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In the paper a multi-grain model for a migration recrystallization phenomenon
in polar ice is presented. A single crystal of ice is treated as a transversely isotropic
and incompressible medium which deforms by viscous creep. The anisotropic viscous
behaviour of the ice crystal is described by a constitutive law that includes three mi-
croscopic viscosity parameters, and the macroscopic behaviour of the polycrystal is
derived by adopting the Taylor–Voigt approximation of the velocity gradient homo-
geneity in the material. It is assumed that recrystallize, that is gradually disappear,
these crystals which are most stressed, and at their expense new crystals are nu-
cleated with the orientations that enhance the deformation of the polycrystal. The
model predictions are illustrated by results of numerical simulations of simple flows,
showing the evolution of the oriented structure of ice and the variation of macroscopic
viscosities with increasing strains.
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Notations

A, B ice crystal dimensionless rheological parameters,
c crystal c-axis unit vector,
D strain-rate tensor,

Ea, Es enhancement factors for compression and shear,
I unit tensor,
L velocity gradient tensor,

M structural tensor,
R rotation matrix,

Seq equivalent deviatoric stress,
S deviatoric Cauchy stress tensor,
v velocity vector,

W spin tensor,
xi (i = 1, 2, 3) global spatial Cartesian co-ordinates,
xc

i (i = 1, 2, 3) local spatial Cartesian co-ordinates,
ζ normalized equivalent deviatoric stress,
θ angle defining the crystal c-axis orientation,
κ shear strain,
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λi (i = 1, 2, 3) principal stretches,
µ viscosity for shear on a crystal basal plane,

µ0 isotropic polycrystalline ice viscosity,
µij (i, j = 1, 2, 3) anisotropic ice crystal viscosities,

ϕ angle defining the crystal c-axis orientation.

1. Introduction

Ice core samples drilled from polar ice sheets in Antarctica and Greenland
reveal strong anisotropic fabrics, shown by a significant re-alignment of initially
randomly oriented individual ice crystals (Gow et al. [14], Thorsteinsson
et al. [21]). Progressive re-orientation of crystal c-axes (the axes of ice crystal
hexagonal symmetry), taking place in the polycrystalline material in its response
to changing deformation and stress conditions as ice particles descend from the
free surface to depth, leads to considerable changes in ice macroscopic viscosities
on different shear planes. The main micro-process that induces the development
of the oriented structure in the polar ice is the crystal lattice rotation by in-
tracrystalline slip (Azuma and Higashi [2], Alley [1]). This process operates
throughout the entire path of the ice descent from the free surface to depth,
and gives rise, in the absence of other micro-mechanisms, to very strong single-
maximum fabrics, with the majority of the crystal c-axes clustered along the
vertical (Alley [1]).

However, besides the above lattice rotation mechanism, the polar ice is also
subject to several recrystallization processes which affect its micro-structure.
One such a mechanism, the so-called normal crystal growth process, due to its
isotropic character, has no influence on the macroscopic anisotropy of ice. An-
other mechanism, known as the rotation recrystallization (or polygonization), is
most active in the middle part of an ice sheet, and results in bending and sub-
sequent splitting of the ice grains into new ones, with their orientations being
very close to those of existing grains (the latter do not disappear). Therefore,
the macroscopic effect of this mechanism is only a slight modification of the
anisotropic properties of ice. As ice particles, during their further downward
motion, enter the bottom part of a glacier and approach its base, in certain
conditions yet another recrystallization process may activate, due to which the
structure of ice changes dramatically, as evidenced by multi-maxima fabrics,
with very coarse and interlocking grains, found near the glacier base (Duval [6],
Duval and Castelnau [8], De La Chapelle et al. [5], Duval et al. [7]).
Such a process, known in glaciology as the migration (or dynamic) recrystalliza-
tion, is caused by rapid migration of grain boundaries between highly deformed
and dislocation-free crystals, and leads to the nucleation of new grains at the
expense of old ones (which eventually disappear). Not all the factors which ini-
tiate and subsequently control the migration recrystallization mechanism have
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been identified yet, but it seems that the most important among them are: high,
that is near-melting temperature (above −10◦ C), high deviatoric stress, strain,
and strain-rate magnitudes, with some role also played by the bed topogra-
phy (De La Chapelle et al. [5], Duval et al. [7]). The macroscopic result of
the migration recrystallization, due to the changes induced in the ice micro-
structure, is a significant modification of ice viscosities compared to those of
the non-recrystallized ice. Therefore, this process has a crucial effect on the
overall flow of polar ice sheets, since the latter deform mainly by shearing in
near-base regions, that is, in the regions in which the recrystallized ice fabrics
are observed.

To date only few theoretical attempts have been made to describe the pro-
cess of migration recrystallization. Van der Veen and Whillans [22] have
developed a multi-grain, uniform-stress model in which the onset of the process
is described by two alternative criteria, both based on macroscopic strains in the
polycrystalline aggregate (by construction, in this formulation the stress depen-
dence of the recrystallization process cannot be captured, since all crystals in the
aggregate are assumed to be equally stressed). Staroszczyk and Morland
[20] have proposed a phenomenological constitutive model, in which, ignoring
most of the micro-processes underlying the fabric evolution in ice, the onset of
the migration recrystallization is described in terms of a temperature-dependent
critical macroscopic strain-rate invariant. Subsequently, Morland [17] has for-
mulated a model in which the onset of recrystallization is related to a tempe-
rature-dependent critical lattice distortion parameter, equivalent to a condi-
tion on a stored mechanical energy of dislocations. An approach, based on
the cellular automata method, which incorporates several types of recrystalliza-
tion, including the migration one, has been developed by Ktitarev et al. [15]
and Faria et al. [11]. The model, however, is restricted to one-dimensional
deformations, therefore it cannot be used in realistic ice sheet flow simula-
tions. Quite a distinct approach has been pursued by Faria et al. [10] to con-
struct a general theory of recrystallization processes in a polycrystalline ma-
terial by treating it as a mixture of continuous diversity and making use of
the general principles of thermodynamics. This theory, applied to polycrys-
talline ice, has been substantially extended by Faria [9]. However, this gen-
eral model, due to a multitude of material parameters entering the consti-
tutive laws and difficulties associated with their quantitative determination,
will hardly find implementation in ice sheet flow modelling in a foreseeable
future.

