6 = (−1, 0).(4.22)

We denote the distribution functions of the particles with the above velocity
vectors by: f0, f2, ...f7.

The relevant one-dimensional steady discrete velocity model equations read:

vi
x∂xfi = Qi, i = 0, ...7,(4.23)

with

(4.24)
Q0 = −B2 +B3 − T,

Q1 = A1 +B1 +B2 + T,

(4.25)

Q2 = −A1 +A2,

Q3 = −A2 −B1 −B3 + T,

Q4 = B2 −B3 − T,

(4.26)

Q5 = A1 +B + 1 +B3 + T,

Q6 = −A1 +A2,

Q7 = −A2 +B1 −B2 + T,

and with the binary collisional operators:

A1 = a(f2f5 − f1f6), A2 = a(f3f6 − f2f7),(4.27)
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B1 = b(f3f5 − f1f7), B2 = b(f0f4 − f1f7) B3 = b(f3f5 − f0f4),(4.28)

a, b being the collision rates for the relevant types of binary collisions. T =
t(f0f5f7 − f1f3f4) is the operator of triple collisions, with t – the collision rate
for triple collisions. In this model triple collisions are necessary for the correct
number of collision invariants, cf. Subs. 4.3.2. For this model we obtain exact
expressions for the jumps in parametric form.

4.3.1. Plane 8-velocity model with triple collisions. We linearize the equations
around the symmetric maxwellian mi = m, i = 0, ...7:

fi = m+ f̃i,(4.29)

and obtain the system of 8 linear differential equations

V · ∂F = MF,(4.30)

with V = diag(vi, i = 0, ...7), F = (f0...f7)T , and

M =

(
A B
B A

)
.(4.31)

Using symbolic calculations we obtain:

A :=




−b− 1

2
t

1

2
b+

1

2
t 0

1

2
b+

1

2
t

b+ t −m− 2 b− t 1 b− t

0 m −2 m

b+ t b− t 1 −m− 2 b− t




B :=




−b+
1

2
t

1

2
b− 1

2
t 0

1

2
b− 1

2
t

b− t m+ b+ t −1 −2 b+ t

0 −m 2 −m

b− t −2 b+ t −1 m+ b+ t




Basis of Ker(A+B):

[1, 2, 0, 0], [0, 0, 1, 0], [0, −1, 0, 1].

Basis of Ker(A−B):
[2, 1, m, 1].
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Vy and energy collisional invariants for 8v model:

[
0,

1

2

√
3, 0, −1

2

√
3, 0,

1

2

√
3, 0, −1

2

√
3

]
, [4, 4, 1, 4, 4, 4, 1, 4].

Eigenvalue of (A+B)(A−B):

λ2 = 18 b t+ 4mb.

Note that the presence of ternary collisions decreases the boundary layer
thickness, as it already has been discussed in Example 1. Vy jump is

1

2

β

3 b+m

and energy jump: −1

6

(
− 32 δ m− 16 δ m2 − 189 δ t2 + 1080 t2 α+ 216

√
2 c1 t α−

72 δ t+54 t2 αm−8
√

2 c1 δ m−102 δ tm+264 t αm+12 t αm2+12
√

2 c1 t αm−
36

√
2 c1 δ t

)
/
(
t (2m2 + 9mt+ 2

√
2 c1m+ 54 t+ 12

√
2 c1 + 12m)

)
, where c1 =√

b(9t+ 2m).
Note, as in the previously considered examples of Hierarchies 1 and 2, the

correct, linear dependence of the velocity and energy jumps on the fluid dynamics
coefficients α, β, δ.

4.3.2. Plane 8-velocity model without triple collisions. In this case the algebraic
structure of the linearized problem is different. In particular, the E = A−B
matrix has a two-dimensional zero eigenspace, which reflects existence of a spu-
rious collision invariant. Nevertheless the general structure is conserved, with
the energy jump zero as a necessary condition for the existence of the kinetic
layer solution.
Eigenvectors of A+B:

[1, 2, 0, 0], [0, 0, 1, 0], [0, −1, 0, 1].

Eigenvectors of A−B:
[0, 1, m, 1], [1, 0, 0, 0].

Eigenvalue of (A+B)(A−B):

λ2 = 2mb.

In this case the energy jump vanishes, and Vy jump is

1

2

β

m+ 3 b
.
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5. Conclusions

We have derived algebraic criteria under which discrete velocity models lead
to qualitatively correct boundary layers. These criteria include not only correct
number of the conserved quantities, but also allow to model gradients of fluid
quantities at infinity, and to calculate the jump conditions. We have tested the
theory in a number of cases. As it turns out, the relevant algebraic details are
readily calculated through application of computer algebra tools. They allow to
determine the physical relevance of a given model and in particular, to answer the
questions, which type of collisions can be dropped, thus simplifying the model,
and which are essential to preserve the correct structure of the kinetic boundary
layer. The explicit formulas derived in the theory allow to determine all the
quantities relevant for the coupling with fluid dynamics, like layer thickness,
flow gradients and jump conditions.

Included in the framework are also the models described by differential al-
gebraic rather than only differential equations. The theory is flexible enough to
include several of more general classes, like three-particle interaction models. It
can be also applied for discrete velocity models of mixtures [19].
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Appendix A.

We present expressions for the collision operators Qi for the (9+4)-velocity
model of Hierarchy 1.

(A.1) Q2 = e(f1f7 − f2f6)

+ b(f11f12 − f2f6) + d(f4f12 − f2f10) + d(f5f11 − f2f9)

+ e(f3f7 − f2f8) + f(f4f5 − f2f13) + g(f1f13 − f2f11) + g(f3f13 − f2f12)

+ t1(f7f4f5 − f2f9f11) + t2(f1f7f12 − f8f2f11) + t2(f3f7f11 − f6f2f12).

(A.2) Q3 = c(f1f8 − f6f3)

+ e(f1f12 − f3f11) + e(f2f8 − f3f7) + g(f2f12 − f3f11)

+ t2(f6f2f12 − f3f7f11) + t2(f1f7f12 − f8f2f11).
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(A.3) Q4 = d(f2f10 − f4f12)

+ a(f9f5 − f4f10) + d(f10f11 − f4f7) + f(f11f13 − f4f9)

+ f(f2f13 − f4f5) + t1(f2f9f10 − f7f4f5) + t1(f11f10f5 − f12f4f9).

(A.4) Q5 = d(f2f9 − f5f11)

+ a(f4f10 − f5f9) + d(f9f12 − f5f7) + f(f2f13 − f4f5)

+ f(f12f13 − f5f10) + t1(f2f9f10 − f7f4f5) + t1(f12f14f9 − f11f10f5).

(A.5) Q6 = c(f1f8 − f6f3)

+ e(f1f7 − f2f6) + e(f8f11 − f6f12) + g(f7f11 − f6f13)

+ t2(f3f7f11 − f6f2f12)

(A.6) Q7 = e(f2f6 − f1f7)

+ b(f11f12 − f2f7) + d(f2f9 − f4f7) + d(f2f10 − f5f7)

+ e(f2f8 − f3f7) + f(f7f10 − f3f13) + g(f6f13 − f7f11) + g(f8f13 − f7f12)

+ t2(f8f2f11 − f1f7f12) + t2(f6f2f12 − f3f7f11) + t1(f2f9f10 − f7f4f5)

(A.7) Q8 = c(f6f3 − f1f8) + e(f3f7 − f2f8) + e(f6f12 − f8f11)

+ g(f7f12 − f8f13) − t2(f8f2f11 − f1f7f12).

(A.8) Q9 = d(f4f7 − f2f9)

+ a(f4f10 − f5f9) + d(f11f10 − f9f12) + f(f11f13 − f4f9)

+ f(f7f13 − f9f10) + t1(f7f4f5 − f2f9f10) + t1(f10f11f5 − f12f4f9).

(A.9) Q10 = d(f5f7 − f2f10)

+ a(f9f5 − f4f11) + d(f9f12 − f11f10) + f(f7f13 − f9f10)

+ f(f12f13 − f5f10) + t1(f7f4f5 − f2f9f10) + t1(f12f4f9 − f11f10f5).

(A.10) Q11 = e(f1f12 − f3f11)

+ b(f2f7 − f11f12) + e(f6f12 − f8f11) + d(f2f9 − f5f11)

+ d(f4f7 − f10f11) + f(f4f7 − f11f13) + g(f1f13 − f2f11) + g(f6f13 − f7f11)

+ t1(f12f14f9 − f11f10f5) + t2(f1f7f12 − f8f2f11) + t2(f6f2f12 − f3f7f11).
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(A.11) Q12 = e(f3f11 − f1f12)

+ b(f2f7 − f11f12) + e(f8f11 − f6f12) + d(f2f10 − f4f12)

+ d(f5f7 − f9f12) + f(f5f10 − f12f13) + g(f8f13 − f7f12) + g(f3f13 − f2f12)

+ t1(f10f11f5 − f12f4f9) + t2(f8f2f11 − f1f7f12) + t2(f3f7f11 − f6f2f12).