In the present paper the migration recrystallization phenomenon is described
by extending a multi-grain formulation by Staroszczyk [18, 19], in its earlier
version accounting only for the lattice rotation mechanism. In that constitutive
model, based on the Taylor–Voigt approximation of a uniform velocity gradient
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within a polycrystalline aggregate, the macroscopic behaviour of ice is derived by
a simple homogenization method, by which the macroscopic response is a mean
average of microscopic responses of a finite number of discrete grains (assumed
to have equal volumes) representing the aggregate. The behaviour of each crys-
tal in the aggregate is followed separately by one another; that is, no crystal
interactions are accounted for. In the model, a single crystal of ice is treated
as a transversely isotropic and incompressible body which deforms by viscous
creep. The viscous response of the crystal is described by a constitutive law that
involves three viscosity parameters which define different shear resistances of
the crystal in different glide directions.

Now the previous formulation is extended to include the recrystallization as
well. For this purpose, it is assumed that recrystallize these crystals in an ag-
gregate which are most stressed, as postulated by De La Chapelle et al. [5].
Hence, a parameter is introduced that defines a critical level of the deviatoric
stress invariant, and it is supposed that a given crystal starts to recrystallize as
soon as the microscopic stress invariant for that crystal reaches the above criti-
cal value. A new crystal is nucleated from that undergoing recrystallization in a
smooth, continuous manner – in other models based on the multi-grain approach
(Van der Veen [22], Ktitarev et al. [15]) it has been assumed that the pro-
cess occurs abruptly, that is, within one discrete time step. The orientations of
new grains (their c-axes) are chosen in a way that is most favourable for their
microscopic deformations. Hence, three different hypotheses are adopted, and
then discussed in Sec. 3, concerning the initial spatial orientation of the c-axes
of newly developing grains.

The model predictions are illustrated by results of numerical simulations car-
ried out for sustained uni-axial compression and simple shear flows, demonstrat-
ing the evolution of the oriented structure (c-axes distribution) in recrystalliz-
ing polycrystalline ice, and comparing these predictions with the corresponding
results when no recrystallization takes place. Further, the variations of instanta-
neous macroscopic viscosities with increasing deformations, for the above three
hypotheses and different critical deviatoric stress-invariant levels, are shown to
display some characteristic features of the macroscopic anisotropy evolution in
a polycrystalline ice aggregate.

2. Governing equations

This section summarizes some theoretical results concerning the ice crystal
lattice rotation model, which are relevant in the context of the migration recrys-
tallization formulation proposed further in this work. For detailed derivation of
these results, and their discussion, the Reader is referred to earlier works of the
author [18, 19].
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2.1. Single crystal kinematics

Due to the transverse isotropy of the elementary hexagonal crystal of ice, with
the axis of rotational symmetry coinciding with the crystal c-axis, the changing
position of the crystal in space can be uniquely defined by the orientation of
a unit vector aligned along the c-axis. Hence, we introduce a unit vector c along
the crystal c-axis, and two angles: the zenith angle θ (0 ≤ θ ≤ π/2) and the
longitude (azimuth) angle ϕ (0 ≤ ϕ ≤ 2π), which define the orientation of the
crystal in a fixed rectangular Cartesian reference frame Oxi (i = 1, 2, 3), see
Fig. 1. Since in some instances it is more convenient to describe macroscopic
properties of a single crystal in a reference frame associated with that crystal,
rather than in the global co-ordinates Oxi, we also adopt a local rectangular
frame Oxc

i (i = 1, 2, 3), moving together with the crystal. The axes of the lo-
cal frame are chosen in such a way that xc

3 coincides with the direction of the
c-axis (vector c), xc

1 lies in the plane Ox3x
c
3, and xc

2 has the direction that pre-
serves the right-handedness of the local co-ordinate system. All tensor quantities
whose components are expressed in the local frame will be indicated by the su-
perscript ‘c’, and those expressed in the global frame will be left without any
suffix.

Fig. 1. Global and local co-ordinate systems, with the zenith angle θ and the longitude
angle ϕ defining the changing crystal c-axis orientation in space.

Transformation of components of non-scalar quantities from the local to the
global reference frame is described by means of the rotation matrix R, the com-
ponents of which are defined by

(2.1) R =




cos θ cos ϕ − sin ϕ sin θ cos ϕ
cos θ sin ϕ cos ϕ sin θ sin ϕ
− sin θ 0 cos θ


 .
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Since the local frame Oxc
i moves relative to the fixed global frame Oxi, the

above rotation matrix is time-dependent. Hence, the position vectors in both
co-ordinate systems, x and xc, are related by

(2.2) x = R(t)xc, xc = RT (t)x,

where RT is the transpose of R, and t denotes time. Further, by (2.2)1, the
components of the velocity vectors, v and vc, transform by

(2.3) v = ẋ = Ṙxc + Rvc,

where the superposed dots denote time derivatives. Differentiation of the latter
equation with respect to the co-ordinates xi (i = 1, 2, 3) yields the expression
which connects the spatial velocity gradients L and Lc (with components Lij =
∂vi/∂xj and Lc

ij = ∂vc
i /∂xc

j , respectively), measured in both reference frames,
in the form:

(2.4) L = ṘRT + RLcRT .

By taking the symmetric and anti-symmetric parts of L and Lc, relation (2.4)
furnishes the transformation rules for the strain-rate tensors, D and Dc, and
the spin tensors, W and Wc, expressed by

(2.5) D = RDcRT , W = ṘRT + RWcRT .