(A.12) Q13 = f(f4f5 + f4f9

+ f9f10 + f5f10 − f2f13 − f11f13 − f7f11 − f6f13)

+ g(f2f11 − f1f13) + g(f7f11 − f6f13) + g(f7f12 − f8f13) + g(f2f12 − f3f13)

In all the terms corresponding to the triple collisions we have assumed that
the post-collisional velocities of the colliding particles are different from the pre-
collisional ones, in order to eliminate the so-called triple collisions with a “spec-
tator”, in which one of the velocities remains unchanged (note that we assume
that particles are indistinguishable).

Appendix B.

We give expressions for the matrices A and B of the linearized system of
equations obtained from the 13-velocity model of Hierarchy 1.

A :=




−1

2
c− e− 1

2
g +

1

2
z11 − 1

2
t2 ,

1

2
e+

1

2
g +

1

2
z12 +

1

2
t2 ,

1

2
c+

1

2
e+

1

2
z13 ,

1

2
z14 ,

1

2
z15

a21 , a22 , a23 , a24 , a25

1

2
c+

1

2
e+

1

2
z31 ,

1

2
e+

1

2
g +

1

2
z32 +

1

2
t2 ,

−1

2
c− e− 1

2
g +

1

2
z33 − 1

2
t2 ,

1

2
z34 ,

1

2
z35

z41 , d+ f + z42 + t1 , z43 ,−2 d− a− 2 f + z44 − 2 t1 ,

a− f + z45

z51 , d+ f + z52 + t1 , z53 , a− f + z54 ,

−2 d− a− 2 f + z55 − 2 t1
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B :=




1

2
c+

1

2
e+

1

2
z16 , −1

2
e+

1

2
z17 − 1

2
t2 , −1

2
c+

1

2
z18 +

1

2
t2 ,

1

2
z19 ,

1

2
z10

b21 , b22 , b23 , b24 , b25

−1

2
c+

1

2
z36 +

1

2
t2 , −1

2
e+

1

2
z37 − 1

2
t2 ,

1

2
c+

1

2
e+

1

2
z38 ,

1

2
z39 ,

1

2
z30

z46 , −d+ z47 − t1 , z48 , a− f + z49 , 2 d− a+ z40 + 2 t1

z56 , −d+ z57 − t1 , z58 , 2 d− a+ z59 + 2 t1 , a− f + z50




The remaining unknown parameters in these expressions are defined as fol-
lows:

a21 : =
1

2
e+

1

2
g +

1

2
z21 +

1

2
t2 ,

a22 : = −1

2
b− d− 1

2
f − g − e+

1

2
z22 − 1

2
t1 − t2 ,

a23 : =
1

2
e+

1

2
g +

1

2
z23 +

1

2
t2 ,

a24 : =
1

2
d+

1

2
f +

1

2
z24 +

1

2
t1 ,

a25 : =
1

2
d+

1

2
f +

1

2
z25 +

1

2
t1 ,

b21 : = −1

2
e+

1

2
z26 − 1

2
t2 ,

b22 : = e− 1

2
b+

1

2
z27 +

1

2
t1 + t2 ,

b23 : = −1

2
e+

1

2
z28 − 1

2
t2 ,

b24 : = −1

2
d+

1

2
z29 − 1

2
t1 ,

b25 : = −1

2
d+

1

2
z20 − 1

2
t1 ,
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where

z21 := (p1 + r1 ) (b− g + d) + s1 (2 g − f) ;

z22 := (p2 + r2 ) (b− g + d) + s2 (2 g − f) ;

z23 := (p3 + r3 ) (b− g + d) + s3 (2 g − f) ;

z24 := (p4 + r4 ) (b− g + d) + s4 (2 g − f) ;

z25 := (p5 + r5 ) (b− g + d) + s5 (2 g − f) ;

z26 := (p6 + r6 ) (b− g + d) + s6 (2 g − f)

z27 := (p7 + r7 ) (b− g + d) + s7 (2 g − f) ;

z28 := (p8 + r8 ) (b− g + d) + s8 (2 g − f) ;

z29 := (p9 + r9 ) (b− g + d) + s9 (2 g − f) ;