The tensor relation (2.5)2 is equivalent to three equations for non-trivial compo-
nents of W in terms of three non-zero components of Wc: W c

12, W c
13 and W c

23.
The first component, W c

12, is irrelevant to this analysis, as it describes the rota-
tion of the crystal about its axis of symmetry (which does not affect the viscous
behaviour of the crystal); hence, the respective equation for the ( )12 components
can be ignored here. The other two spin tensor components, W c

13 and W c
23, can

be expressed in terms of the strain-rate tensor components by assuming that
the grain basal planes remain parallel to each other during the viscous deforma-
tion of the crystal. This provides two kinematic relations (Meyssonnier and
Philip [16]):

(2.6) W c
13 = Dc

13, W c
23 = Dc

23.

Accordingly, on account of (2.6), the tensor expression (2.5)2 yields the following
two evolution equations:

θ̇ = − Dc
13 + W13 cos ϕ + W23 sin ϕ,(2.7)

ϕ̇ sin θ = − Dc
23 − W12 sin θ − (W13 sin ϕ − W23 cos ϕ) cos θ(2.8)
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for the rotation-rates of the two angles, θ and ϕ, defining the current orien-
tation of the crystal c-axis, in terms of two microscopic strain-rates and three
microscopic spins. In the Taylor-Voigt approach adopted in this work, all the
five latter variables will be expressed in terms of the macroscopic strain-rates
and spins.

2.2. Constitutive relation for a crystal

In derivation of the constitutive law for the viscous creep of a single hexagonal
crystal of ice it has been assumed that the crystal is transversely isotropic about
its c-axis, is incompressible, and can deform by slips on the basal (normal to
the c-axis) and prismatic (parallel to the c-axis) planes. The frame-indifferent
linearly viscous flow law, formulated in the global co-ordinate system Oxi, and
expressing the microscopic deviatoric stress S in terms of the microscopic strain-
rate D, is then given by the equation (Staroszczyk [18]):

(2.9) S = 2µ
{

1
2 (3A + B − 4) tr(MD)

(
M − 1

3 I
)

+ BD

+ (1 − B)
[
MD + DM − 2

3 tr(MD) I
]}

.

In the above equation, M is a structure tensor that describes the transverse
symmetry of the material, and is defined by

(2.10) M = c ⊗ c, Mij = cicj (i, j = 1, 2, 3),

where ci (i = 1, 2, 3) are the components of the c-axis unit vector c, tr denotes
the trace operator, and I is the unit tensor.

The constitutive law (2.9) includes three microscopic viscosity parameters:
µ, A and B. The first one, µ, is the viscosity for the glide on the crystal basal
plane, i.e. it is the viscosity µ13 for shearing in the plane Oxc

1x
c
3 in the local frame

attached to the crystal. The other two rheological parameters, A and B, are
dimensionless quantities that define the degree of the single crystal anisotropy.
These two parameters relate the axial viscosity µ33 (for compression along the
axis xc

3), and the prismatic shear viscosity µ12 (for shearing in the plane Oxc
1x

c
2),

to the viscosity µ13:

(2.11) A =
µ33

µ13
, B =

µ12

µ13
.

Since µ = µ13 is the smallest possible viscosity in the crystal, it follows than
A ≥ 1 and B ≥ 1. The case of A = B = 1 describes an isotropic crystal, with
equal viscosities for all deformation modes, while the limit case of A → ∞ and
B → ∞ describes a crystal which can deform only by basal glide.
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2.3. Macroscopic behaviour of a polycrystal

All macroscopic quantities, describing the behaviour of a polycrystalline ag-
gregate as a whole, are distinguished from those referring to an individual crystal
by superposing a bar on a respective symbol. Thus, D is the macroscopic strain-
rate, as opposed to the microscopic strain-rate D, etc.

In the adopted multi-grain formulation, the macroscopic response of the poly-
crystalline aggregate, consisting, at a given material point and at a given time
instant, of Nc discrete grains, is defined as the sum of microscopic contributions
of all constituent grains. It is assumed that discrete crystals, the number of which
varies in time as recrystallizing crystals disappear and new ones nucleate, can
have different volumes (which change continuously during the recrystallization
process) – this is an extension of the previous theory (Staroszczyk [18]) in
which the number of grains was fixed and all crystals had the same, constant
in time, volumes. Accordingly, the components of any macroscopic tensor en-
tity T are defined as weighted arithmetic averages of respective components of
microscopic tensor entities T(k) (k = 1, 2, . . . , Nc). That is,

(2.12) T ij =
1

V0

Nc∑

k=1

Vk T
(k)
ij , V0 =

Nc∑

k=1

Vk,

where Vk denotes the volume of a k-th discrete grain, and V0 is the total volume
of all grains in the aggregate.

The Taylor–Voigt approximation of the uniformity of the velocity gradient
within the polycrystalline aggregate is expressed by

(2.13) L = L,

which is equivalent to nine kinematic relations connecting microscopic and
macroscopic quantities. The condition (2.13) necessarily implies that

(2.14) D = D and W = W.

The microscopic constitutive law (2.9), with the relation (2.14)1, expresses
the microscopic stresses in terms of the macroscopic strain-rate. Assume that
an isotropic polycrystal contains an infinite number of crystals, with their c-
axis orientations uniformly distributed in space. Then the averaging relation
(2.12), used for the stresses, relates the macroscopic stress to the macroscopic
strain-rate, and hence determines the macroscopic viscosity, µ0, in terms of the
microscopic rheological parameters µ, A and B:

(2.15) µ0 =
µ

5
(A + 2B + 2).

The above expression represents the upper bound on the macroscopic viscos-
ity of the polycrystalline ice aggregate. The lower bound can be determined by
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applying another classical homogenization method, that is, the Sachs-Reuss ap-
proximation of the stress homogeneity within the aggregate, expressed by the
condition S = S (Van der Veen and Whillans [22], Gödert and Hut-
ter [13], O. Gagliardini and J. Meyssonnier [12], Staroszczyk [19]).

As the polycrystal is subject to the deformation under sustained uni-axial
compression or simple shear, then all crystal c-axes gradually rotate to eventually
align in one direction. In this limit situation, the properties of the polycrystal
become the same as those of the single monocrystal, the viscous behaviour of
which is described by the constitutive law (2.9). Accordingly, the latter law gives

(2.16)
µ13

µ0
=

5

A + 2B + 2
=

1

Es
,

µ33

µ0
=

5A

A + 2B + 2
=

1

Ea
.

The parameters Es and Ea introduced in the above viscosity ratios are known
in glaciology as the enhancement factors for shear and compression, respectively,
and are measured in laboratory tests (Budd and Jacka [3]). Thus, the above
two expressions can be used to correlate the macroscopic quantities, Es and Ea,
with the microscopic quantities, A and B, to yield:

(2.17) A =
Es

Ea
, B =

5Es

2
− Es

2Ea
− 1.

For polar ice, the typical values of the enhancement factors are Es = 5 and
Ea = 1/3. With the latter magnitudes, relations (2.17) determine the values of
the microscopic viscosity parameters as A = 15 and B = 4. It is worth noting
here that none of the uniform stress formulations mentioned above enables the
correlation of the observed enhancement factors with the microscopic parameters
describing the single crystal of ice.

3. Migration recrystallization mechanism description

Two essential ingredients of the recrystallization model are (1) – the criterion
which defines the onset of the recrystallization process, and (2) – the determina-
tion of the initial orientation of a newly created ice grain. As already mentioned
in the Introduction, the major factors which trigger the migration recrystalliza-
tion are high temperature and high levels of stress, strain or strain-rate. In this
study we neglect the effect of temperature, assuming that the process occurs
at constant temperature, and also assume that the process is controlled by the
stress only, excluding from the analysis other possible factors. Hence, we adopt
a microscopic stress measure expressed by the second principal invariant of the
deviatoric stress tensor S, defined by

(3.1) S2
eq = J2 =

1

2
SijSij (i, j = 1, 2, 3),
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where Seq is termed the equivalent micro-stress, and the summation convention
for repeated indices applies. Further, we introduce a critical magnitude of the
equivalent micro-stress, Scr

eq, and suppose that a given crystal k (k = 1, 2, . . . , Nc)
undergoes recrystallization as long as the equivalent micro-stress in that crystal
is greater than, or equal to, the critical equivalent stress level. That is, when the
following condition is satisfied:

(3.2) S(k)
eq ≥ Scr

eq.

In order to include in future formulations the influence of temperature on the
recrystallization mechanism, one could incorporate the dependence of the above
critical stress measure on the absolute temperature (by making Scr

eq to decrease
as ice temperature increases above some critical temperature level – below that
critical level no recrystallization occurs). An approach similar to the above was
applied in the phenomenological recrystallization model by Staroszczyk and
Morland [20].

The other crucial component of the recrystallization model concerns the de-
termination of the spatial orientations of new grains which nucleate from those
undergoing the migration recrystallization. It is commonly accepted (Budd and
Jacka [3], Alley [1], Van der Veen and Whillans [22], De La Chapelle
et al. [5]) that new crystals of ice are oriented in a way that is most favourable
for their further deformation (which is the easiest by slip on the basal planes).
That is, a newly grown grain is least stressed in a current stress configuration –
this follows from the fact that the most stressed grains, due to their orientation
in the ice polycrystal, are those which deform at the smallest rates (so-called
‘hard’ grains), and vice versa, the least stressed grains are those deforming at
largest rates (so-called ‘soft’ grains) (De La Chapelle et al. [5]).

Accordingly, in the earlier discrete-grain models (Van der Veen and Whil-
lans [22], D. Ktitarev et al. [15]) it has been assumed that the preferred
direction of the c-axis of a newly nucleated crystal is such that its crystal basal
plane is parallel to the plane of the maximum macroscopic shear stress in a
polycrystal. In general (when all three principal macroscopic stresses are different
from one another), there are only two such planes, both with the normals being at
the angles of 45◦ to the principal axes of the maximum and minimum compressive
stresses in the aggregate, which admit only two possible directions for the c-axes
of new crystals. This seems to be a kind of restriction on possible orientations
of the new crystal c-axes, since many crystals would then have very similar
orientations, aligned along certain directions, whereas the observed recrystallized
polar ice fabrics always show some scatter in the c-axes distributions. For this
reason, the latter restriction is relaxed here by allowing the new crystal c-axes
to align along all directions (not only along the two ones, as above) at the angle
of 45◦ to the maximum compressive stress axis. Another possibility, which will
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be investigated here, is to attempt to find, for a given stress configuration, an
optimal c-axis direction, that is, to find a spatial orientation at which the crystal
microscopic deviatoric stress invariant reaches the minimum value. This can be
difficult to perform for a general viscous flow field; therefore it has been done
below for two simpler flow regimes: uni-axial compression and simple shear.

First consider the uni-axial compression flow. Assuming that the axial com-
pression is carried out along the co-ordinate axis x3, then, due to the axial
symmetry of the flow, and the ice incompressibility condition trD = 0, the
macroscopic, equal to the microscopic, strain-rate tensor is defined by

(3.3) D = D =



−1

2D33 0 0
0 −1

2D33 0
0 0 D33


 .