z20 := (p10 + r10 ) (b− g + d) + s10 (2 g − f) ;

z31 := −p1 e+ r1 (e+ g) − s1 g + t2 (r1 − p1 ) ;

z32 := −p2 e+ r2 (e+ g) − s2 g + t2 (r2 − p2 ) ;

z33 := −p3 e+ r3 (e+ g) − s3 g + t2 (r3 − p3 ) ;

z34 := −p4 e+ r4 (e+ g) − s4 g + t2 (r4 − p4 ) ;

z35 := −p5 e+ r5 (e+ g) − s5 g + t2 (r5 − p5 ) ;

z36 := −p6 e+ r6 (e+ g) − s6 g + t2 (r6 − p6 ) ;

z37 := −p7 e+ r7 (e+ g) − s7 g + t2 (r7 − p7 ) ;

z38 := −p8 e+ r8 (e+ g) − s8 g + t2 (r8 − p8 ) ;

z39 := −p9 e+ r9 (e+ g) − s9 g + t2 (r9 − p9 ) ;

z30 := −p10 e+ r10 (e+ g) − s10 g + t2 (r10 − p10 ) ;

z41 := p1 (d+ f) − r1 d+ 2 s1 f + t1 (p1 − r1 ) ;

z42 := p2 (d+ f) − r2 d+ 2 s2 f + t1 (p2 − r2 ) ;

z43 := p3 (d+ f) − r3 d+ 2 s3 f + t1 (p3 − r3 ) ;

z44 := p4 (d+ f) − r4 d+ 2 s4 f + t1 (p4 − r4 ) ;

z45 := p5 (d+ f) − r5 d+ 2 s5 f + t1 (p5 − r5 ) ;

z46 := p6 (d+ f) − r6 d+ 2 s6 f + t1 (p6 − r6 ) ;

z47 := p7 (d+ f) − r7 d+ 2 s7 f + t1 (p7 − r7 )

z48 := p8 (d+ f) − r8 d+ 2 s8 f + t1 (p8 − r8 ;

z49 := p9 (d+ f) − r9 d+ 2 s9 f + t1 (p9 − r9 ) ;

z40 := p10 (d+ f) − r10 d+ 2 s10 f + t1 (p10 − r10 ) ;

z51 := −p1 d+ r1 (f + d) + 2 s1 f + t1 (r1 − p1 ) ;

z52 := −p2 d+ r2 (f + d) + 2 s2 f + t1 (r2 − p2 ) ;
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z53 := −p3 d+ r3 (f + d) + 2 s3 f + t1 (r3 − p3 ) ;

z54 := −p4 d+ r4 (f + d) + 2 s4 f + t1 (r4 − p4 )

z55 := −p5 d+ r5 (f + d) + 2 s5 f + t1 (r5 − p5 ) ;

z56 := −p6 d+ r6 (f + d) + 2 s6 f + t1 (r6 − p6 )

z57 := −p7 d+ r7 (f + d) + 2 s7 f + t1 (r7 − p7 ) ;

z58 := −p8 d+ r8 (f + d) + 2 s8 f + t1 (r8 − p8 )

z59 := −p9 d+ r9 (f + d) + 2 s9 f + t1 (r9 − p9 ) ;

z50 := −p10 d+ r10 (f + d) + 2 s10 f + t1 (r10 − p10 )

with

w1 :=
f

4 (f + g)
; w2 :=

g

4 (f + g)
;

h :=
1

4 e+ 2 d+ f + 2 g + 2 (t1 + 2 t2 )
;

k := 2 b+ 2 g + 2 d+ f − (2 g − f)2

2 (f + g)
; l :=

2 g − f

k
;

m :=

1 + h (b− 2 e) − h (2 g − f)2

4 (f + g)
− h (t1 + 2 t2 )

k
; n :=

1 −mk

k
;

lf := 1 +
l (2 g − f)

2 (f + g)
; mf :=

(2 g − f) (2m− h)

4 (f + g)
;

nf :=
(2 g − f) (2n+ h)