Consider a crystal of the spatial orientation defined by the angles ϕ and θ. Then
the c-axis unit vector is given by

(3.4) c = (sin θ cos ϕ, sin θ sin ϕ, cos θ)T ,

which determines, by the definition (2.10), the structure tensor M in terms
of ϕ and θ. Inserting now the strain-rate D, defined by (3.3), and the latter
structure tensor M into the constitutive equation (2.9) yields the microscopic
stress tensor S. The components of this stress determine, by (3.1), the equivalent
stress Seq as a function of the orientation angles ϕ and θ, the crystal rheological
parameters µ, A and B, and the strain-rate component D33. For convenience,
the resulting microscopic stress Seq is normalized by means of the magnitude
of the macroscopic equivalent stress, Seq, for an isotropic polycrystalline ag-
gregate which deforms at the same strain-rates, given by (3.3). The stress Seq

is a function of the macroscopic viscosity µ0 and the strain-rate D33 (for the
isotropic polycrystal the law S = 2µ0D applies); subsequently, µ0 is eliminated
by employing (2.15). The above-described calculations result in the following
dimensionless relation:

ζ =
Seq

Seq

(3.5)

=
5

2(A + 2B + 2)
[3(A2 + B2) sin4 θ + 6A2 cos4 θ + 3 sin2 2θ − 2A2]1/2,

where ζ denotes the normalized equivalent deviatoric stress in a crystal, ex-
pressed in terms of the two rheological parameters A and B, defining the strength
of anisotropy of the crystal, and the c-axis zenith angle θ (due to the rotational
symmetry of the uni-axial flow, the above relation for ζ is independent of the
longitude angle ϕ).
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It can be easily seen that for an isotropic crystal, described by A = B = 1,
relation (3.5) gives ζ = Seq/Seq = 1, which means that all crystals in the aggre-
gate are equally stressed. In the limit case of crystals deforming only by basal
glide, described by A → ∞ and B → ∞, relation (3.5) yields

(3.6)
Seq

Seq

→ 5

6

[
4 − 3 sin2(2θ)

]1/2
.

The latter gives the maximum normalized equivalent stress equal to 5/3 for
the crystal c-axis oriented at either θ = 0 or θ = 90◦ (hard crystals), and
the minimum value of this stress equal to 5/6 for θ = 45◦ (soft crystal). These
predictions are in very good quantitative agreement with the results presented by
De La Chapelle et al. [5], obtained by applying a visco-plastic self-consistent
model by Castelnau et al. [4], in which the resistance of non-basal slip systems
was assumed to be 70 times larger than that of basal slip. Also, it follows from
(3.5) that for θ = 0, for any combinations of A and B, the equivalent stress
Seq/Seq is equal to 1/Ea, the reciprocal of the axial enhancement factor.

Fig. 2. Normalized equivalent stress ζ in uni-axial compression as a function of the c-axis
zenith angle θ and the crystal rheological parameters A and B.

The variation of the equivalent stress ζ = Seq/Seq with the crystal c-axis
zenith angle θ, for different combinations of the microscopic rheological param-
eters A and B, is illustrated in Fig. 2. It is seen that, depending on the strength
of anisotropy of the crystal (defined by the parameters A and B), the most
favourable orientation for the crystal c-axis in a polycrystalline ice aggregate
under uni-axial compression is that defined by the zenith angles θ by a few de-
grees larger than 45◦. For the rheological parameters A = 15 and B = 4, best



A multi-grain model for migration recrystallization in polar ice 271

correlating with the observed macroscopic properties of polar ice, the optimal
inclination of the crystal, denoted by θmin , is at the angle of 53.86◦ to the axis
of the macroscopic compressive stress.

Next consider the simple shear configuration. Assuming that the deformation
takes place in the plane Ox1x3, the macroscopic and microscopic strain-rate
tensors are given by

(3.7) D = D =




0 0 D13

0 0 0
D13 0 0


 .

Proceeding in the way analogous to that applied to the uni-axial compression
flow and described in the text below equation (3.4), with the strain-rate compo-
nent D33 replaced now by D13, we arrive at the expression

(3.8) ζ =
Seq

Seq

=
5

2(A + 2B + 2)

× {(3A2 + B2) sin2 2θ cos2 ϕ + 4[(B2 sin2 θ + cos2 θ) sin2 ϕ + cos2 2θ cos2 ϕ]}1/2,

which describes the dependence of the normalized equivalent stress in simple
shear on the rheological parameters A and B and the crystal c-axis orientation
angles θ and ϕ.

It follows from (3.8) that for the crystal c-axis aligned along the x3-axis,
θ = 0, and for θ = 90◦ and either ϕ = 0 or ϕ = 180◦, that is for the c-axis
along the x1-axis, the equivalent stress Seq/Seq reaches its minimum value equal
to 1/Es, the reciprocal of the shear enhancement factor. This means that in the
simple shear configuration, the most favourably oriented crystals are those with
the c-axes lying on the shear plane Ox1x3 and inclined at the angle 45◦ to the
principal axis of compression. Figure 3 illustrates the dependence of the nor-
malized equivalent stress on the angles θ and ϕ, for the rheological parameters
A = 15 and B = 4. Only the range 0 ≤ ϕ ≤ π/2 is considered, due to the symme-
try property ζ(θ, ϕ) = ζ(θ, π − ϕ) (the plot is symmetric about the co-ordinate
line ϕ = π/2). It is seen in the contour plot that the most poorly oriented grains
(most stressed) are those aligned along the directions defined by θ = 45◦ and
either ϕ = 0 or ϕ = 180◦ (for the adopted values of A and B, the normalized
equivalent stress reaches then the magnitude of ∼ 2.63). The first of the lat-
ter two directions is normal, and the other is parallel, to the direction of the
principal axis of compression in the simple shear configuration assumed.

In the following section the proposed migration recrystallization model will
be used in numerical simulations to investigate the development of anisotropic
fabrics in polycrystalline ice. The three above-discussed hypotheses regarding the
initial orientations of newly created grains will be investigated. These hypotheses
can be summarized as follows:
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Fig. 3. Normalized equivalent stress ζ in simple shear as a function of the c-axis orientation
angles θ and ϕ, for the crystal rheological parameters A = 15 and B = 4.

1. The c-axis of a new crystal is normal to the plane of the maximum macro-
scopic shear stress. In general, there are only two such planes, and this
orientation (of the two) is chosen which is closer to that of the old crystal.

2. The c-axis of a new crystal lies on a conical surface at the angle 45◦ to
the principal axis of the maximum macroscopic compressive stress, and an
orientation is chosen which is the closest to that of the old grain.

3. The c-axis of a new crystal is on a conical surface at the angle θmin to
the principal axis of the maximum macroscopic compressive stress, and an
orientation is chosen which is the closest to that of the old grain.

Hence, three cases, corresponding to the above three hypotheses, have been im-
plemented in the multi-grain model constructed to simulate the recrystallization
process.

4. Flow simulations

The proposed migration recrystallization formulation has been used to sim-
ulate numerically the viscous behaviour of polycrystalline ice in two simple
regimes: uni-axial compression and simple shear. The simulations have been per-
formed for the rheological parameters pertaining to polar ice, and for the strain-
rate magnitudes typically occurring in flows of large polar ice sheets. Hence, the
macroscopic viscosity of the isotropic ice has been adopted as µ0 = 25 MPa · yr,
where the unit ‘ yr’ denotes the year, and the enhancement factors have been
assumed as Ea = 1/3 and Es = 5, yielding the microscopic parameter val-
ues A = 15 and B = 4. The axial strain-rate in the direction of compression
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has been D33 = 10−4 yr−1, and the shear strain-rate in the plane of shear-
ing has been D13 = 10−4 yr−1, both assumed constant throughout the simula-
tions. The calculations have been conducted by adopting in the initial configu-
ration Nc = 1000 discrete grains of equal volumes, with a random distribution
of the grain c-axes, to represent a macroscopically isotropic polycrystalline ag-
gregate.

There is some difficulty associated with the proper estimation of the recrys-
tallization time for a crystal, due to the lack of relevant data in the literature.
De La Chapelle [5] give the value of 2400 years needed for a crystal to subdi-
vide due to the process of rotation recrystallization (polygonization). However,
the latter process takes place in middle regions of ice sheets, with typical tem-
peratures (around −30◦ C) much lower than those (above −10◦ C) in the near-
bottom regions in which migration recrystallization occurs. Thus, due to this
temperature difference, it has been supposed that the latter process requires
less time to recrystallize a grain than the polygonization mechanism. Hence,
a value of 1000 years has been adopted in calculations, though the arbitrariness
of this choice is realized.

First consider unconfined uni-axial compression flow. Assuming that the
compression is carried out along the co-ordinate axis x3, then, due to the ax-
ial symmetry of the flow, the strains along the lateral directions x1 and x2 are
equal. Assuming the material co-ordinate axes Xi (i = 1, 2, 3) to be parallel to
the respective spatial co-ordinates xi, the deformation field is defined by

(4.1) x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, λ1 = λ2 = λ
−1/2
3 ,

where λi (i = 1, 2, 3) are the principal stretches along the xi axes, all equal
to unity at the start of deformation from the isotropic state, and λ3 < 1 sub-
sequently. The last relation in (4.1) is due to the incompressibility condition
λ1λ2λ3 = 1. Differentiation with respect to time and then to the spatial co-
ordinates xi, of the above expressions, yields the macroscopic velocity gradient
L, strain-rate D, and spin W tensors given by

(4.2) L = D =



−1

2 λ̇3/λ3 0 0

0 −1
2 λ̇3/λ3 0

0 0 λ̇3/λ3


 , W = O.

The evolution of the anisotropic ice fabric under uni-axial compression is
illustrated in Fig. 4, showing the distributions of the crystal c-axes by means
of the Schmidt diagrams (equal area pole diagrams). Each dot in the diagrams
represents the position at which an individual crystal c-axis intersects the surface
of a unit hemisphere (when each c-axis passes through the centre of the sphere),
projected onto the plane Ox1x2. The diagrams demonstrate how the ice fabric
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a)

b)

Fig. 4. Evolution of fabric in uni-axial compression along the x3-axis as a function of the
macroscopic axial strain ε=λ3 − 1 and time t (in thousands of years) for:

a) non-recrystallizing and b) recrystallizing ice.

changes with an increasing axial strain ε = 1 − λ3, given in the figure, together
with the times t (given in thousands of years) at which that axial strain has
been reached.

The upper row of diagrams, (a), shows the evolution of the c-axis distri-
bution when no recrystallization occurs; thus, only the crystal lattice rotation
mechanism operates. It is seen how, due to the latter mechanism, individual
crystals rotate and gradually cluster around the axis of compression (which is
normal to the plane of plots), giving rise to a strong single-maximum fabric at
large axial deformations. For comparison, the lower row of diagrams, (b), shows
the evolution of fabric when the migration recrystallization process takes place,
acting alongside the crystal lattice rotation process. The presented plots have
been obtained by applying the hypothesis (3) for the new crystal orientation,
by which new crystals are initially (before they start to rotate) aligned at the
optimal angle θmin = 53.86◦ to the compression axis. It has been assumed that
the crystal recrystallization starts when the equivalent stress ratio ζcr = Scr

eq/Seq

is equal to 2.2. This particular threshold stress level has been chosen on the
basis of experimental observations by Budd and Jacka [3], indicating that typ-
ical fabrics formed in recrystallizing ice under uni-axial compression have girdles
at the angle of about 25◦ to the compression axis. This means that all grains
with the orientation angles θ . 25◦ recrystallize. Fig. 2 shows (see the curve for
A = 15 and B = 4) that the equivalent stress level which corresponds to that
limit angle θ = 25◦ is equal to about 2.2, hence the choice of the above value
of ζcr = 2.2. The diagrams in Fig. 4b for the ice undergoing recrystallization
show that characteristic features of a girdle fabric start to appear at the axial
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strain as small as ε = −0.5 (two-fold axial compression of ice), and subsequently
fully develop with increasing deformation, which is illustrated by the strong gir-
dle fabric corresponding to the strain ε = −0.95 (twenty-fold compression of
ice, which is a typical magnitude for bottom layers in polar ice masses). The
c-axes distributions resulting from applying the other two hypotheses for the
new grain orientations, (1) and (2), are qualitatively very similar, differing only
in the size of the girdles around the axis of compression: the girdle diameters
become smaller due to the smaller initial inclination of the new grains to that
axis (45◦ instead of θmin ∼ 54◦).