4 (f + g)
;

p1 := −lw2 +m (e+ g + t2 ) + n (−e− t2 ) ;

p2 := l (−w1 + 2 w2 ) + (m+ n) (b− g + d) ;

p3 := −lw2 +m (−e− t2 ) + n (e+ g + t2 ) ;

p4 := l 2 w1 +m (d+ f + t1 ) + n (−d− t1 ) ;

p5 := l 2 w1 +m (−d− t1 ) + n (d+ t1 + f) ;

p6 := p1 ; p7 := p2 ;

p8 := p3 ; p9 := p4 ; p10 := p5 ;
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r1 := −lw2 + (m− h) (e+ g + t2 ) + (n+ h) (−e− t2 ) ;

r2 := l (−w1 + 2 w2 ) + (m+ n) (b− g + d) ;

r3 := −lw2 + (m− h) (−e− t2 ) + (n+ h) (e+ g + t2 ) ;

r4 := l 2 w1 + (m− h) (d+ f + t1 ) + (n+ h) (−d− t1 ) ;

r5 := l 2 w1 + (m− h) (−d− t1 ) + (n+ h) (d+ t1 + f) ;

r6 := r1 ; r7 := r2 ; r8 := r3 ; r9 := r4 ; r10 := r5 ;

s1 := −lf w2 + mf (e+ g + t2 ) + nf (−e− t2 ) ;

s2 := lf (−w1 + 2 w2 ) + (mf + nf ) (b− g + d) ;

s3 := −lf w2 + mf (−e− t2 ) + nf (e+ g + t2 ) ;

s4 := lf 2 w1 + mf (d+ f + t1 ) + nf (−d− t1 ) ;

s5 := lf 2 w1 + mf (−d− t1 ) + nf (d+ t1 + f) ;

s6 := s1 ; s7 := s2 ; s8 := s3 ; s9 := s4 ; s10 := s5 ;

z11 := p1 (e+ g) − r1 e− s1 g + t2 (p1 − r1 ) ;

z12 := p2 (e+ g) − r2 e− s2 g + t2 (p2 − r2 ) ;

z13 := p3 (e+ g) − r3 e− s3 g + t2 (p3 − r3 ) ;

z14 := p4 (e+ g) − r4 e− s4 g + t2 (p4 − r4 ) ;

z15 := p5 (e+ g) − r5 e− s5 g + t2 (p5 − r5 ) ;

z16 := p6 (e+ g) − r6 e− s6 g + t2 (p6 − r6 ) ;

z17 := p7 (e+ g) − r7 e− s7 g + t2 (p7 − r7 ) ;

z18 := p8 (e+ g) − r8 e− s8 g + t2 (p8 − r8 ) ;

z19 := p9 (e+ g) − r9 e− s9 g + t2 (p9 − r9 ) ;

z10 := p10 (e+ g) − r10 e− s10 g + t2 (p10 − r10 ).

Appendix C

The remaining collision terms Q2, ...Q14 of the (4 + 8)-velocity model are
defined as follows:

Q2 = A1 −D −B2 +A3 +B4 + F2 + F4 −G1 +G2 −G3 −G4,

Q3 = A1 +B1 + C1 − F4 +G3 +G4,

Q4 = −A1 +D +B2 −B3 −A4 − F1 + F3 −G1 −G2 −G3 +G4,

Q5 = −A3 +B3 − C2 − F1 −G2 −G3,
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Q6 = C2 +A4 + F4 −G1 +G2,

Q9 = C1 +B2 +A2 + F2 −G1 +G2,

Q10 = B1 +D −A2 −A3 +B4 + F1 − F3 +G1 +G2 +G3 −G4,

Q11 = C1 −B2 −A2 + F3 −G2 −G3,

Q12 = −B1 −D +A2 +B3 +A4 − F2 − F4 +G1 −G2 +G3 +G4,

Q13 = A3 + C2 − F2 +G3 +G4,

Q14 = −C2 +B4 −A4 − F3 +G1 −G4,

where

D = d(f2f12 − f4f10), B2 = b(f2f11 − f4f9),

A2 = a(f10f11 − f9f12), A3 = a(f5f10 − f2f13),

A4 = a(f4f14 − f6f12),

B3 = b(f4f13 − f5f12), B4 = b(f6f10 − f2f14),

C2 = b(f5f14 − f6f13),

F2 = f(f12f13 − f2f9), F3 = c(f10f14 − f11f4),

F4 = f(f3f12 − f2f6),

G2 = g(f4f5f11f12 − f2f6f9f10), G3 = g(f2f4f5f11 − f3f10f12f13).

The collision frequencies a, b, c, d, f are assumed to be proportional to the
moduli of differences of the velocities of colliding particles in the case of binary
collisions, cf. [10]. The operatorsGi describe the influence of quadruple collisions,
g being the parameter describing the collision rate for the quadruple collisions.
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