Fig. 5. Variation of the normalized axial viscosity µ33/µ0 with the lateral stretch λ1 in
uni-axial compression for non-recrystallizing ice, and for recrystallizing ice with three

different hypotheses on new crystal orientations.

In the context of the polar ice sheet flow modelling, more important than the
differences in qualitative properties of recrystallizing and non-recrystallizing ice
fabrics are the respective differences between the macroscopic viscosities of ice.
Figure 5 illustrates the evolution of the normalized axial viscosities µ33/µ0 as
a function of the lateral stretch λ1, obtained by applying the three hypotheses
for the new grain initial orientation. These viscosities are compared with the
viscosity of non-recrystallizing ice. We note that the viscosities of ice undergoing
recrystallization vary with its deformation in a non-monotonic manner, display-
ing a kind of a wave-like pattern. This is because at the beginning of deformation,
performed at a constant rate, there is a certain number of grains (around 10% of
the total number) which immediately start to recrystallize. These recrystallizing
grains give rise to a group of newly nucleated grains at very similar orientations
with respect to the axis of compression. As the polycrystal continues to deform,
these newly formed grains, due to the crystal lattice rotation process, gradually
approach unfavourable orientations at which the microscopic critical stress level
is reached, resulting in the whole group of crystals starting to recrystallize again
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at about the same time, etc. Such ‘recrystallization waves’ have been mentioned
by Duval and Castelnau [8] as a possible mechanism occurring in ice, pro-
ducing a sequence of softening/hardening phases experienced by ice during its
creep.

It follows from Fig. 5 that the hypothesis (3), with the optimal orientation
of the newly formed crystals defined by the angle θmin, predicts the macroscopic
axial viscosity which is smaller than that of the isotropic ice, with the average
value µ33/µ0 ∼ 0.85. Compared to (3), the hypotheses (1) and (2) lead to the ice
fabrics which are only slightly harder, with the average macroscopic viscosities
µ33/µ0 ∼ 1.02, that is, practically those of the isotropic ice. Staroszczyk
and Morland [20] have assumed in their phenomenological theory that the
normalized macroscopic axial viscosity of recrystallizing ice becomes unity –
on the basis of the above results this seems to be a very good approximation.
There are some small differences, seen in Fig. 5, between the viscosities yielded
by the hypotheses (1) and (2), both requiring new crystals to align at 45◦ to
the compression axis. The simulations have revealed that the hypothesis (1),
apparently due to its restrictiveness as to the spatial orientation of a new crystal,
has a tendency of increasing any small material asymmetry that initially exists
in a polycrystalline aggregate. As a consequence, the predicted fabrics show,
at large strains, some forms of a more general anisotropy than the form which
could be expected to develop in a given stress/deformation configuration.

Figure 6 shows how the macroscopic axial viscosities are affected by the
magnitude of the critical equivalent stress. Hence, the dimensionless viscosities
µ33/µ0, plotted against the lateral stretch λ1, and obtained by adopting the
hypothesis (3), are displayed for different values of the stress ratio ζcr = Scr

eq/Seq.

Fig. 6. Variation of the normalized axial viscosity µ33/µ0 with the lateral stretch λ1 in
uni-axial compression for non-recrystallizing ice, and for recrystallizing ice with the

hypothesis (3) on new crystal orientations, for different critical equivalent stresses ζcr.
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We note that the wave-like character of the viscosity plots becomes more
pronounced with a decreasing level of the critical recrystallization stress, with
more dramatic, and frequent, changes in the viscosities occurring at smaller
strains. For the particular values of ζcr illustrated in the figure, the average
macroscopic viscosities (for the stretches λ1 ≥ 2) vary from µ33/µ0 ∼ 1.36 for
ζcr = 2.8, to the value ∼ 0.57 for ζcr = 1.5. For comparison, the minimum
possible macroscopic axial viscosity µ33/µ0 is equal to about 0.49, which follows
from Fig. 2, or Eq. (3.5), and would be attained if all crystals in the aggregate
were inclined at the optimal angle θmin to the axis of macroscopic compression.

Next consider a simple shear in the plane Ox1x3, starting from an initially
isotropic state. The deformation field is then described by

(4.3) x1 = X1 + κX3, x2 = X2, x3 = X3,

where κ is a shear strain, increasing monotonically from zero. Time and space
differentiation of the above expressions results in the macroscopic velocity gra-
dient, strain-rate and spin tensors given by

(4.4) L =




0 0 κ̇
0 0 0
0 0 0


 , D =




0 0 1
2 κ̇

0 0 0
1
2 κ̇ 0 0


 , W =




0 0 1
2 κ̇

0 0 0
−1

2 κ̇ 0 0


 .

The development of fabric with increasing deformation in the simple shear
is illustrated in Fig. 7. Again, the crystal c-axis distributions for non-recrystal-
lizing, (a), and recrystallizing ice, (b), are shown. The results presented have

a)

b)

Fig. 7. Evolution of fabric in simple shear in the Ox1x3 plane as a function of the
macroscopic sher strain κ and time t (in thousands of years) for: a) non-recrystallizing and

b) recrystallizing ice.
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been obtained by applying the hypothesis (2) for the new grain orientations, by
which new grains have their c-axes initially inclined at the angle of 45◦ to the
principal axis of the maximum macroscopic compressive stress. The same value
of the critical equivalent stress ζcr = Seq/Seq = 2.2 as for the axial compression
case has been adopted. Comparison of the diagrams in the upper and lower
rows shows that the most significant differences between the fabrics developing
in non-recrystallizing and recrystallizing ice occur at small shear strains κ. While
only the lattice rotation mechanism operates, diagrams (a), the crystal c-axes
first rotate towards the plane Ox2x3 (normal to the plane of the plot) and, for
very large shear strains (κ ≫ 10), start to cluster around the x3-axis, the latter
becoming the principal axis of compression at κ → ∞. In the case of the migra-
tion recrystallization mechanism being active, diagrams (b), the unfavourably
oriented grains (those with the c-axes near the plane Ox1x3 and at the angles of
about 45◦ to the x3-axis) are replaced by new grains, much better oriented for
basal glide. These new grains, once getting around the x3 axis, remain at this
stable orientation, at which they do not undergo any further recrystallization.
This contrasts with the uni-axial flow case, illustrated in Fig. 4b, in which the
crystals repeatedly rotate toward the x3-axis, recrystallize, the newly created
grains rotate again, recrystallize, and so on. The diagrams in Fig. 7b show that
by the time the shear strain κ exceeds a magnitude of about 5, most of the
crystals have already reached stable orientations near the plane Ox2x3, so that
further shearing does not cause any significant changes in the fabrics, which
eventually become very close to those for non-recrystallizing ice at the same
strain levels.

The fabrics predicted by the proposed model by applying the hypothesis
(3) give qualitatively very similar patterns of c-axes distributions. On the other
hand, the application of the hypothesis (1) predicts fabrics which differ from
those in Fig. 7b. In that case, due to the restrictiveness of this hypothesis men-
tioned above, a large number of newly nucleated grain c-axes align at the same
direction, coinciding with the direction of the maximum shear in the aggregate.
Hence, the predicted fabrics feature very strong, point-like maxima (Van der
Veen and Whillans [22]), a property that seems to be unrealistic in the light
of the field observations. (In the latter case, in order to better reproduce natural
ice fabrics, one can introduce into the analysis some elements of randomness of
the processes involved, but this is beyond the scope of this work.)

Figure 8 illustrates the variation of the dimensionless shear viscosities µ13/µ0

with increasing shear strain κ, obtained by employing the three hypotheses for
the new grain initial orientation. Shown is also the variation of the shear vis-
cosity for non-recrystallizing ice. We note a significant difference between the
viscosity curves resulting from the application of the hypotheses (2) and (3) on
one hand, and the hypothesis (1) on the other. The former two predict the be-
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Fig. 8. Variation of the normalized shear viscosity µ13/µ0 with the shear strain κ in simple
shearing for non-recrystallizing ice, and for recrystallizing ice with three different hypotheses

on new crystal orientations.

haviour in which, except the initial strain range 0 ≤ κ . 2.5, the viscosities vary
in a smooth manner, with the curve for (2) approaching, for κ & 5, that for non-
recrystallizing ice. On the contrary, the hypothesis (1) predicts the behaviour
in which the macroscopic shear viscosity curve has a saw-like shape, with reg-
ular, periodic changes in the viscosity magnitudes. The latter magnitudes vary
significantly, as the maximum and minimum values within one ‘period’ differ by
a factor of about two.

Finally, Fig. 9 demonstrates how the macroscopic shear viscosities µ13/µ0

are affected by the magnitude of the critical equivalent stress ζcr. Presented are

Fig. 9. Variation of the normalized shear viscosity µ13/µ0 with the shear strain κ in simple
shearing for non-recrystallizing ice, and for recrystallizing ice with the hypothesis (2) on new

crystal orientations, for different critical equivalent stresses ζcr.



280 R. Staroszczyk

the results obtained by adopting the hypothesis (2). It is seen that, irrespec-
tive of the critical stress level ζcr, the irregular changes in the viscosity values,
reflecting the activity of recrystallization processes taking place on the micro-
scopic level, are confined to the range of small shear strains, κ . 2.5. For larger
strains, κ & 10, the viscous response of the polycrystalline aggregate is practi-
cally insensitive to the magnitude of the stress controlling the onset of migration
recrystallization. This indicates that the latter mechanism has a negligible effect
on the fabric evolution once the majority of individual crystals have adjusted
their orientations in such a way that they can deform mainly by basal glide.

5. Conclusions

The migration recrystallization mechanism in polar ice has been described
by assuming that the process is controlled by the microscopic stress. Hence,
recrystallize those crystals in which some critical level of the deviatoric stress
invariant has been reached. The macroscopic response of ice has been derived
by applying the Taylor-Voigt approximation of the velocity gradient uniformity
in the polycrystalline aggregate.

The analysis of the microscopic stress dependence on the crystal c-axis ori-
entation has shown that, due to the crystal anisotropy, the most favourable
orientation of a grain within a polycrystal subjected to uni-axial compression
differs, by a few degrees, from that commonly assumed in glaciology. The model
predictions of the minimum and maximum micro-stresses in individual grains
embedded in the polycrystalline aggregate agree very well with the results given
by a more complex visco-plastic self-consistent formulation.

The proposed model reproduces well the qualitative features of anisotropic
fabrics observed in natural ice masses; in particular, the girdle fabrics resulting
from the recrystallization of ice under compression, and, to a smaller extent, the
scattered fabrics forming in simple shear conditions. The numerical simulations
predict the occurrence of recrystallization waves, reflected by periodic changes in
the macroscopic viscosities in both the uni-axial compression and simple shear
deformations. It has been found that the macroscopic axial viscosities of re-
crystallizing ice can be significantly smaller (by a factor of two) than those of
the isotropic polycrystal. This indicates that the softening effect of migration
recrystallization on the viscous behaviour of ice in compression is larger than
that previously assumed. In simple shear, the softening effect of recrystallization
occurs only at small strains.

Due to the difficulties associated with proper identification of physical quan-
tities (such as the critical microscopic stress level or the recrystallization time
of an individual grain), and also because of other simplifications introduced into
the formulation, the proposed model certainly cannot aspire to offer a quan-
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titatively accurate description of the migration recrystallization process in ice.
Nonetheless, it is believed that, at the current stage of understanding of micro-
mechanisms occurring in polar ice, the present formulation can provide results
which are useful for large-scale ice sheet modelling applications, before more
general, but tractable, theories, describing the thermodynamics of the recrystal-
lization processes involved, have been developed.
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